Designing Control Loops for Linear and Switching Power Supplies: A Tutorial Guide. By Christophe Basso, Artech House, 2012; 593 Pages. Price £99.00, ISBN 978-1-60807-557-7
Table of Contents
- Foreword xiii
- Preface xv
- Acknowledgments xvii
- Chapter 1 Basics of Loop Control 1
- 1.1 Open-Loop Systems 1
- 1.1.1 Perturbations 3
- 1.2 The Necessity of Control-Closed-Loop Systems 4
- 1.3 Notions of Time Constants 6
- 1.3.1 Working with Time Constants 7
- 1.3.2 The Proportional Term 9
- 1.3.3 The Derivative Term 10
- 1.3.4 The Integral Term 11
- 1.3.5 Combining the Factors 12
- 1.4 Performance of a Feedback Control System 12
- 1.4.1 Transient or Steady State? 13
- 1.4.2 The Step 15
- 1.4.3 The Sinusoidal Sweep 16
- 1.4.4 The Bode Plot 17
- 1.5 Transfer Functions 19
- 1.5.1 The Laplace Transform 20
- 1.5.2 Excitation and Response Signals 22
- 1.5.3 A Quick Example 23
- 1.5.4 Combining Transfer Functions with Bode Plots 25
- 1.6 Conclusion 27
- Selected Bibliography 27
- Chapter 2 Transfer Functions 29
- 2.1 Expressing Transfer Functions 29
- 2.1.1 Writing Transfer Functions the Right Way 31
- 2.1.2 The 0-db Crossover Pole 32
- 2.2 Solving for the Roots 32
- 2.2.1 Poles and Zeros Found by Inspection 35
- 2.2.2 Poles, Zeros, and Time Constants 36
- 2.3 Transient Response and Roots 39
- 2.3.1 When the Roots Are Moving 43
- 2.4 S-Plane and Transient Response 49
- 2.4.1 Roots Trajectories in the Complex Plane 54
- 2.5 Zeros in the Right Half Plane 56
- 2.5.1 A Two-Step Conversion Process 56
- 2.5.2 The Inductor Current Slew-Rate Is the Limit 58
- 2.5.3 An Average Model to Visualize RHP Zero Effects 60
- 2.5.4 The Right Half Plane Zero in the Boost Converter 62
- 2.6 Conclusion 66
- References 66
- Appendix 2A Determining a Bridge Input Impedance 67
- Reference 69
- Appendix 2B Plotting Evans Loci with Mathcad 70
- Appendix 2C Heaviside Expansion Formulas 71
- Reference 74
- Appendix 2D Plotting a Right Half Plane Zero with SPICE 74
- Chapter 3 Stability Criteria of a Control System 77
- 3.1 Building An Oscillator 77
- 3.1.1 Theory at Work 79
- 3.2 Stability Criteria 82
- 3.2.1 Gain Margin and Conditional Stability 84
- 3.2.2 Minimum Versus Nonminimum-Phase Functions 87
- 3.2.3 Nyquist Plots 89
- 3.2.4 Extracting the Basic Information from the Nyquist Plot 91
- 3.2.5 Modulus Margin 93
- 3.3 Transient Response, Quality Factor, and Phase Margin 97
- 3.3.1 A Second-Order System, the RLC Circuit 97
- 3.3.2 Transient Response of a Second-Order System 101
- 3.3.3 Phase Margin and Quality Factor 110
- 3.3.4 Opening the Loop to Measure the Phase Margin 117
- 3.3.5 The Phase Margin of a Switching Converter 120
- 3.3.6 Considering a Delay in the Conversion Process 122
- 3.3.7 The Delay in the Laplace Domain 127
- 3.3.8 Delay Margin versus Phase Margin 130
- 3.4 Selecting the Crossover Frequency 133
- 3.4.1 A Simplified Buck Converter 135
- 3.4.2 The Output Impedance in Closed-Loop Conditions 138
- 3.4.3 The Closed-Loop Output Impedance at Crossover 142
- 3.4.4 Scaling the Reference to Obtain the Desired Output 143
- 3.4.5 Increasing the Crossover Frequency Further 149
- 3.5 Conclusion 150
- References 151
- Chapter 4 Compensation 153
- 4.1 The PID Compensator 153
- 4.1.1 The Pip Expressions in the Laplace Domain 155
- 4.1.2 Practical Implementation of a PID Compensator 157
- 4.1.3 Practical Implementation of a PI Compensator 161
- 4.1.4 The PID at Work in a Buck Convener 163
- 4.1.5 The Buck Converter Transient Response with the PID Compensation 170
- 4.1.6 The Setpoint Is Fixed: We Have a Regulator! 171
- 4.1.7 A Peaky Output Impedance Plot 174
- 4.2 Stabilizing the Converter with Poles-Zeros Placement 176
- 4.2.1 A Simple Step-by-Step Technique 177
- 4.2.2 The Plant Transfer Function 178
- 4.2.3 Canceling the Static Error with an Integrator 179
- 4.2.4 Adjusting the Gain with the Integrator: The Type 1 182
- 4.2.5 Locally Boosting the Phase at Crossover 183
- 4.2.6 Placing Poles and Zeros to Create Phase Boost 185
- 4.2.7 Create Phase Boost up to 90° with a Single Pole/Zero Pair 189
- 4.2.8 Mid-Band Gain Adjustment with the Single Pole/Zero Pair: The Type 2 191
- 4.2.9 Design Example with a Type 2 192
- 4.2.10 Create Phase Boost up to 180° with a Double Pole/Zero Pair 194
- 4.2.11 Mid-Band Gain Adjustment with the Double Pole/Zero Pair: The Type 3 197
- 4.2.12 Design Example with a Type 3 199
- 4.2.13 Selecting the Right Compensator Type 200
- 4.2.14 The Type 3 at Work with a Buck Converter 201
- 4.3 Output Impedance Shaping 210
- 4.3.1 Making the Output Impedance Resistive 212
- 4.4 Conclusion 221
- References 222
- Appendix 4A The Buck Output Impedance with Fast Analytical Techniques 222
- Reference 227
- Appendix 4B The Quality Factor from a Bode Plot with Group Delay 227
- Appendix 4C The Phase Display in Simulators or Mathematical Solvers 230
- Calculating the Tangent 232
- Accounting for the Quadrant 234
- Improving the Arctangent Function 236
- Phase Display in a SPICE Simulator 237
- Conclusion 242
- Reference 243
- Appendix 4D Impact of Open-Loop Gain and Origin Pole on Op Amp-Based Transfer Functions 243
- The Integrator Case 248
- Appendix 4E Summary of Compensator Configurations 252
- Chapter 5 Operational Amplifiers-Based Compensators 253
- 5.1 Type 1: An Origin Pole 253
- 5.1.1 A Design Example 255
- 5.2 Type 2: An Origin Pole, plus a Pole/Zero Pair 257
- 5.2.1 A Design Example 260
- 5.3 Type 2a: An Origin Pole plus a Zero 262
- 5.3.1 A Design Example 263
- 5.4 Type 2b: Some Static Gain plus a Pole 264
- 5.4.1 A Design Example 266
- 5.5 Type 2: Isolation with an Optocoupler 267
- 5.5.1 Optocoupler and Op Amp: the Direct Connection, Common Emitter 269
- 5.5.2 A Design Example 271
- 5.5.3 Optocoupler and Op Amp: The Direct Connection, Common Collector 273
- 5.5.4 Optocoupler and Op Amp: The Direct Connection Common Emitter and UC384X 275
- 5.5.5 Optocoupler and Op Amp: Pull Down with Fast Lane 276
- 5.5.6 A Design Example 279
- 5.5.7 Optocoupler and Op Amp: Pull-Down with Fast Lane, Common Emitter, and UC384X 280
- 5.5.8 Optocoupler and Op Amp: Pull Down Without Fast Lane 283
- 5.5.9 A Design Example 285
- 5.5.10 Optocoupler and Op Amp: A Dual-Loop Approach in CC-CV Applications 288
- 5.5.11 A Design Example 293
- 5.6 The Type 2: Pole and Zero are Coincident to Create an Isolated Type 1 299
- 5.6.1 A Design Example 301
- 5.7 The Type 2: A Slightly Different Arrangement 303
- 5.8 The Type 3: An Origin Pole, a Pole/Zero Pair 308
- 5.8.1 A Design Example 313
- 5.9 The Type 3: Isolation with an Optocoupler 315
- 5.9.1 Optocoupler and Op Amp: The Direct Connection, Common Collector 315
- 5.9.2 A Design Example 317
- 5.9.3 Optocoupler and Op Amp: The Direct Connection, Common Emitter 319
- 5.9.4 Optocoupler and Op Amp: The Direct Connection, Common Emitter, and UC384X 321
- 5.9.5 Optocoupler and Op Amp: Pull-Down with Fast Lane 322
- 5.9.6 A Design Example 326
- 5.9.7 Optocoupler and Op Amp: Pull Down without Fast Lane 328
- 5.9.8 A Design Example 332
- 5.10 Conclusion 335
- References 335
- Appendix 5A Summary Pictures 335
- Appendix 5B Automating Components Calculations with k Factor 340
- Type 1 340
- Type 2 341
- Type 3 342
- Reference 344
- Appendix 5C The Optocoupler 346
- Transmitting Light 346
- Current Transfer Ratio 347
- The Optocoupler Pole 348
- Extracting the Optocoupler Pole 350
- Watch for the LED Dynamic Resistance 351
- Good Design Practices 354
- References 355
- Chapter 6 Operational Transconductance Amplifier-Based Compensators 357
- 6.1 The Type 1: An Origin Pole 358
- 6.1.1 A Design Example 359
- 6.2 The Type 2: An Origin Pole plus a Pole/Zero Pair 360
- 6.2.1 A Design Example 364
- 6.3 Optocoupler and OTA: A Buffered Connection 365
- 6.3.1 A Design Example 368
- 6.4 The Type 3: An Origin Pole and a Pole/Zero Pair 370
- 6.4.1 A Design Example 377
- 6.5 Conclusion 380
- Appendix 6A Summary Pictures 380
- References 381
- Chapter 7 TL431-Based Compensators 383
- 7.1 A Bandgap-Based Component 383
- 7.1.1 The Reference Voltage 385
- 7.1.2 The Need for Bias Current 387
- 7.2 Biasing the TL431: The Impact on the Gain 390
- 7.3 Biasing the TL431: A Different Arrangement 392
- 7.4 Biasing the TL431: Component Limits 395
- 7.5 The Fast Lane Is the Problem 396
- 7.6 Disabling the Fast Lane 397
- 7.7 The Type 1: An Origin Pole, Common-Emitter Configuration 399
- 7.7.1 A Design Example 402
- 7.8 The Type 1: Common-Collector Configuration 403
- 7.9 The Type 2: An Origin Pole plus a Pole/Zero Pair 403
- 7.9.1 A Design Example 407
- 7.10 The Type 2: Common-Emitter Configuration and UC384X 408
- 7.11 The Type 2: Common-Collector Configuration and UC384X 411
- 7.12 The Type 2: Disabling the Fast Lane 411
- 7.12.1 A Design Example 413
- 7.13 The Type 3: An Origin Pole plus a Double Pole/Zero Pair 415
- 7.13.1 A Design Example 423
- 7.14 The Type 3: An Origin Pole plus a Double Pole/Zero Pair-No Fast Lane 424
- 7.14.1 A Design Example 429
- 7.15 Testing the Ac Responses on a Bench 431
- 7.16 Isolated Zener-Based Compensator 434
- 7.16.1 A Design Example 436
- 7.17 Nonisolated Zener-Based Compensator 441
- 7.18 Nonisolated Zener-Based Compensator: A Lower Cost Version 443
- 7.19 Conclusion 445
- References 445
- Appendix 7A Summary Pictures 445
- Appendix 7B Second Stage LC Filter 448
- A Simplified Approach 449
- Simulation at Work 450
- References 454
- Chapter 8 Shunt Regulator-Based Compensators 455
- 8.1 The Type 2: An Origin Pole plus a Pole/Zero Pair 456
- 8.1.1 A Design Example 460
- 8.2 The Type 3: An Origin Pole plus a Double Pole/Zero Pair 466
- 8.2.1 A Design Example 468
- 8.3 The Type 3: An Origin Pole plus a Double Pole/Zero Pair-No Fast Lane 471
- 8.3.1 A Design Example 474
- 8.4 Isolated Zener-Based Compensator 476
- 8.4.1 A Design Example 480
- 8.5 Conclusion 483
- References 483
- Appendix 8A Summary Pictures 484
- Chapter 9 Measurements and Design Examples 487
- 9.1 Measuring the Control System Transfer Function 487
- 9.1.1 Opening the Loop with Bias Point Loss 488
- 9.1.2 Power Stage Transfer Function without Bias Point Loss 492
- 9.1.3 Opening the Loop in ac Only 493
- 9.1.4 Voltage Variations at the Injection Points 496
- 9.1.5 Impedances at the Injection Points 504
- 9.1.6 Buffering the Data 505
- 9.2 Design Example 1: A Forward dc-dc Converter 509
- 9.2.1 Moving Parameters 509
- 9.2.2 The Electrical Schematic 511
- 9.2.3 Extracting the Power Stage Transfer Response 514
- 9.2.4 Compensating the Converter 515
- 9.3 Design Example 2: A Linear Regulator 519
- 9.3.1 Extracting the Power Stage Transfer Function 520
- 9.3.2 Crossover Frequency Selection and Compensation 521
- 9.3.3 Testing the Transient Response 527
- 9.4 Design Example 3: A CCM Voltage-Mode Boost Converter 528
- 9.4.1 The Power Stage Transfer Function 529
- 9.4.2 Compensating the Converter 533
- Strategy 1 535
- Strategy 2 535
- 9.4.3 Plotting the Loop Gain 537
- 9.5 Design Example 4: A Primary-Regulated Flyback Converter 539
- 9.5.1 Deriving the Transfer Function 540
- 9.5.2 Verifying the Equations 544
- 9.5.3 Stabilizing the Converter 545
- 9.6 Design Example 5: Input Filter Compensation 552
- 9.6.1 A Negative Incremental Resistance 553
- 9.6.2 Building an Oscillator 554
- 9.6.3 Taming the Oscillations 556
- 9.7 Conclusion 562
- References 562
- Conclusion 565
- Appendix 567
- About the Author 571
Note
- The website for this book is: http://www.artechhouse.com/International/Books/Designing-Control-Loops-for-Linear-and-Switching-P-1990.aspx
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lin, S.-K. Designing Control Loops for Linear and Switching Power Supplies: A Tutorial Guide. By Christophe Basso, Artech House, 2012; 593 Pages. Price £99.00, ISBN 978-1-60807-557-7. J. Low Power Electron. Appl. 2013, 3, 1-8. https://doi.org/10.3390/jlpea3010001
Lin S-K. Designing Control Loops for Linear and Switching Power Supplies: A Tutorial Guide. By Christophe Basso, Artech House, 2012; 593 Pages. Price £99.00, ISBN 978-1-60807-557-7. Journal of Low Power Electronics and Applications. 2013; 3(1):1-8. https://doi.org/10.3390/jlpea3010001
Chicago/Turabian StyleLin, Shu-Kun. 2013. "Designing Control Loops for Linear and Switching Power Supplies: A Tutorial Guide. By Christophe Basso, Artech House, 2012; 593 Pages. Price £99.00, ISBN 978-1-60807-557-7" Journal of Low Power Electronics and Applications 3, no. 1: 1-8. https://doi.org/10.3390/jlpea3010001
APA StyleLin, S. -K. (2013). Designing Control Loops for Linear and Switching Power Supplies: A Tutorial Guide. By Christophe Basso, Artech House, 2012; 593 Pages. Price £99.00, ISBN 978-1-60807-557-7. Journal of Low Power Electronics and Applications, 3(1), 1-8. https://doi.org/10.3390/jlpea3010001