Review of Orthogonal Frequency Division MultiplexingBased Modulation Techniques for Light Fidelity
Abstract
:1. Introduction
2. OFDMBased Modulation
2.1. DCBiased Optical—OFDM
2.2. Inherent Unipolar Optical OFDM
2.3. Superposition OFDM
2.4. Hybrid OFDM
3. Performance Keys
3.1. Energy Efficiency
3.2. Spectral Efficiency
3.3. PeaktoAverage Power Ratio
3.4. Computational Complexity
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
 Haas, H. LiFi: Conceptions, misconceptions and opportunities. In Proceedings of the 2016 IEEE Photonics Conference (IPC), Waikoloa, HI, USA, 2–6 October 2016; pp. 680–681. [Google Scholar]
 Khan, L.U. Visible light communication: Applications, architecture, standardization and research challenges. Digit. Commun. Netw. 2017, 3, 78–88. [Google Scholar] [CrossRef] [Green Version]
 Asad, M.; Qaisar, S.; Basit, A. ClientCentric Access Device Selection for Heterogeneous QoS Requirements in Beyond 5G IoT Networks. IEEE Access 2020, 8, 219820–219836. [Google Scholar] [CrossRef]
 Haas, H. LiFi is a paradigmshifting 5G technology. Rev. Phys. 2018, 3, 26–31. [Google Scholar] [CrossRef]
 Chow, C.W.; Yeh, C.H.; Liu, Y. Optical Wireless Communications (OWC)Technologies and Applications. In Proceedings of the 2020 OptoElectronics and Communications Conference (OECC), Taipei, Taiwan, 4–8 October 2020; pp. 1–3. [Google Scholar]
 Wang, C.X.; Haider, F.; Gao, X.; You, X.H.; Yang, Y.; Yuan, D.; Aggoune, H.M.; Haas, H.; Fletcher, S.; Hepsaydir, E. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag. 2014, 52, 122–130. [Google Scholar] [CrossRef] [Green Version]
 Chowdhury, M.Z.; Shahjalal, M.; Ahmed, S.; Jang, Y.M. 6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions. IEEE Open J. Commun. Soc. 2020, 1, 957–975. [Google Scholar] [CrossRef]
 Haas, H.; Yin, L.; Wang, Y.; Chen, C. What is LiFi? J. Light. Technol. 2016, 34, 1533–1544. [Google Scholar] [CrossRef]
 Chow, C.W.; Chang, Y.H.; Wei, L.Y.; Yeh, C.H.; Liu, Y. 26.228Gbit/s RGBV Visible Light Communication (VLC) with 2m Free Space Transmission. In Proceedings of the 2020 OptoElectronics and Communications Conference (OECC), Taipei, Taiwan, 4–8 October 2020; pp. 1–3. [Google Scholar]
 Khalid, A.; Cossu, G.; Corsini, R.; Choudhury, P.; Ciaramella, E. 1Gb/s transmission over a phosphorescent white LED by using rateadaptive discrete multitone modulation. IEEE Photonics J. 2012, 4, 1465–1473. [Google Scholar] [CrossRef] [Green Version]
 Cossu, G.; Wajahat, A.; Corsini, R.; Ciaramella, E. 5.6 Gbit/s downlink and 1.5 Gbit/s uplink optical wireless transmission at indoor distances (≥1.5 m). In Proceedings of the 2014 The European Conference on Optical Communication (ECOC), Cannes, France, 21–25 September 2014; pp. 1–3. [Google Scholar]
 Islim, M.S.; Ferreira, R.X.; He, X.; Xie, E.; Videv, S.; Viola, S.; Watson, S.; Bamiedakis, N.; Penty, R.V.; White, I.H. Towards 10 Gb/s orthogonal frequency division multiplexingbased visible light communication using a GaN violet microLED. Photonics Res. 2017, 5, A35–A43. [Google Scholar] [CrossRef]
 Tsonev, D.; Videv, S.; Haas, H. Towards a 100 Gb/s visible light wireless access network. Opt. Express 2015, 23, 1627–1637. [Google Scholar] [CrossRef] [Green Version]
 Zhang, T.; Ji, H.; Ghassemlooy, Z.; Tang, X.; Lin, B.; Qiao, S. Spectrumefficient triplelayer hybrid optical OFDM for IM/DDbased optical wireless communications. IEEE Access 2020, 8, 10352–10362. [Google Scholar] [CrossRef]
 Yeh, C.H.; Chen, H.Y.; Chow, C.W.; Liu, Y.L. Utilization of multiband OFDM modulation to increase traffic rate of phosphorLED wireless VLC. Opt Express 2015, 23, 1133–1138. [Google Scholar] [CrossRef] [Green Version]
 Adnan, A.; Liu, Y.; Chow, C.W.; Yeh, C.H. Demonstration of nonHermitian symmetry (NHS) IFFT/FFT size efficient OFDM nonorthogonal multiple access (NOMA) for visible light communication. IEEE Photonics J. 2020, 12, 1–5. [Google Scholar] [CrossRef]
 Islim, M.S.; Haas, H. Modulation techniques for lifi. ZTE Commun. 2016, 14, 29–40. [Google Scholar]
 Lian, J.; Noshad, M.; BrandtPearce, M. Comparison of optical OFDM and MPAM for LEDbased communication systems. IEEE Commun. Lett. 2019, 23, 430–433. [Google Scholar] [CrossRef]
 Ling, X.; Wang, J.; Liang, X.; Ding, Z.; Zhao, C. Offset and Power Optimization for DCOOFDM in Visible Light Communication Systems. IEEE Trans. Signal Process. 2016, 64, 349–363. [Google Scholar] [CrossRef]
 Yang, F.; Sun, Y.; Gao, J. Adaptive LACOOFDM with variable layer for visible light communication. IEEE Photonics J. 2017, 9, 1–8. [Google Scholar] [CrossRef]
 Dissanayake, S.D.; Armstrong, J. Comparison of acoofdm, dcoofdm and adoofdm in im/dd systems. J. Light. Technol. 2013, 31, 1063–1072. [Google Scholar] [CrossRef]
 Deng, X.; Mardanikorani, S.; Zhou, G.; Linnartz, J.P.M. DCbias for optical OFDM in visible light communications. IEEE Access 2019, 7, 98319–98330. [Google Scholar] [CrossRef]
 Vappangi, S.; Vakamulla, V.M. Channel estimation in ACOOFDM employing different transforms for VLC. AEUInt. J. Electron. Commun. 2018, 84, 111–122. [Google Scholar] [CrossRef]
 Rajagopal, S.; Roberts, R.D.; Lim, S.K. IEEE 802.15. 7 visible light communication: Modulation schemes and dimming support. IEEE Commun. Mag. 2012, 50, 72–82. [Google Scholar] [CrossRef]
 Gunawan, W.H.; Liu, Y.; Yeh, C.H.; Chow, C.W. ColorShiftKeying Embedded DirectCurrent OpticalOrthogonalFrequencyDivisionMultiplexing (CSKDCOOFDM) for Visible Light Communications (VLC). IEEE Photonics J. 2020, 12, 1–5. [Google Scholar] [CrossRef]
 Gunawan, W.H.; Liu, Y.; Chow, C.W.; Chang, Y.H.; Peng, C.W.; Yeh, C.H. TwoLevel Laser Diode ColorShiftKeying OrthogonalFrequencyDivisionMultiplexing (LDCSKOFDM) for Optical Wireless Communications (OWC). J. Light. Technol. 2021, 39, 3088–3094. [Google Scholar] [CrossRef]
 Figueiredo, M.; Ribeiro, C.; Alves, L.N. Live demonstration: 150Mbps+ DCOOFDM VLC. In Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016; p. 457. [Google Scholar]
 Wang, Q.; Song, B.; Corcoran, B.; Boland, D.; Zhuang, L.; Xie, Y.; Lowery, A.J. FPGAbased layered/enhanced ACOOFDM transmitter. In Proceedings of the 2017 Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, 19–23 March 2017; pp. 1–3. [Google Scholar]
 Fuada, S.; Setiawan, E.; Adiono, T.; Popoola, W.O. Design and verification of SoC for OFDMbased visible light communication transceiver systems and integration with offtheshelf analog frontend. Optik 2022, 258, 168867. [Google Scholar] [CrossRef]
 Alindra, R.; Priambodo, P.S.; Ramli, K. FPGA Implementation of OFDMbased Visible Light Communication System. In Proceedings of the 2022 International Conference on Informatics Electrical and Electronics (ICIEE), Yogyakarta, Indonesia, 5–7 October 2022; pp. 1–6. [Google Scholar]
 Wang, Q.; Wang, Z.; Dai, L.; Quan, J. Dimmable visible light communications based on multilayer ACOOFDM. IEEE Photonics J. 2016, 8, 1–11. [Google Scholar] [CrossRef]
 Armstrong, J. OFDM for optical communications. J. Light. Technol. 2009, 27, 189–204. [Google Scholar] [CrossRef]
 Yin, L.; Popoola, W.O.; Wu, X.; Haas, H. Performance Evaluation of NonOrthogonal Multiple Access in Visible Light Communication. IEEE Trans. Commun. 2016, 64, 5162–5175. [Google Scholar] [CrossRef] [Green Version]
 Arfaoui, M.A.; Soltani, M.D.; Tavakkolnia, I.; Ghrayeb, A.; Assi, C.M.; Safari, M.; Haas, H. MeasurementsBased Channel Models for Indoor LiFi Systems. IEEE Trans. Wirel. Commun. 2021, 20, 827–842. [Google Scholar] [CrossRef]
 Carruthers, J.B.; Kahn, J.M. Multiplesubcarrier modulation for nondirected wireless infrared communication. IEEE J. Sel. Areas Commun. 1996, 14, 538–546. [Google Scholar] [CrossRef]
 Hei, Y.; Kou, Y.; Shi, G.; Li, W.; Gu, H. Energyspectral efficiency tradeoff in DCOOFDM visible light communication system. IEEE Trans. Veh. Technol. 2019, 68, 9872–9882. [Google Scholar] [CrossRef]
 Wang, J.; Xu, Y.; Ling, X.; Zhang, R.; Ding, Z.; Zhao, C. PAPR analysis for OFDM visible light communication. Opt. Express 2016, 24, 27457–27474. [Google Scholar] [CrossRef]
 Armstrong, J.; Lowery, A.J. Power efficient optical OFDM. Electron. Lett. 2006, 42, 370–372. [Google Scholar] [CrossRef] [Green Version]
 Lee, S.C.J.; Randel, S.; Breyer, F.; Koonen, A.M.J. PAMDMT for IntensityModulated and DirectDetection Optical Communication Systems. IEEE Photonics Technol. Lett. 2009, 21, 1749–1751. [Google Scholar] [CrossRef]
 Tsonev, D.; Sinanovic, S.; Haas, H. Novel unipolar orthogonal frequency division multiplexing (UOFDM) for optical wireless. In Proceedings of the 2012 IEEE 75th Vehicular Technology Conference (VTC Spring), Yokohama, Japan, 6–9 May 2012; pp. 1–5. [Google Scholar]
 Tsonev, D.; Haas, H. Avoiding spectral efficiency loss in unipolar OFDM for optical wireless communication. In Proceedings of the 2014 IEEE International Conference on Communications (ICC), Sydney, NSW, Australia, 10–14 June 2014; pp. 3336–3341. [Google Scholar]
 Tsonev, D.; Videv, S.; Haas, H. Unlocking spectral efficiency in intensity modulation and direct detection systems. IEEE J. Sel. Areas Commun. 2015, 33, 1758–1770. [Google Scholar] [CrossRef]
 Islim, M.S.; Tsonev, D.; Haas, H. On the superposition modulation for OFDMbased optical wireless communication. In Proceedings of the 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Orlando, FL, USA, 14–16 December 2015; pp. 1022–1026. [Google Scholar]
 Lowery, A.J. Enhanced asymmetrically clipped optical ODFM for high spectral efficiency and sensitivity. In Proceedings of the 2016 Optical Fiber Communications Conference and Exhibition (OFC), Anaheim, CA, USA, 20–24 March 2016; pp. 1–3. [Google Scholar]
 Elgala, H.; Little, T.D. SEEOFDM: Spectral and energy efficient OFDM for optical IM/DD systems. In Proceedings of the 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), Washington, DC, USA, 2–5 September 2014; pp. 851–855. [Google Scholar]
 Lowery, A.J. Comparisons of spectrallyenhanced asymmetricallyclipped optical OFDM systems. Opt. Express 2016, 24, 3950–3966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
 Wang, Q.; Qian, C.; Guo, X.; Wang, Z.; Cunningham, D.G.; White, I.H. Layered ACOOFDM for intensitymodulated directdetection optical wireless transmission. Opt. Express 2015, 23, 12382–12393. [Google Scholar] [CrossRef] [Green Version]
 Sun, Y.; Yang, F.; Gao, J. Comparison of hybrid optical modulation schemes for visible light communication. IEEE Photonics J. 2017, 9, 1–13. [Google Scholar] [CrossRef]
 Sun, Y.; Yang, F.; Cheng, L. An overview of OFDMbased visible light communication systems from the perspective of energy efficiency versus spectral efficiency. IEEE Access 2018, 6, 60824–60833. [Google Scholar] [CrossRef]
 Islim, M.S.; Tsonev, D.; Haas, H. Spectrally enhanced PAMDMT for IM/DD optical wireless communications. In Proceedings of the 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong Kong, China, 30 August–2 September 2015; pp. 877–882. [Google Scholar]
 Wang, C.; Yang, Y.; Cheng, J.; Guo, C.; Feng, C. A Dimmable OFDM Scheme With Dynamic Subcarrier Activation for VLC. IEEE Photonics J. 2020, 12, 1–12. [Google Scholar] [CrossRef]
 Elgala, H.; Little, T.D. POFDM: Spectrally efficient unipolar OFDM. In Proceedings of the OFC 2014, San Francisco, CA, USA, 9–13 March 2014; pp. 1–3. [Google Scholar]
 Mossaad, M.S.; Hranilovic, S.; Lampe, L. Visible light communications using OFDM and multiple LEDs. IEEE Trans. Commun. 2015, 63, 4304–4313. [Google Scholar] [CrossRef]
 Dissanayake, S.D.; Panta, K.; Armstrong, J. A novel technique to simultaneously transmit ACOOFDM and DCOOFDM in IM/DD systems. In Proceedings of the 2011 IEEE GLOBECOM Workshops (GC Wkshps), Houston, TX, USA, 5–9 December 2011; pp. 782–786. [Google Scholar]
 Huang, X.; Yang, F.; Song, J. Novel heterogeneous attocell network based on the enhanced ADOOFDM for VLC. IEEE Commun. Lett. 2018, 23, 40–43. [Google Scholar] [CrossRef]
 Wang, Z.; Mao, T.; Wang, Q. Optical OFDM for visible light communications. In Proceedings of the 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, 26–30 June 2017; pp. 1190–1194. [Google Scholar]
 Ranjha, B.; Kavehrad, M. Hybrid asymmetrically clipped OFDMbased IM/DD optical wireless system. J. Opt. Commun. Netw. 2014, 6, 387–396. [Google Scholar] [CrossRef]
 Zhang, X.; Wang, Q.; Zhang, R.; Chen, S.; Hanzo, L. Performance analysis of layered ACOOFDM. IEEE Access 2017, 5, 18366–18381. [Google Scholar] [CrossRef]
 Mardanikorani, S.; Deng, X.; Linnartz, J.P.M. Optimization and Comparison of MPAM and Optical OFDM Modulation for Optical Wireless Communication. IEEE Open J. Commun. Soc. 2020, 1, 1721–1737. [Google Scholar] [CrossRef]
 Sun, Y.; Yang, F. Adaptive modulation scheme based on partially predistorted LACOOFDM for VLC system. IEEE Photonics J. 2019, 11, 1–12. [Google Scholar] [CrossRef]
 Li, H.; Huang, Z.; Xiao, Y.; Zhan, S.; Ji, Y. A power and spectrum efficient NOMA scheme for VLC network based on hierarchical predistorted LACOOFDM. IEEE Access 2019, 7, 48565–48571. [Google Scholar] [CrossRef]
 Wang, Q.; Wang, Z.; Guo, X.; Dai, L. Improved Receiver Design for Layered ACOOFDM in Optical Wireless Communications. IEEE Photonics Technol. Lett. 2016, 28, 319–322. [Google Scholar] [CrossRef] [Green Version]
 Zhou, J.; Wang, Q.; Cheng, Q.; Guo, M.; Lu, Y.; Yang, A.; Qiao, Y. LowPAPR layered/enhanced ACOSCFDM for opticalwireless communications. IEEE Photonics Technol. Lett. 2017, 30, 165–168. [Google Scholar] [CrossRef]
 Song, B.; Corcoran, B.; Wang, Q.; Zhuang, L.; Lowery, A.J. Subcarrier pairwise coding for shorthaul L/EACOOFDM. IEEE Photonics Technol. Lett. 2017, 29, 1584–1587. [Google Scholar] [CrossRef]
 Wang, T.Q.; Li, H.; Huang, X. Diversity combining for layered asymmetrically clipped optical OFDM using soft successive interference cancellation. IEEE Commun. Lett. 2017, 21, 1309–1312. [Google Scholar] [CrossRef]
 Mohammed, M.M.; He, C.; Armstrong, J. Diversity combining in layered asymmetrically clipped optical OFDM. J. Light. Technol. 2017, 35, 2078–2085. [Google Scholar] [CrossRef]
 Wang, T.Q.; Li, H.; Huang, X. Interference cancellation for layered asymmetrically clipped optical OFDM with application to optical receiver design. J. Light. Technol. 2018, 36, 2100–2113. [Google Scholar] [CrossRef]
 Bai, R.; Wang, Z.; Jiang, R.; Cheng, J. Interleaved DFTspread layered/enhanced ACOOFDM for intensitymodulated directdetection systems. J. Light. Technol. 2018, 36, 4713–4722. [Google Scholar] [CrossRef]
 Zhang, X.; Babar, Z.; Zhang, R.; Chen, S.; Hanzo, L. MultiClass Coded Layered Asymmetrically Clipped Optical OFDM. IEEE Trans. Commun. 2019, 67, 578–589. [Google Scholar] [CrossRef] [Green Version]
 Wang, T.; Li, H.; Huang, X. Analysis and mitigation of clipping noise in layered ACOOFDM based visible light communication systems. IEEE Trans. Commun. 2019, 67, 564–577. [Google Scholar] [CrossRef]
 Zhang, T.; Qiao, Y.; Zhou, J.; Zhang, Z.; Lu, Y.; Su, F. Spectralefficient L/EACOSCFDMbased dimmable visible light communication system. IEEE Access 2019, 7, 10617–10626. [Google Scholar] [CrossRef]
 Babar, Z.; Zhang, X.; Botsinis, P.; Alanis, D.; Chandra, D.; Ng, S.X.; Hanzo, L. Nearcapacity multilayered code design for LACOOFDMaided optical wireless systems. IEEE Trans. Veh. Technol. 2019, 68, 4051–4054. [Google Scholar] [CrossRef] [Green Version]
 Li, B.; Xu, W.; Feng, S.; Li, Z. Spectralefficient reconstructed LACOOFDM transmission for dimming compatible visible light communications. IEEE Photonics J. 2019, 11, 1–14. [Google Scholar] [CrossRef]
 Zhang, Z.; Chaaban, A.; Alouini, M.S. Residual clipping noise in multilayer optical OFDM: Modeling, analysis, and applications. IEEE Trans. Wirel. Commun. 2020, 19, 5846–5859. [Google Scholar] [CrossRef]
 Hu, W. Design of a cyclic shifted LACOOFDM for optical wireless communication. IEEE Access 2020, 8, 76708–76714. [Google Scholar] [CrossRef]
 Zhang, X.; Chen, S.; Hanzo, L. On the discreteinput continuousoutput memoryless channel capacity of layered ACOOFDM. J. Light. Technol. 2020, 38, 4955–4968. [Google Scholar] [CrossRef]
 Lacava, C.; Babar, Z.; Zhang, X.; Demirtzioglou, I.; Petropoulos, P.; Hanzo, L. Highspeed multilayer coded adaptive LACOOFDM and its experimental verification. OSA Contin. 2020, 3, 2614–2629. [Google Scholar] [CrossRef]
 Bai, R.; Hranilovic, S. Absolute value layered ACOOFDM for intensitymodulated optical wireless channels. IEEE Trans. Commun. 2020, 68, 7098–7110. [Google Scholar] [CrossRef]
 Bai, R.; Hranilovic, S.; Wang, Z. Lowcomplexity layered ACOOFDM for powerefficient visible light communications. IEEE Trans. Green Commun. Netw. 2022, 6, 1780–1792. [Google Scholar] [CrossRef]
Modulation Technique  Method  Spectral Efficiency * 

RPOOFDM  Real of Optical OFDM + slow PWM  50% 
POFDM  The complex signal which is the output of the IFFT is converted from Cartesian coordinates to polar coordinates  100% 
SOOFDM  The subcarrier is allocated to one of the LED arrays  100% 
ASCOOFDM  ACOOFDM + SCOOFDM  75% 
SFOOFDM  Complex data goes through an autocorrelation process at the transmitter  50% 
PMOFDM  The real and imaginary components of the OFDM signal are divided into positive and negative parts  50% 
ADOOFDM  ACOOFDM + DCOOFDM  100% 
HACOOFDM  ACOOFDM + PAMDMT  100% 
Parameters  Modulation Techniques  Refs.  

DCO OFDM  ACO OFDM  LACO OFDM  ADO OFDM  
Energy efficiency  Low  High  High  Medium  [17,56,60,61] 
Spectral efficiency  100%  50%  100%  100%  [47,48,60] 
Peaktoaverage power ratio  Best  Worst  Good  Good  [22,37,48] 
Computational complexity  Low  Low  High  High  [47,60] 
Ref.  Authors  Issue  Contribution  Method/Result 

[31]  Wang et al. (2016)  Dimming support  LACOOFDM with a dimming control 

[20]  Yang et al. (2017)  Determination of the number of layers  Adaptive LACOOFDM with channel capacity analysis 

[63]  Zhou et al. (2017)  PAPR decrement  LACOsingle carrier frequency division multiplexing 

[64]  Song et al. (2017)  Error propagation  Pairwise coding on each layer for the LACOOFDM scheme 

[65]  Wang et al. (2017)  Interlayer interference  Diversity combining for the receiver in LACOOFDM 

[66]  Mohammed et al. (2017)  Spectral efficiency  Unificate diversity combining and layering techniques 

[58]  Zhang et al. (2017)  PAPR decrement  Tone injection method to reduce PAPR 

[67]  Wang et al. (2018)  Error propagation  Proposed twostage receiver for LACOOFDM 

[68]  Bai et al. (2018)  PAPR decrement  Interleaved discrete Fourier Transform spread LACOOFDM 

[69]  Zhang et al. (2019)  Interlayer interference  LACOOFDM equipped with channel coding 

[70]  Wang et al. (2019)  Clipping noise  A decisionaided reconstruction (DAR) applied to receiver LACOOFDM 

[71]  Zhang et al. (2019)  Spectral efficiency  The first proposed LACOSCFDM for a VLC system 

[36]  Li et al. (2019)  Interlayer interference  Hierarchical predistortion method for NOMA VLC network 

[60]  Sun et al. (2019)  Interlayer interference  Determination of predistortion on the layer using an adaptive scheme 

[72]  Babar et al. (2019)  Interlayer interference  Multilayered code scheme LACOOFDM 

[73]  Li et al. (2019)  Dimming support  Reconstructed LACOOFDM integrated with PWM 

[74]  Zhang et al. (2020)  Clipping Noise  Mathematical analysis and modeling to overcome the residual clipping noise 

[75]  Weiwen Hu. (2020)  PAPR decrement  Cyclic shifted LACOOFDM 

[76]  Zhang et al. (2020)  Channel capacity  Analysis and optimization of DiscreteInput ContinuousOutput Memoryless Channel capacity on LACOOFDM 

[77]  Lacava et al. (2020)  Experimental  Experimental verification of multilayer channel coding 

[78]  Bai et al. (2020)  Spectral efficiency and power efficiency  Absolute value LACOOFDM 

[79]  Bai et al. (2022)  Computational complexity  Lowcomplexity LACOOFDM 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. 
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alindra, R.; Priambodo, P.S.; Ramli, K. Review of Orthogonal Frequency Division MultiplexingBased Modulation Techniques for Light Fidelity. J. Low Power Electron. Appl. 2023, 13, 46. https://doi.org/10.3390/jlpea13030046
Alindra R, Priambodo PS, Ramli K. Review of Orthogonal Frequency Division MultiplexingBased Modulation Techniques for Light Fidelity. Journal of Low Power Electronics and Applications. 2023; 13(3):46. https://doi.org/10.3390/jlpea13030046
Chicago/Turabian StyleAlindra, Rahmayati, Purnomo Sidi Priambodo, and Kalamullah Ramli. 2023. "Review of Orthogonal Frequency Division MultiplexingBased Modulation Techniques for Light Fidelity" Journal of Low Power Electronics and Applications 13, no. 3: 46. https://doi.org/10.3390/jlpea13030046