Review of Orthogonal Frequency Division Multiplexing-Based Modulation Techniques for Light Fidelity
Abstract
:1. Introduction
2. OFDM-Based Modulation
2.1. DC-Biased Optical—OFDM
2.2. Inherent Unipolar Optical OFDM
2.3. Superposition OFDM
2.4. Hybrid OFDM
3. Performance Keys
3.1. Energy Efficiency
3.2. Spectral Efficiency
3.3. Peak-to-Average Power Ratio
3.4. Computational Complexity
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haas, H. LiFi: Conceptions, misconceptions and opportunities. In Proceedings of the 2016 IEEE Photonics Conference (IPC), Waikoloa, HI, USA, 2–6 October 2016; pp. 680–681. [Google Scholar]
- Khan, L.U. Visible light communication: Applications, architecture, standardization and research challenges. Digit. Commun. Netw. 2017, 3, 78–88. [Google Scholar] [CrossRef] [Green Version]
- Asad, M.; Qaisar, S.; Basit, A. Client-Centric Access Device Selection for Heterogeneous QoS Requirements in Beyond 5G IoT Networks. IEEE Access 2020, 8, 219820–219836. [Google Scholar] [CrossRef]
- Haas, H. LiFi is a paradigm-shifting 5G technology. Rev. Phys. 2018, 3, 26–31. [Google Scholar] [CrossRef]
- Chow, C.-W.; Yeh, C.-H.; Liu, Y. Optical Wireless Communications (OWC)-Technologies and Applications. In Proceedings of the 2020 Opto-Electronics and Communications Conference (OECC), Taipei, Taiwan, 4–8 October 2020; pp. 1–3. [Google Scholar]
- Wang, C.-X.; Haider, F.; Gao, X.; You, X.-H.; Yang, Y.; Yuan, D.; Aggoune, H.M.; Haas, H.; Fletcher, S.; Hepsaydir, E. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag. 2014, 52, 122–130. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, M.Z.; Shahjalal, M.; Ahmed, S.; Jang, Y.M. 6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions. IEEE Open J. Commun. Soc. 2020, 1, 957–975. [Google Scholar] [CrossRef]
- Haas, H.; Yin, L.; Wang, Y.; Chen, C. What is LiFi? J. Light. Technol. 2016, 34, 1533–1544. [Google Scholar] [CrossRef]
- Chow, C.-W.; Chang, Y.-H.; Wei, L.-Y.; Yeh, C.-H.; Liu, Y. 26.228-Gbit/s RGBV Visible Light Communication (VLC) with 2-m Free Space Transmission. In Proceedings of the 2020 Opto-Electronics and Communications Conference (OECC), Taipei, Taiwan, 4–8 October 2020; pp. 1–3. [Google Scholar]
- Khalid, A.; Cossu, G.; Corsini, R.; Choudhury, P.; Ciaramella, E. 1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation. IEEE Photonics J. 2012, 4, 1465–1473. [Google Scholar] [CrossRef] [Green Version]
- Cossu, G.; Wajahat, A.; Corsini, R.; Ciaramella, E. 5.6 Gbit/s downlink and 1.5 Gbit/s uplink optical wireless transmission at indoor distances (≥1.5 m). In Proceedings of the 2014 The European Conference on Optical Communication (ECOC), Cannes, France, 21–25 September 2014; pp. 1–3. [Google Scholar]
- Islim, M.S.; Ferreira, R.X.; He, X.; Xie, E.; Videv, S.; Viola, S.; Watson, S.; Bamiedakis, N.; Penty, R.V.; White, I.H. Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED. Photonics Res. 2017, 5, A35–A43. [Google Scholar] [CrossRef]
- Tsonev, D.; Videv, S.; Haas, H. Towards a 100 Gb/s visible light wireless access network. Opt. Express 2015, 23, 1627–1637. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Ji, H.; Ghassemlooy, Z.; Tang, X.; Lin, B.; Qiao, S. Spectrum-efficient triple-layer hybrid optical OFDM for IM/DD-based optical wireless communications. IEEE Access 2020, 8, 10352–10362. [Google Scholar] [CrossRef]
- Yeh, C.H.; Chen, H.Y.; Chow, C.W.; Liu, Y.L. Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC. Opt Express 2015, 23, 1133–1138. [Google Scholar] [CrossRef] [Green Version]
- Adnan, A.; Liu, Y.; Chow, C.-W.; Yeh, C.-H. Demonstration of non-Hermitian symmetry (NHS) IFFT/FFT size efficient OFDM non-orthogonal multiple access (NOMA) for visible light communication. IEEE Photonics J. 2020, 12, 1–5. [Google Scholar] [CrossRef]
- Islim, M.S.; Haas, H. Modulation techniques for li-fi. ZTE Commun. 2016, 14, 29–40. [Google Scholar]
- Lian, J.; Noshad, M.; Brandt-Pearce, M. Comparison of optical OFDM and M-PAM for LED-based communication systems. IEEE Commun. Lett. 2019, 23, 430–433. [Google Scholar] [CrossRef]
- Ling, X.; Wang, J.; Liang, X.; Ding, Z.; Zhao, C. Offset and Power Optimization for DCO-OFDM in Visible Light Communication Systems. IEEE Trans. Signal Process. 2016, 64, 349–363. [Google Scholar] [CrossRef]
- Yang, F.; Sun, Y.; Gao, J. Adaptive LACO-OFDM with variable layer for visible light communication. IEEE Photonics J. 2017, 9, 1–8. [Google Scholar] [CrossRef]
- Dissanayake, S.D.; Armstrong, J. Comparison of aco-ofdm, dco-ofdm and ado-ofdm in im/dd systems. J. Light. Technol. 2013, 31, 1063–1072. [Google Scholar] [CrossRef]
- Deng, X.; Mardanikorani, S.; Zhou, G.; Linnartz, J.-P.M. DC-bias for optical OFDM in visible light communications. IEEE Access 2019, 7, 98319–98330. [Google Scholar] [CrossRef]
- Vappangi, S.; Vakamulla, V.M. Channel estimation in ACO-OFDM employing different transforms for VLC. AEU-Int. J. Electron. Commun. 2018, 84, 111–122. [Google Scholar] [CrossRef]
- Rajagopal, S.; Roberts, R.D.; Lim, S.-K. IEEE 802.15. 7 visible light communication: Modulation schemes and dimming support. IEEE Commun. Mag. 2012, 50, 72–82. [Google Scholar] [CrossRef]
- Gunawan, W.H.; Liu, Y.; Yeh, C.-H.; Chow, C.-W. Color-Shift-Keying Embedded Direct-Current Optical-Orthogonal-Frequency-Division-Multiplexing (CSK-DCO-OFDM) for Visible Light Communications (VLC). IEEE Photonics J. 2020, 12, 1–5. [Google Scholar] [CrossRef]
- Gunawan, W.H.; Liu, Y.; Chow, C.-W.; Chang, Y.-H.; Peng, C.-W.; Yeh, C.-H. Two-Level Laser Diode Color-Shift-Keying Orthogonal-Frequency-Division-Multiplexing (LD-CSK-OFDM) for Optical Wireless Communications (OWC). J. Light. Technol. 2021, 39, 3088–3094. [Google Scholar] [CrossRef]
- Figueiredo, M.; Ribeiro, C.; Alves, L.N. Live demonstration: 150Mbps+ DCO-OFDM VLC. In Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016; p. 457. [Google Scholar]
- Wang, Q.; Song, B.; Corcoran, B.; Boland, D.; Zhuang, L.; Xie, Y.; Lowery, A.J. FPGA-based layered/enhanced ACO-OFDM transmitter. In Proceedings of the 2017 Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, 19–23 March 2017; pp. 1–3. [Google Scholar]
- Fuada, S.; Setiawan, E.; Adiono, T.; Popoola, W.O. Design and verification of SoC for OFDM-based visible light communication transceiver systems and integration with off-the-shelf analog front-end. Optik 2022, 258, 168867. [Google Scholar] [CrossRef]
- Alindra, R.; Priambodo, P.S.; Ramli, K. FPGA Implementation of OFDM-based Visible Light Communication System. In Proceedings of the 2022 International Conference on Informatics Electrical and Electronics (ICIEE), Yogyakarta, Indonesia, 5–7 October 2022; pp. 1–6. [Google Scholar]
- Wang, Q.; Wang, Z.; Dai, L.; Quan, J. Dimmable visible light communications based on multilayer ACO-OFDM. IEEE Photonics J. 2016, 8, 1–11. [Google Scholar] [CrossRef]
- Armstrong, J. OFDM for optical communications. J. Light. Technol. 2009, 27, 189–204. [Google Scholar] [CrossRef]
- Yin, L.; Popoola, W.O.; Wu, X.; Haas, H. Performance Evaluation of Non-Orthogonal Multiple Access in Visible Light Communication. IEEE Trans. Commun. 2016, 64, 5162–5175. [Google Scholar] [CrossRef] [Green Version]
- Arfaoui, M.A.; Soltani, M.D.; Tavakkolnia, I.; Ghrayeb, A.; Assi, C.M.; Safari, M.; Haas, H. Measurements-Based Channel Models for Indoor LiFi Systems. IEEE Trans. Wirel. Commun. 2021, 20, 827–842. [Google Scholar] [CrossRef]
- Carruthers, J.B.; Kahn, J.M. Multiple-subcarrier modulation for nondirected wireless infrared communication. IEEE J. Sel. Areas Commun. 1996, 14, 538–546. [Google Scholar] [CrossRef]
- Hei, Y.; Kou, Y.; Shi, G.; Li, W.; Gu, H. Energy-spectral efficiency tradeoff in DCO-OFDM visible light communication system. IEEE Trans. Veh. Technol. 2019, 68, 9872–9882. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Y.; Ling, X.; Zhang, R.; Ding, Z.; Zhao, C. PAPR analysis for OFDM visible light communication. Opt. Express 2016, 24, 27457–27474. [Google Scholar] [CrossRef]
- Armstrong, J.; Lowery, A.J. Power efficient optical OFDM. Electron. Lett. 2006, 42, 370–372. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.C.J.; Randel, S.; Breyer, F.; Koonen, A.M.J. PAM-DMT for Intensity-Modulated and Direct-Detection Optical Communication Systems. IEEE Photonics Technol. Lett. 2009, 21, 1749–1751. [Google Scholar] [CrossRef]
- Tsonev, D.; Sinanovic, S.; Haas, H. Novel unipolar orthogonal frequency division multiplexing (U-OFDM) for optical wireless. In Proceedings of the 2012 IEEE 75th Vehicular Technology Conference (VTC Spring), Yokohama, Japan, 6–9 May 2012; pp. 1–5. [Google Scholar]
- Tsonev, D.; Haas, H. Avoiding spectral efficiency loss in unipolar OFDM for optical wireless communication. In Proceedings of the 2014 IEEE International Conference on Communications (ICC), Sydney, NSW, Australia, 10–14 June 2014; pp. 3336–3341. [Google Scholar]
- Tsonev, D.; Videv, S.; Haas, H. Unlocking spectral efficiency in intensity modulation and direct detection systems. IEEE J. Sel. Areas Commun. 2015, 33, 1758–1770. [Google Scholar] [CrossRef]
- Islim, M.S.; Tsonev, D.; Haas, H. On the superposition modulation for OFDM-based optical wireless communication. In Proceedings of the 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Orlando, FL, USA, 14–16 December 2015; pp. 1022–1026. [Google Scholar]
- Lowery, A.J. Enhanced asymmetrically clipped optical ODFM for high spectral efficiency and sensitivity. In Proceedings of the 2016 Optical Fiber Communications Conference and Exhibition (OFC), Anaheim, CA, USA, 20–24 March 2016; pp. 1–3. [Google Scholar]
- Elgala, H.; Little, T.D. SEE-OFDM: Spectral and energy efficient OFDM for optical IM/DD systems. In Proceedings of the 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), Washington, DC, USA, 2–5 September 2014; pp. 851–855. [Google Scholar]
- Lowery, A.J. Comparisons of spectrally-enhanced asymmetrically-clipped optical OFDM systems. Opt. Express 2016, 24, 3950–3966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Qian, C.; Guo, X.; Wang, Z.; Cunningham, D.G.; White, I.H. Layered ACO-OFDM for intensity-modulated direct-detection optical wireless transmission. Opt. Express 2015, 23, 12382–12393. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Yang, F.; Gao, J. Comparison of hybrid optical modulation schemes for visible light communication. IEEE Photonics J. 2017, 9, 1–13. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, F.; Cheng, L. An overview of OFDM-based visible light communication systems from the perspective of energy efficiency versus spectral efficiency. IEEE Access 2018, 6, 60824–60833. [Google Scholar] [CrossRef]
- Islim, M.S.; Tsonev, D.; Haas, H. Spectrally enhanced PAM-DMT for IM/DD optical wireless communications. In Proceedings of the 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong Kong, China, 30 August–2 September 2015; pp. 877–882. [Google Scholar]
- Wang, C.; Yang, Y.; Cheng, J.; Guo, C.; Feng, C. A Dimmable OFDM Scheme With Dynamic Subcarrier Activation for VLC. IEEE Photonics J. 2020, 12, 1–12. [Google Scholar] [CrossRef]
- Elgala, H.; Little, T.D. P-OFDM: Spectrally efficient unipolar OFDM. In Proceedings of the OFC 2014, San Francisco, CA, USA, 9–13 March 2014; pp. 1–3. [Google Scholar]
- Mossaad, M.S.; Hranilovic, S.; Lampe, L. Visible light communications using OFDM and multiple LEDs. IEEE Trans. Commun. 2015, 63, 4304–4313. [Google Scholar] [CrossRef]
- Dissanayake, S.D.; Panta, K.; Armstrong, J. A novel technique to simultaneously transmit ACO-OFDM and DCO-OFDM in IM/DD systems. In Proceedings of the 2011 IEEE GLOBECOM Workshops (GC Wkshps), Houston, TX, USA, 5–9 December 2011; pp. 782–786. [Google Scholar]
- Huang, X.; Yang, F.; Song, J. Novel heterogeneous attocell network based on the enhanced ADO-OFDM for VLC. IEEE Commun. Lett. 2018, 23, 40–43. [Google Scholar] [CrossRef]
- Wang, Z.; Mao, T.; Wang, Q. Optical OFDM for visible light communications. In Proceedings of the 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, 26–30 June 2017; pp. 1190–1194. [Google Scholar]
- Ranjha, B.; Kavehrad, M. Hybrid asymmetrically clipped OFDM-based IM/DD optical wireless system. J. Opt. Commun. Netw. 2014, 6, 387–396. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Q.; Zhang, R.; Chen, S.; Hanzo, L. Performance analysis of layered ACO-OFDM. IEEE Access 2017, 5, 18366–18381. [Google Scholar] [CrossRef]
- Mardanikorani, S.; Deng, X.; Linnartz, J.-P.M. Optimization and Comparison of M-PAM and Optical OFDM Modulation for Optical Wireless Communication. IEEE Open J. Commun. Soc. 2020, 1, 1721–1737. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, F. Adaptive modulation scheme based on partially pre-distorted LACO-OFDM for VLC system. IEEE Photonics J. 2019, 11, 1–12. [Google Scholar] [CrossRef]
- Li, H.; Huang, Z.; Xiao, Y.; Zhan, S.; Ji, Y. A power and spectrum efficient NOMA scheme for VLC network based on hierarchical pre-distorted LACO-OFDM. IEEE Access 2019, 7, 48565–48571. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Z.; Guo, X.; Dai, L. Improved Receiver Design for Layered ACO-OFDM in Optical Wireless Communications. IEEE Photonics Technol. Lett. 2016, 28, 319–322. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Wang, Q.; Cheng, Q.; Guo, M.; Lu, Y.; Yang, A.; Qiao, Y. Low-PAPR layered/enhanced ACO-SCFDM for optical-wireless communications. IEEE Photonics Technol. Lett. 2017, 30, 165–168. [Google Scholar] [CrossRef]
- Song, B.; Corcoran, B.; Wang, Q.; Zhuang, L.; Lowery, A.J. Subcarrier pairwise coding for short-haul L/E-ACO-OFDM. IEEE Photonics Technol. Lett. 2017, 29, 1584–1587. [Google Scholar] [CrossRef]
- Wang, T.Q.; Li, H.; Huang, X. Diversity combining for layered asymmetrically clipped optical OFDM using soft successive interference cancellation. IEEE Commun. Lett. 2017, 21, 1309–1312. [Google Scholar] [CrossRef]
- Mohammed, M.M.; He, C.; Armstrong, J. Diversity combining in layered asymmetrically clipped optical OFDM. J. Light. Technol. 2017, 35, 2078–2085. [Google Scholar] [CrossRef]
- Wang, T.Q.; Li, H.; Huang, X. Interference cancellation for layered asymmetrically clipped optical OFDM with application to optical receiver design. J. Light. Technol. 2018, 36, 2100–2113. [Google Scholar] [CrossRef]
- Bai, R.; Wang, Z.; Jiang, R.; Cheng, J. Interleaved DFT-spread layered/enhanced ACO-OFDM for intensity-modulated direct-detection systems. J. Light. Technol. 2018, 36, 4713–4722. [Google Scholar] [CrossRef]
- Zhang, X.; Babar, Z.; Zhang, R.; Chen, S.; Hanzo, L. Multi-Class Coded Layered Asymmetrically Clipped Optical OFDM. IEEE Trans. Commun. 2019, 67, 578–589. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Li, H.; Huang, X. Analysis and mitigation of clipping noise in layered ACO-OFDM based visible light communication systems. IEEE Trans. Commun. 2019, 67, 564–577. [Google Scholar] [CrossRef]
- Zhang, T.; Qiao, Y.; Zhou, J.; Zhang, Z.; Lu, Y.; Su, F. Spectral-efficient L/E-ACO-SCFDM-based dimmable visible light communication system. IEEE Access 2019, 7, 10617–10626. [Google Scholar] [CrossRef]
- Babar, Z.; Zhang, X.; Botsinis, P.; Alanis, D.; Chandra, D.; Ng, S.X.; Hanzo, L. Near-capacity multilayered code design for LACO-OFDM-aided optical wireless systems. IEEE Trans. Veh. Technol. 2019, 68, 4051–4054. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Xu, W.; Feng, S.; Li, Z. Spectral-efficient reconstructed LACO-OFDM transmission for dimming compatible visible light communications. IEEE Photonics J. 2019, 11, 1–14. [Google Scholar] [CrossRef]
- Zhang, Z.; Chaaban, A.; Alouini, M.-S. Residual clipping noise in multi-layer optical OFDM: Modeling, analysis, and applications. IEEE Trans. Wirel. Commun. 2020, 19, 5846–5859. [Google Scholar] [CrossRef]
- Hu, W. Design of a cyclic shifted LACO-OFDM for optical wireless communication. IEEE Access 2020, 8, 76708–76714. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, S.; Hanzo, L. On the discrete-input continuous-output memoryless channel capacity of layered ACO-OFDM. J. Light. Technol. 2020, 38, 4955–4968. [Google Scholar] [CrossRef]
- Lacava, C.; Babar, Z.; Zhang, X.; Demirtzioglou, I.; Petropoulos, P.; Hanzo, L. High-speed multi-layer coded adaptive LACO-OFDM and its experimental verification. OSA Contin. 2020, 3, 2614–2629. [Google Scholar] [CrossRef]
- Bai, R.; Hranilovic, S. Absolute value layered ACO-OFDM for intensity-modulated optical wireless channels. IEEE Trans. Commun. 2020, 68, 7098–7110. [Google Scholar] [CrossRef]
- Bai, R.; Hranilovic, S.; Wang, Z. Low-complexity layered ACO-OFDM for power-efficient visible light communications. IEEE Trans. Green Commun. Netw. 2022, 6, 1780–1792. [Google Scholar] [CrossRef]
Modulation Technique | Method | Spectral Efficiency * |
---|---|---|
RPO-OFDM | Real of Optical OFDM + slow PWM | 50% |
P-OFDM | The complex signal which is the output of the IFFT is converted from Cartesian coordinates to polar coordinates | 100% |
SO-OFDM | The subcarrier is allocated to one of the LED arrays | 100% |
ASCO-OFDM | ACO-OFDM + SCO-OFDM | 75% |
SFO-OFDM | Complex data goes through an auto-correlation process at the transmitter | 50% |
PM-OFDM | The real and imaginary components of the OFDM signal are divided into positive and negative parts | 50% |
ADO-OFDM | ACO-OFDM + DCO-OFDM | 100% |
HACO-OFDM | ACO-OFDM + PAM-DMT | 100% |
Parameters | Modulation Techniques | Refs. | |||
---|---|---|---|---|---|
DCO OFDM | ACO OFDM | LACO OFDM | ADO OFDM | ||
Energy efficiency | Low | High | High | Medium | [17,56,60,61] |
Spectral efficiency | 100% | 50% | 100% | 100% | [47,48,60] |
Peak-to-average power ratio | Best | Worst | Good | Good | [22,37,48] |
Computational complexity | Low | Low | High | High | [47,60] |
Ref. | Authors | Issue | Contribution | Method/Result |
---|---|---|---|---|
[31] | Wang et al. (2016) | Dimming support | LACO-OFDM with a dimming control |
|
[20] | Yang et al. (2017) | Determination of the number of layers | Adaptive LACO-OFDM with channel capacity analysis |
|
[63] | Zhou et al. (2017) | PAPR decrement | LACO-single carrier frequency division multiplexing |
|
[64] | Song et al. (2017) | Error propagation | Pairwise coding on each layer for the LACO-OFDM scheme |
|
[65] | Wang et al. (2017) | Inter-layer interference | Diversity combining for the receiver in LACO-OFDM |
|
[66] | Mohammed et al. (2017) | Spectral efficiency | Unificate diversity combining and layering techniques |
|
[58] | Zhang et al. (2017) | PAPR decrement | Tone injection method to reduce PAPR |
|
[67] | Wang et al. (2018) | Error propagation | Proposed two-stage receiver for LACO-OFDM |
|
[68] | Bai et al. (2018) | PAPR decrement | Interleaved discrete Fourier Transform spread LACO-OFDM |
|
[69] | Zhang et al. (2019) | Inter-layer interference | LACO-OFDM equipped with channel coding |
|
[70] | Wang et al. (2019) | Clipping noise | A decision-aided reconstruction (DAR) applied to receiver LACO-OFDM |
|
[71] | Zhang et al. (2019) | Spectral efficiency | The first proposed LACO-SCFDM for a VLC system |
|
[36] | Li et al. (2019) | Inter-layer interference | Hierarchical pre-distortion method for NOMA VLC network |
|
[60] | Sun et al. (2019) | Inter-layer interference | Determination of pre-distortion on the layer using an adaptive scheme |
|
[72] | Babar et al. (2019) | Inter-layer interference | Multilayered code scheme LACO-OFDM |
|
[73] | Li et al. (2019) | Dimming support | Reconstructed LACO-OFDM integrated with PWM |
|
[74] | Zhang et al. (2020) | Clipping Noise | Mathematical analysis and modeling to overcome the residual clipping noise |
|
[75] | Weiwen Hu. (2020) | PAPR decrement | Cyclic shifted LACO-OFDM |
|
[76] | Zhang et al. (2020) | Channel capacity | Analysis and optimization of Discrete-Input Continuous-Output Memoryless Channel capacity on LACO-OFDM |
|
[77] | Lacava et al. (2020) | Experimental | Experimental verification of multilayer channel coding |
|
[78] | Bai et al. (2020) | Spectral efficiency and power efficiency | Absolute value -LACO-OFDM |
|
[79] | Bai et al. (2022) | Computational complexity | Low-complexity LACO-OFDM |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alindra, R.; Priambodo, P.S.; Ramli, K. Review of Orthogonal Frequency Division Multiplexing-Based Modulation Techniques for Light Fidelity. J. Low Power Electron. Appl. 2023, 13, 46. https://doi.org/10.3390/jlpea13030046
Alindra R, Priambodo PS, Ramli K. Review of Orthogonal Frequency Division Multiplexing-Based Modulation Techniques for Light Fidelity. Journal of Low Power Electronics and Applications. 2023; 13(3):46. https://doi.org/10.3390/jlpea13030046
Chicago/Turabian StyleAlindra, Rahmayati, Purnomo Sidi Priambodo, and Kalamullah Ramli. 2023. "Review of Orthogonal Frequency Division Multiplexing-Based Modulation Techniques for Light Fidelity" Journal of Low Power Electronics and Applications 13, no. 3: 46. https://doi.org/10.3390/jlpea13030046
APA StyleAlindra, R., Priambodo, P. S., & Ramli, K. (2023). Review of Orthogonal Frequency Division Multiplexing-Based Modulation Techniques for Light Fidelity. Journal of Low Power Electronics and Applications, 13(3), 46. https://doi.org/10.3390/jlpea13030046