Acceptance of Navigate on Autopilot of New Energy Vehicles in China: An Extended Technology Acceptance Model
Abstract
1. Introduction
2. Literature Review
2.1. ADAS and NOA
2.2. Technology Acceptance Model
2.3. Potential Users
3. Hypothesis Development
3.1. Attitude
3.2. Perceived Usefulness and Perceived Ease of Use
3.3. Social Influence
3.4. Travel Scenarios
3.5. Price Value
3.6. Trust
3.7. Perceived Risk
4. Method
4.1. Questionnaire Design
4.2. Data Collection
4.3. Structural Equation Modeling
5. Results
5.1. Descriptive Statistics
5.1.1. Survey Respondents
5.1.2. Acceptance Measure of NOA
5.1.3. NOA Payment Models
5.2. Reliability Test
5.3. Validity Test
5.3.1. Exploratory Factor Analysis
5.3.2. Confirmatory Factor Analysis
- (1)
- Measurement Model Parameter Testing
- (2)
- Convergent Validity Test
- (3)
- Discriminant validity test
5.4. Correlation Analysis
5.5. Structural Equation Model Analysis
5.5.1. Multicollinearity Diagnostics
5.5.2. Model Fit Evaluation
5.5.3. Path Analysis
5.5.4. Robustness Test
6. Discussion
- (1)
- Non-significant effect of PU on BI (H2b: PU→BI)
- (2)
- Non-significant effect of SI on AT (H4: SI→AT)
- (3)
- Non-significant effect of PV on PU (H6b: PV→PU)
- (4)
- Non-significant effect of PR on AT (H8: PR→AT)
6.1. Analysis and Discussion of PUE
6.2. Discussion and Analysis of PU
6.3. Discussion and Analysis of AT
6.4. Discussion and Analysis of BI
- (1)
- Clarify the applicable scenarios for NOA functions.
- (2)
- Reduce hardware costs and enhance service value.
- (3)
- Improve system transparency and strengthen user trust.
- (4)
- Advanced technical capability and increased perceived value.
7. Conclusions
7.1. Theoretical Contributions and Practical Impact
7.2. Limitations and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, R.; Xu, W.; Liu, L.; Zhao, C. The impact of urban agglomerations on carbon emissions in China: Spatial scope and mechanism. J. Clean. Prod. 2023, 419, 138250. [Google Scholar] [CrossRef]
- Feng, L.; Liu, K.; Wang, J.; Lin, K.; Zhang, K.; Zhang, L. Identifying promising technologies of electric vehicles from the perspective of market and technical attributes. Energies 2022, 15, 7617. [Google Scholar] [CrossRef]
- Sun, B.; Ju, Z. Research on the promotion of new energy vehicles based on multi-source heterogeneous data: Consumer and manufacturer perspectives. Environ. Sci. Pollut. Res. 2023, 30, 28863–28873. [Google Scholar] [CrossRef]
- Yang, D.; Qiu, L.; Yan, J.; Chen, Z. The government regulation and market behavior of the new energy automotive industry. J. Clean. Prod. 2019, 210, 1281–1288. [Google Scholar] [CrossRef]
- Xu, X.; Gui, M. Applying data mining techniques for technology prediction in new energy vehicle: A case study in China. Environ. Sci. Pollut. Res. 2021, 28, 68300–68317. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Wang, L.; Li, X. The effects of government subsidies on new energy vehicle enterprises: The moderating role of intelligent transformation. Energy Policy 2020, 141, 111463. [Google Scholar] [CrossRef]
- Mahdavian, A.; Shojaei, A.; Mccormick, S.; Papandreou, T.; Eluru, N.; Oloufa, A. Drivers and barriers to implementation of connected, automated, shared, and electric vehicles: An agenda for future research. IEEE Access 2021, 9, 22195–22213. [Google Scholar] [CrossRef]
- China Passenger Car Navigate on Autopilot (NOA) Industry Report. 2023. Available online: http://www.researchinchina.com/Htmls/Report/2023/73941.html (accessed on 9 July 2025).
- Lee, H.K. The relationship between innovative technology and driver’s resistance and acceptance intention for sustainable use of automobile self-driving system. Sustainability 2022, 14, 10129. [Google Scholar] [CrossRef]
- SAE (Society of Automotive Engineers). SAE J3016: Taxonomy and Definitions for Terms Related to Driving Automation Systems for on-Road Motor Vehicles. 2021. Available online: https://saemobilus.sae.org/content/J3016_202104/ (accessed on 9 July 2025).
- Lin, R.; Ma, L.; Zhang, W. An interview study exploring Tesla drivers’ behavioural adaptation. Appl. Ergon. 2018, 72, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Dikmen, M.; Burns, C.M. Autonomous driving in the real world: Experiences with tesla autopilot and summon. In Proceedings of the 8th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Ann Arbor, MI, USA, 24–26 October 2016; pp. 225–228. [Google Scholar]
- Zhang, T.; Tao, D.; Qu, X.; Zhang, X.; Lin, R.; Zhang, W. The roles of initial trust and perceived risk in public’s acceptance of automated vehicles. Transp. Res. Part C Emerg. Technol. 2019, 98, 207–220. [Google Scholar] [CrossRef]
- Deng, M.; Guo, Y. A study of safety acceptance and behavioral interventions for autonomous driving technologies. Sci. Rep. 2022, 12, 17891. [Google Scholar] [CrossRef]
- Liao, Y.; Guo, H.; Liu, X. A study of young people’s intention to use shared autonomous vehicles: A quantitative analysis model based on the extended TPB-TAM. Sustainability 2023, 15, 11825. [Google Scholar] [CrossRef]
- Mu, J.; Zhou, L.; Yang, C. Research on the Behavior Influence Mechanism of Users’ Continuous Usage of Autonomous Driving Systems Based on the Extended Technology Acceptance Model and External Factors. Sustainability 2024, 16, 9696. [Google Scholar] [CrossRef]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User acceptance of computer technology: A comparison of two theoretical models. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef]
- Herrenkind, B.; Nastjuk, I.; Brendel, A.B.; Trang, S.; Kolbe, L.M. Young people’s travel behavior–Using the life-oriented approach to understand the acceptance of autonomous driving. Transp. Res. Part D Transp. Environ. 2019, 74, 214–233. [Google Scholar] [CrossRef]
- Krueger, R.; Rashidi, T.H.; Rose, J.M. Preferences for shared autonomous vehicles. Transp. Res. Part C Emerg. Technol. 2016, 69, 343–355. [Google Scholar] [CrossRef]
- Choi, J.K.; Ji, Y.G. Investigating the importance of trust on adopting an autonomous vehicle. Int. J. Hum.-Comput. Interact. 2015, 31, 692–702. [Google Scholar] [CrossRef]
- Zhang, S.; Jing, P.; Xu, G. The acceptance of independent autonomous vehicles and cooperative vehicle-highway autonomous vehicles. Information 2021, 12, 346. [Google Scholar] [CrossRef]
- Ma, M.Y.; Chen, C.W.; Chang, Y.M. Using Kano model to differentiate between future vehicle-driving services. Int. J. Ind. Ergon. 2019, 69, 142–152. [Google Scholar] [CrossRef]
- Zhu, G.; Chen, Y.; Zheng, J. Modelling the acceptance of fully autonomous vehicles: A media-based perception and adoption model. Transp. Res. Part F Traffic Psychol. Behav. 2020, 73, 80–91. [Google Scholar] [CrossRef]
- Kaye, S.A.; Nandavar, S.; Yasmin, S.; Lewis, I.; Oviedo-Trespalacios, O. Consumer knowledge and acceptance of advanced driver assistance systems. Transp. Res. Part F Traffic Psychol. Behav. 2022, 90, 300–311. [Google Scholar] [CrossRef]
- Rahman, M.M.; Strawderman, L.; Lesch, M.F.; Horrey, W.J.; Babski-Reeves, K.; Garrison, T. Modelling driver acceptance of driver support systems. Accid. Anal. Prev. 2018, 121, 134–147. [Google Scholar] [CrossRef]
- Rahman, M.M.; Lesch, M.F.; Horrey, W.J.; Strawderman, L. Assessing the utility of TAM, TPB, and UTAUT for advanced driver assistance systems. Accid. Anal. Prev. 2017, 108, 361–373. [Google Scholar] [CrossRef] [PubMed]
- Nastjuk, I.; Herrenkind, B.; Marrone, M.; Brendel, A.B.; Kolbe, L.M. What drives the acceptance of autonomous driving? An investigation of acceptance factors from an end-user’s perspective. Technol. Forecast. Soc. Change 2020, 161, 120319. [Google Scholar] [CrossRef]
- Panagiotopoulos, I.; Dimitrakopoulos, G. An empirical investigation on consumers’ intentions towards autonomous driving. Transp. Res. Part C Emerg. Technol. 2018, 95, 773–784. [Google Scholar] [CrossRef]
- Adnan, N.; Nordin, S.M.; bin Bahruddin, M.A.; Ali, M. How trust can drive forward the user acceptance to the technology? In-vehicle technology for autonomous vehicle. Transp. Res. Part A Policy Pract. 2018, 118, 819–836. [Google Scholar] [CrossRef]
- Yuen, K.F.; Wong, Y.D.; Ma, F.; Wang, X. The determinants of public acceptance of autonomous vehicles: An innovation diffusion perspective. J. Clean. Prod. 2020, 270, 121904. [Google Scholar] [CrossRef]
- Brookhuis, K.A.; De Waard, D.; Janssen, W.H. Behavioural impacts of advanced driver assistance systems—An overview. European J. Transp. Infrastruct. Res. 2001, 1. [Google Scholar] [CrossRef]
- Rödel, C.; Stadler, S.; Meschtscherjakov, A.; Tscheligi, M. Towards autonomous cars: The effect of autonomy levels on acceptance and user experience. In Proceedings of the 6th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Seattle, WA, USA, 17–19 September 2014; pp. 1–8. [Google Scholar]
- Geronimo, D.; Lopez, A.M.; Sappa, A.D.; Graf, T. Survey of pedestrian detection for advanced driver assistance systems. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32, 1239–1258. [Google Scholar] [CrossRef]
- Jiménez, F.; Naranjo, J.E.; Anaya, J.J.; García, F.; Ponz, A.; Armingol, J.M. Advanced driver assistance system for road environments to improve safety and efficiency. Transp. Res. Procedia 2016, 14, 2245–2254. [Google Scholar] [CrossRef]
- Autopilot and Full Self-Driving Capability. 2025. Available online: https://www.tesla.com/en_au/support/autopilot (accessed on 10 July 2025).
- Mao, R.; Bai, C.; An, Y.; Zhu, F.; Lu, C. 3DG-STFM: 3D geometric guided student-teacher feature matching. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer Nature: Cham, Switzerland, 2022; pp. 125–142. [Google Scholar]
- Yan, Y.; Xu, Z.; Lin, H.; Jin, H.; Guo, H.; Wang, Y.; Zhan, K.; Lang, X.; Bao, H.; Zhou, X.; et al. Streetcrafter: Street view synthesis with controllable video diffusion models. In Proceedings of the Computer Vision and Pattern Recognition Conference, Nashville TN, USA, 11–15 June 2025; pp. 822–832. [Google Scholar]
- Zhou, Q.; Cao, J.; Leng, H.; Yin, Y.; Kun, Y.; Zimmermann, R. SOGDet: Semantic-occupancy guided multi-view 3D object detection. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 26–27 February 2024; Volume 38, pp. 7668–7676. [Google Scholar]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Ajzen, I. Attitudes, Personality and Behaviour; McGraw-Hill Education: London, UK, 2005. [Google Scholar]
- Buckley, L.; Kaye, S.A.; Pradhan, A.K. Psychosocial factors associated with intended use of automated vehicles: A simulated driving study. Accid. Anal. Prev. 2018, 115, 202–208. [Google Scholar] [CrossRef]
- Sakuljao, P.; Satiennam, W.; Satiennam, T.; Kronprasert, N.; Jaensirisak, S. Understanding intention to use conditionally automated vehicles in Thailand, based on an extended technology acceptance model. Sustainability 2023, 15, 1868. [Google Scholar] [CrossRef]
- Zhang, T.; Tao, D.; Qu, X.; Zhang, X.; Zeng, J.; Zhu, H.; Zhu, H. Automated vehicle acceptance in China: Social influence and initial trust are key determinants. Transp. Res. Part C Emerg. Technol. 2020, 112, 220–233. [Google Scholar] [CrossRef]
- Nordhoff, S.; Van Arem, B.; Happee, R. Conceptual model to explain, predict, and improve user acceptance of driverless podlike vehicles. Transp. Res. Rec. 2016, 2602, 60–67. [Google Scholar] [CrossRef]
- Bernhard, C.; Oberfeld, D.; Hoffmann, C.; Weismüller, D.; Hecht, H. User acceptance of automated public transport: Valence of an autonomous minibus experience. Transp. Res. Part F Traffic Psychol. Behav. 2020, 70, 109–123. [Google Scholar] [CrossRef]
- Li, Z.; Niu, J.; Li, Z.; Chen, Y.; Wang, Y.; Jiang, B. The impact of individual differences on the acceptance of self-driving buses: A case study of Nanjing, China. Sustainability 2022, 14, 11425. [Google Scholar] [CrossRef]
- Kyriakidis, M.; Happee, R.; De Winter, J.C.F. Public opinion on automated driving: Results of an international questionnaire among 5000 respondents. Transp. Res. Part F Traffic Psychol. Behav. 2015, 32, 127–140. [Google Scholar] [CrossRef]
- Huang, G.; Hung, Y.H.; Proctor, R.W.; Pitts, B.J. Age is more than just a number: The relationship among age, non-chronological age factors, self-perceived driving abilities, and autonomous vehicle acceptance. Accid. Anal. Prev. 2022, 178, 106850. [Google Scholar] [CrossRef]
- Nysveen, H.; Pedersen, P.E.; Thorbjørnsen, H. Explaining intention to use mobile chat services: Moderating effects of gender. J. Consum. Mark. 2005, 22, 247–256. [Google Scholar] [CrossRef]
- Hengstler, M.; Enkel, E.; Duelli, S. Applied artificial intelligence and trust—The case of autonomous vehicles and medical assistance devices. Technol. Forecast. Soc. Change 2016, 105, 105–120. [Google Scholar] [CrossRef]
- Jiang, S. Purchase intention for electric vehicles in China from a customer-value perspective. Soc. Behav. Personal. Int. J. 2016, 44, 641–655. [Google Scholar] [CrossRef]
- Jing, P.; Xu, G.; Chen, Y.; Shi, Y.; Zhan, F. The determinants behind the acceptance of autonomous vehicles: A systematic review. Sustainability 2020, 12, 1719. [Google Scholar] [CrossRef]
- Sharmeen, F.; Arentze, T.; Timmermans, H. An analysis of the dynamics of activity and travel needs in response to social network evolution and life-cycle events: A structural equation model. Transp. Res. Part A Policy Pract. 2014, 59, 159–171. [Google Scholar] [CrossRef]
- Felden, C. Characteristics of XBRL adoption in Germany. J. Manag. Control 2011, 22, 161–186. [Google Scholar] [CrossRef]
- Hamid, U.Z.A.; Zamzuri, H.; Limbu, D.K. Internet of vehicle (IoV) applications in expediting the implementation of smart highway of autonomous vehicle: A survey. In Performability in Internet of Things; Springer International Publishing: Cham, Switzerland, 2018; pp. 137–157. [Google Scholar]
- Yaqoob, I.; Khan, L.U.; Kazmi, S.M.A.; Imran, M.; Guizani, N.; Hong, C.S. Autonomous driving cars in smart cities: Recent advances, requirements, and challenges. IEEE Netw. 2019, 34, 174–181. [Google Scholar] [CrossRef]
- Bellet, T.; Banet, A. UTAUT4-AV: An extension of the UTAUT model to study intention to use automated shuttles and the societal acceptance of different types of automated vehicles. Transp. Res. Part F Traffic Psychol. Behav. 2023, 99, 239–261. [Google Scholar] [CrossRef]
- Garidis, K.; Ulbricht, L.; Rossmann, A.; Schmäh, M. Toward a User Acceptance Model of Autonomous Driving; Hochschule Reutlingen: Maui, HI, USA, 2020. [Google Scholar]
- Liu, P.; Yang, R.; Xu, Z. Public acceptance of fully automated driving: Effects of social trust and risk/benefit perceptions. Risk Anal. 2019, 39, 326–341. [Google Scholar] [CrossRef]
- Zefreh, M.M.; Edries, B.; Esztergar-Kiss, D.; Torok, A. Intention to use private autonomous vehicles in developed and developing countries: What are the differences among the influential factors, mediators, and moderators? Travel Behav. Soc. 2023, 32, 100592. [Google Scholar] [CrossRef]
- Foroughi, B.; Nhan, P.V.; Iranmanesh, M.; Ghobakhloo, M.; Nilashi, M.; Yodegaridenhkordi, E. Determinants of intention to use autonomous vehicles: Findings from PLS-SEM and ANFIS. J. Retail. Consum. Serv. 2023, 70, 103158. [Google Scholar] [CrossRef]
- Al Mansoori, S.; Al-Emran, M.; Shaalan, K. Factors affecting autonomous vehicles adoption: A systematic review, proposed framework, and future roadmap. Int. J. Hum.–Comput. Interact. 2024, 40, 8397–8418. [Google Scholar] [CrossRef]
- Korkmaz, H.; Fidanoglu, A.; Ozcelik, S.; Okumus, A. User acceptance of autonomous public transport systems: Extended UTAUT2 model. J. Public Transp. 2022, 24, 100013. [Google Scholar] [CrossRef]
- Wu, M.; Wang, N.; Yuen, K.F. Can autonomy level and anthropomorphic characteristics affect public acceptance and trust towards shared autonomous vehicles? Technol. Forecast. Soc. Change 2023, 189, 122384. [Google Scholar] [CrossRef]
- Huang, K.; Kockelman, K.; Gurumurthy, K.M. Innovations impacting the future of transportation: An overview of connected, automated, shared, and electric technologies. Transp. Lett. 2023, 15, 490–509. [Google Scholar] [CrossRef]
- Kenesei, Z.; Ásványi, K.; Kökény, L.; Jászberényi, M.; Miskolczi, M.; Gyulavári, T.; Syahrivar, J. Trust and perceived risk: How different manifestations affect the adoption of autonomous vehicles. Transp. Res. Part A Policy Pract. 2022, 164, 379–393. [Google Scholar] [CrossRef]
- Fatal Crash in China Puts Assisted Driving Tech Under Scrutiny. 2025. Available online: https://www.nytimes.com/2025/04/01/business/xiaomi-driverless-electric-car-china.html (accessed on 15 July 2025).
- Yu, Z.; Cai, K. Perceived risks toward in-vehicle infotainment data services on intelligent connected vehicles. Systems 2022, 10, 162. [Google Scholar] [CrossRef]
- AlKheder, S.; Bash, A.; Al Baghli, Z.; Hubaini, R.A.; Kader, A.A. Customer perception and acceptance of autonomous delivery vehicles in the State of Kuwait during COVID-19. Technol. Forecast. Soc. Change 2023, 191, 122485. [Google Scholar] [CrossRef] [PubMed]
- Naderi, H.; Nassiri, H. How will Iranian behave in accepting autonomous vehicles? Studying moderating effect on autonomous vehicle acceptance model (AVAM). IATSS Res. 2023, 47, 433–446. [Google Scholar] [CrossRef]
- Müller, J.M. Comparing technology acceptance for autonomous vehicles, battery electric vehicles, and car sharing—A study across Europe, China, and North America. Sustainability 2019, 11, 4333. [Google Scholar] [CrossRef]
- Mir, F.A. An integrated autonomous vehicles acceptance model: Theoretical development and results based on the UTAUT2 model. Transp. Res. Part F Traffic Psychol. Behav. 2025, 112, 290–304. [Google Scholar] [CrossRef]
- Khan, S.K.; Shiwakoti, N.; Stasinopoulos, P.; Chen, Y.; Warren, M.J. The impact of perceived cyber-risks on automated vehicle acceptance: Insights from a survey of participants from the United States, the United Kingdom, New Zealand, and Australia. Transp. policy 2024, 152, 87–101. [Google Scholar] [CrossRef]
- Loehlin, J.C. Latent Variable Models: An Introduction to Factor, Path, and Structural Equation Analysis; Psychology Press: London, UK, 2004. [Google Scholar]
- Barrett, P. Structural equation modelling: Adjudging model fit. Personal. Individ. Differ. 2007, 42, 815–824. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling; Guilford Publications: New York, NY, USA, 2023. [Google Scholar]
- IPS Consulting: 2024 New Energy Vehicle Consumer Social Media Big Data Insights Report. Available online: https://www.ipscg.com/detail-1057.html (accessed on 26 August 2025).
- QuestAuto 2025 Market Update for New Energy Vehicles in South China and Southwest China. Available online: https://www.questmobile.com.cn/research/report/1932642851532935170 (accessed on 26 August 2025).
- Insights into China’s New Energy Vehicle Industry in 2021. Available online: https://mob.com/mobdata/report/138 (accessed on 26 August 2025).
- Groeneveld, R.A.; Meeden, G. Measuring skewness and kurtosis. J. R. Stat. Soc. Ser. D Stat. 1984, 33, 391–399. [Google Scholar] [CrossRef]
- Nunnally, J.C. Psychometric Theory, 1st ed.; McGraw-Hill: New York, NY, USA, 1967; pp. 25–26. [Google Scholar]
- Podsakoff, P.M.; Organ, D.W. Self-reports in organizational research: Problems and prospects. J. Manag. 1986, 12, 531–544. [Google Scholar] [CrossRef]
- Schermelleh-Engel, K.; Moosbrugger, H.; Müller, H. Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods Psychol. Res. Online 2003, 8, 23–74. [Google Scholar]
- Byrne, B.M. Structural Equation Modeling with Mplus: Basic Concepts, Applications, and Programming, 1st ed.; Routledge: New York, NY, USA, 2013; pp. 134–156. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Liang, C.; Yang, Q.; Sun, H.; Ma, X. Unveiling consumer satisfaction and its driving factors of EVs in China using an explainable artificial intelligence approach. Humanit. Soc. Sci. Commun. 2024, 11, 1575. [Google Scholar] [CrossRef]
- Chadwick, A.; Vaccari, C.; Kaiser, J. The amplification of exaggerated and false news on social media: The roles of platform use, motivations, affect, and ideology. Am. Behav. Sci. 2025, 69, 113–130. [Google Scholar] [CrossRef]
- Tan, H.; Zhao, X.; Yang, J. Exploring the influence of anxiety, pleasure and subjective knowledge on public acceptance of fully autonomous vehicles. Comput. Hum. Behav. 2022, 131, 107187. [Google Scholar] [CrossRef]
- Martinho, A.; Herber, N.; Kroesen, M.; Chorus, C. Ethical issues in focus by the autonomous vehicles industry. Transp. Rev. 2021, 41, 556–577. [Google Scholar] [CrossRef]
- Gao, F.; He, B.; He, Y. Detection of driving capability degradation for human-machine cooperative driving. Sensors 2020, 20, 1968. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.; Kiely, K.; Attuquayefio, T.; Hosking, D.; Regan, M.A.; Eramudugolla, R.; Ross, L.A.; Anstey, K.J. Assessment of the application of technology acceptance measures to older drivers’ acceptance of advanced driver-assistance systems. Appl. Ergon. 2025, 125, 104474. [Google Scholar] [CrossRef] [PubMed]
Items | Item Code | Question Item Content | Source |
---|---|---|---|
Perceived Usefulness (PU) | PU1 | The NOA function can significantly enhance my driving efficiency (such as reducing commuting time). | Jiang et al. [51] Müller et al. [71] |
PU2 | The NOA function makes long-distance driving easier for me (such as reducing fatigue). | ||
PU3 | The NOA function can help me deal with complex road conditions. | ||
PU4 | I think the NOA function is a necessary technology for future travel. | ||
Perceived Ease of Use (PUE) | PUE1 | I think the operation interface of the NOA function is simple and intuitive, and easy to learn | Jiang et al. [51] Müller et al. [71] |
PUE2 | I think the system can respond quickly to my instructions (such as changing lanes and following the vehicle). | ||
PUE3 | I think vehicle prompts (such as voice and screen display) are clear and easy to understand | ||
Attitude (AT) | AT1 | I believe that NOA technology is the future development direction of intelligent driving. | Jiang et al. [51] Müller et al. [71] |
AT2 | I support taking the NOA function as the core selling point of new energy vehicles. | ||
AT3 | I tend to give priority to models equipped with the NOA function. | ||
AT-Op2 | I don’t think NOA will be the core selling point of new energy vehicles. | ||
Behavioral Intention (BI) | BI1 | I am willing to use the NOA function for a long time in the future. | Jiang et al. [51] Müller et al. [71] |
BI2 | I will recommend car models equipped with NOA function to my relatives and friends. | ||
BI3 | I will upgrade to a more advanced version of the NOA function. | ||
Social Influence (SI) | SI1 | I think the positive coverage of NOA technology by the media will influence my attitude towards this feature. | Sharmeen et al. [53] Mir et al. [72] |
SI2 | I think the usage evaluations of the NOA function by other users on social media will affect my usage. | ||
SI3 | I think if my close friends and relatives around me choose to use NOA. | ||
Travel Scenarios (TS) | TS1 | I think I will use the NOA function in the highway scenario. | Sharmeen et al. [53] Mir et al. [72] |
TS2 | I think it is necessary to be more cautious when using the NOA function in complex road conditions (work zone). | ||
TS3 | I will use the NOA function during long-distance self-driving trips. | ||
Price Value (PV) | PV1 | I think the current pricing of the NOA function is reasonable. | Sharmeen et al. [53] Mir et al. [72] |
PV2 | I think the additional services such as automatic parking that come with the NOA function would be better. | ||
PV3 | I think regular OTA upgrades will enhance my satisfaction. | ||
PV4 | I think the NOA function training is very important to me. | ||
Trust (TR) | TR1 | I believe that car manufacturers have fully verified the safety and reliability of the NOA system. | Kenesei et al. [66] Khan et al. [73] |
TR2 | I trust the performance of the NOA system in extreme weather conditions such as heavy rain and thick fog. | ||
TR3 | I think the emergency response measures taken by car manufacturers for NOA function failures make me feel at ease. | ||
Perceived Risk (PR) | PR1 | I’m worried that the NOA system won’t be able to respond promptly in case of emergencies, such as pedestrians intruding. | Kenesei et al. [66] Khan et al. [73] |
PR2 | I’m worried that the system might misjudge and cause driving dangers (such as incorrect lane changes). | ||
PR3 | I’m worried that the driving data collected by the NOA function might be misused or leaked. |
Factor | Levels | N | Percent (%) |
---|---|---|---|
Gender | Male | 170 | 65.4% |
Female | 90 | 34.6% | |
Age | 18~25 | 68 | 26.2% |
26~40 | 138 | 53.1% | |
41~50 | 47 | 18.1% | |
>50 | 7 | 2.7% | |
Education | Below High School | 15 | 5.8% |
High School Graduate | 30 | 11.5% | |
Bachelor’s degree | 205 | 78.8% | |
Master’s degree or higher | 10 | 3.8% | |
Annual Household Income (CNY) | 100,000–150,000 CNY | 146 | 56.2% |
150,000–200,000 CNY | 59 | 22.7% | |
200,000–300,000 CNY | 39 | 15.0% | |
300,000–500,000 CNY | 12 | 4.6% | |
>500,000 CNY | 4 | 1.5% | |
Vehicles Type Ownership | Traditional Fuel Vehicles | 205 | 78.8% |
New Energy Vehicle (without NOA) | 34 | 13.1% | |
New Energy Vehicle (with NOA) | 21 | 8.1% | |
Experience with NOA | Yes | 66 | 25.4% |
No | 194 | 74.6% |
Age | 18–25 | 26–50 | >50 |
---|---|---|---|
PU | 3.8 | 3.84 | 3.78 |
PUE | 3.75 | 3.88 | 3.76 |
PR | 3.76 | 3.74 | 3.81 |
SI | 3.68 | 3.67 | 3.71 |
TR | 3.5 | 3.56 | 3.47 |
TS | 3.7 | 3.55 | 3.29 |
PV | 3.72 | 3.72 | 3.89 |
AT | 3.88 | 3.95 | 4 |
Item | Item Code | M | SD | Skewness | Kurtosis | Item M | Item SD |
---|---|---|---|---|---|---|---|
PU | PU1 | 3.980 | 0.808 | −0.453 | −0.063 | 4.010 | 0.536 |
PU2 | 4.090 | 0.812 | −0.642 | 0.160 | |||
PU3 | 3.950 | 0.841 | −0.486 | −0.124 | |||
PU4 | 4.040 | 0.663 | −0.590 | 0.125 | |||
PUE | PUE1 | 3.980 | 0.788 | −0.538 | 0.276 | 3.974 | 0.717 |
PUE2 | 3.930 | 0.800 | −0.324 | −0.433 | |||
PUE3 | 4.020 | 0.786 | −0.556 | 0.281 | |||
PR | PR1 | 3.930 | 0.860 | −0.666 | 0.337 | 3.912 | 0.766 |
PR2 | 3.970 | 0.831 | −0.628 | 0.426 | |||
PR3 | 3.840 | 0.884 | −0.496 | 0.086 | |||
SI | SI1 | 3.980 | 0.771 | −0.483 | 0.257 | 3.953 | 0.692 |
SI2 | 3.970 | 0.788 | −0.430 | 0.024 | |||
SI3 | 3.900 | 0.864 | −0.529 | −0.106 | |||
TR | TR1 | 3.830 | 0.759 | −0.406 | −0.130 | 3.750 | 0.759 |
TR2 | 3.710 | 0.921 | −0.312 | −0.434 | |||
TR3 | 3.660 | 0.947 | −0.184 | −0.751 | |||
TS | TS1 | 3.710 | 0.953 | −0.526 | −0.037 | 3.730 | 0.740 |
TS2 | 3.820 | 0.896 | −0.456 | −0.329 | |||
TS3 | 3.660 | 0.974 | −0.275 | −0.729 | |||
PV | PV1 | 3.570 | 0.803 | 0.094 | −0.494 | 3.890 | 0.446 |
PV2 | 3.980 | 0.773 | −0.472 | −0.049 | |||
PV3 | 3.990 | 0.751 | −0.153 | −0.778 | |||
PV4 | 4.040 | 0.516 | −0.309 | −0.283 | |||
AT | AT1 | 4.070 | 0.548 | −0.335 | −0.448 | 3.960 | 0.666 |
AT2 | 3.900 | 0.816 | −0.336 | −0.443 | |||
AT3 | 3.910 | 0.836 | −0.512 | 0.197 | |||
BI | BI1 | 3.750 | 0.867 | −0.244 | −0.435 | 3.830 | 0.607 |
BI2 | 3.840 | 0.669 | −0.249 | −0.295 | |||
BI3 | 3.920 | 0.848 | −0.642 | 0.560 |
Item | Cronbach’s Alpha | n |
---|---|---|
PU | 0.917 | 4 |
PUE | 0.891 | 3 |
AT | 0.893 | 3 |
BI | 0.913 | 3 |
SI | 0.821 | 3 |
TS | 0.895 | 3 |
PV | 0.870 | 4 |
TR | 0.904 | 3 |
PR | 0.871 | 3 |
All items | 0.973 | 29 |
KMO and Bartlett’s Test | ||
---|---|---|
KMO value | 0.951 | |
Bartlett’s test of sphericity | Approximate Chi-Square | 7490.411 |
df | 406 | |
p-value | 0 |
Variance Explained | |||||||||
---|---|---|---|---|---|---|---|---|---|
Factor Number | Characteristic Root | Rotational Front Variance Explained | Variance Explained After Rotation | ||||||
Characteristic Root | Variance Explained % | Accumulation% | Characteristic Root | Variance Explained % | Accumulation% | Characteristic Root | Variance Explained % | Accumulation% | |
1 | 13.403 | 46.217 | 46.217 | 13.403 | 46.217 | 46.217 | 2.844 | 9.806 | 9.806 |
2 | 2.719 | 9.376 | 55.593 | 2.719 | 9.376 | 55.593 | 2.633 | 9.08 | 18.886 |
3 | 1.52 | 5.243 | 60.836 | 1.52 | 5.243 | 60.836 | 2.613 | 9.011 | 27.898 |
4 | 1.367 | 4.714 | 65.55 | 1.367 | 4.714 | 65.55 | 2.591 | 8.934 | 36.832 |
5 | 1.054 | 3.634 | 69.184 | 1.054 | 3.634 | 69.184 | 2.558 | 8.82 | 45.652 |
6 | 0.877 | 3.023 | 72.206 | 0.877 | 3.023 | 72.206 | 2.512 | 8.661 | 54.313 |
7 | 0.791 | 2.729 | 74.936 | 0.791 | 2.729 | 74.936 | 2.501 | 8.623 | 62.936 |
8 | 0.74 | 2.551 | 77.486 | 0.74 | 2.551 | 77.486 | 2.454 | 8.461 | 71.396 |
9 | 0.687 | 2.369 | 79.855 | 0.687 | 2.369 | 79.855 | 2.453 | 8.459 | 79.855 |
10 | 0.571 | 1.97 | 81.825 | ||||||
11 | 0.545 | 1.881 | 83.706 | ||||||
12 | 0.472 | 1.626 | 85.332 | ||||||
13 | 0.434 | 1.495 | 86.827 | ||||||
14 | 0.416 | 1.433 | 88.26 | ||||||
15 | 0.382 | 1.316 | 89.576 | ||||||
16 | 0.353 | 1.217 | 90.793 | ||||||
17 | 0.319 | 1.102 | 91.894 | ||||||
18 | 0.306 | 1.057 | 92.951 | ||||||
19 | 0.276 | 0.95 | 93.901 | ||||||
20 | 0.258 | 0.89 | 94.791 | ||||||
21 | 0.229 | 0.791 | 95.582 | ||||||
22 | 0.221 | 0.761 | 96.343 | ||||||
23 | 0.194 | 0.669 | 97.012 | ||||||
24 | 0.193 | 0.667 | 97.679 | ||||||
25 | 0.172 | 0.595 | 98.274 | ||||||
26 | 0.141 | 0.486 | 98.76 | ||||||
27 | 0.131 | 0.45 | 99.21 | ||||||
28 | 0.118 | 0.405 | 99.615 | ||||||
29 | 0.112 | 0.385 | 100 |
Factor Loading Coefficients After Rotation | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Name | Factor Loading Coefficient | Commonality | ||||||||
PU | BI | PUE | TS | TR | SI | PV | AT | PR | ||
PU1 | 0.728 | 0.126 | 0.245 | 0.223 | 0.151 | 0.101 | 0.185 | 0.209 | 0.015 | 0.767 |
PU2 | 0.713 | 0.183 | 0.287 | 0.21 | 0.06 | 0.228 | 0.274 | 0.062 | 0.034 | 0.804 |
PU3 | 0.733 | 0.115 | 0.169 | 0.173 | 0.279 | −0.007 | 0.139 | 0.228 | 0.013 | 0.813 |
PU4 | 0.604 | 0.208 | 0.215 | 0.098 | 0.132 | 0.246 | 0.095 | 0.361 | 0.013 | 0.758 |
PUE1 | 0.376 | 0.247 | 0.625 | 0.389 | 0.137 | 0.11 | 0.247 | 0.032 | 0.067 | 0.805 |
PUE2 | 0.268 | 0.255 | 0.698 | 0.238 | 0.211 | 0.009 | 0.194 | 0.165 | 0.009 | 0.791 |
PUE3 | 0.221 | −0.044 | 0.769 | 0.148 | 0.12 | 0.264 | 0.151 | 0.2 | 0.115 | 0.824 |
PR1 | −0.015 | 0.043 | 0.084 | 0.039 | −0.017 | 0.151 | 0.066 | 0.034 | 0.879 | 0.812 |
PR2 | 0.014 | 0.056 | −0.026 | −0.036 | −0.052 | 0.194 | 0.053 | 0.131 | 0.855 | 0.797 |
PR3 | 0.028 | −0.049 | 0.028 | 0.052 | 0.114 | 0.091 | 0.073 | −0.01 | 0.704 | 0.679 |
SI1 | −0.003 | 0.138 | 0.081 | 0.147 | 0.129 | 0.754 | 0.199 | 0.115 | 0.293 | 0.772 |
SI2 | 0.168 | 0.061 | 0.152 | 0.038 | 0.048 | 0.804 | 0.193 | 0.054 | 0.241 | 0.803 |
SI3 | 0.132 | 0.158 | 0.121 | 0.369 | 0.218 | 0.656 | 0.125 | 0.194 | 0.151 | 0.747 |
TR1 | 0.144 | 0.239 | 0.46 | 0.152 | 0.435 | 0.382 | 0.126 | 0.157 | 0.009 | 0.688 |
TR2 | 0.155 | 0.306 | 0.271 | 0.164 | 0.688 | 0.208 | 0.049 | 0.306 | −0.075 | 0.836 |
TR3 | 0.085 | 0.333 | 0.465 | 0.182 | 0.558 | 0.204 | 0.088 | 0.291 | −0.036 | 0.814 |
TS1 | 0.184 | 0.166 | 0.259 | 0.746 | 0.239 | 0.253 | 0.126 | 0.223 | 0.041 | 0.873 |
TS2 | 0.232 | 0.164 | 0.108 | 0.789 | 0.198 | 0.17 | 0.109 | 0.236 | 0.021 | 0.797 |
TS3 | 0.151 | 0.271 | 0.22 | 0.546 | 0.557 | 0.126 | 0.177 | 0.198 | 0.01 | 0.893 |
PV1 | 0.143 | 0.087 | 0.062 | 0.244 | 0.756 | 0.054 | 0.313 | 0.038 | 0.139 | 0.784 |
PV2 | 0.138 | 0.056 | 0.184 | 0.202 | 0.055 | 0.254 | 0.717 | 0.364 | 0.125 | 0.827 |
PV3 | 0.148 | 0.361 | 0.187 | 0.062 | 0.229 | 0.142 | 0.714 | 0.123 | 0.156 | 0.813 |
PV4 | 0.166 | 0.24 | 0.119 | 0.138 | 0.182 | 0.241 | 0.632 | 0.325 | 0.037 | 0.781 |
AT1 | 0.251 | 0.168 | 0.175 | 0.152 | 0.137 | 0.128 | 0.319 | 0.528 | 0.128 | 0.738 |
AT2 | 0.143 | 0.267 | 0.28 | 0.257 | 0.274 | 0.092 | 0.278 | 0.746 | 0.083 | 0.855 |
AT3 | 0.23 | 0.386 | 0.002 | 0.29 | 0.138 | 0.137 | 0.295 | 0.609 | 0.093 | 0.79 |
BI1 | 0.09 | 0.546 | 0.234 | 0.343 | 0.157 | 0.064 | 0.193 | 0.339 | −0.015 | 0.778 |
BI2 | 0.14 | 0.744 | 0.177 | 0.11 | 0.279 | 0.196 | 0.168 | 0.303 | −0.037 | 0.854 |
BI3 | 0.218 | 0.733 | 0.015 | 0.279 | 0.146 | 0.147 | 0.363 | 0.115 | 0.116 | 0.864 |
Factor Loading Coefficients After Rotation (Delete TR1, TS3 and PV1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Name | Factor Loading Coefficient | Commonality | ||||||||
PU | PR | SI | TS | PUE | BI | PV | TR | AT | ||
PU1 | 0.744 | 0.019 | 0.085 | 0.254 | 0.21 | 0.086 | 0.238 | 0.224 | 0.139 | 0.803 |
PU2 | 0.677 | 0.018 | 0.247 | 0.183 | 0.378 | 0.236 | 0.21 | −0.019 | 0.138 | 0.815 |
PU3 | 0.723 | 0.01 | 0.006 | 0.168 | 0.211 | 0.135 | 0.115 | 0.246 | 0.225 | 0.738 |
PU4 | 0.629 | 0.013 | 0.228 | 0.102 | 0.225 | 0.203 | 0.09 | 0.169 | 0.362 | 0.812 |
PUE1 | 0.34 | 0.059 | 0.122 | 0.383 | 0.638 | 0.26 | 0.2 | 0.13 | 0.07 | 0.816 |
PUE2 | 0.241 | 0.01 | 0.013 | 0.244 | 0.692 | 0.224 | 0.175 | 0.306 | 0.152 | 0.794 |
PUE3 | 0.202 | 0.116 | 0.254 | 0.132 | 0.744 | −0.086 | 0.179 | 0.268 | 0.143 | 0.821 |
PR1 | −0.034 | 0.874 | 0.169 | 0.017 | 0.128 | 0.074 | 0.042 | −0.073 | 0.078 | 0.829 |
PR2 | −0.022 | 0.846 | 0.22 | −0.08 | 0.063 | 0.118 | −0.022 | −0.143 | 0.231 | 0.862 |
PR3 | 0.088 | 0.711 | 0.089 | 0.141 | −0.117 | −0.164 | 0.204 | 0.238 | −0.16 | 0.858 |
SI1 | −0.016 | 0.274 | 0.776 | 0.132 | 0.104 | 0.15 | 0.161 | 0.13 | 0.14 | 0.791 |
SI2 | 0.178 | 0.226 | 0.803 | 0.049 | 0.119 | 0.029 | 0.229 | 0.118 | 0.016 | 0.812 |
SI3 | 0.127 | 0.142 | 0.659 | 0.381 | 0.129 | 0.171 | 0.079 | 0.196 | 0.223 | 0.756 |
TR2 | 0.173 | −0.063 | 0.198 | 0.19 | 0.212 | 0.272 | 0.1 | 0.751 | 0.186 | 0.836 |
TR3 | 0.086 | −0.028 | 0.2 | 0.216 | 0.411 | 0.291 | 0.099 | 0.654 | 0.213 | 0.832 |
TS1 | 0.184 | 0.038 | 0.254 | 0.749 | 0.262 | 0.164 | 0.117 | 0.232 | 0.202 | 0.864 |
TS2 | 0.151 | 0.006 | 0.13 | 0.801 | 0.222 | 0.263 | 0.16 | 0.191 | 0.189 | 0.898 |
PV2 | 0.145 | 0.154 | 0.138 | 0.082 | 0.188 | 0.365 | 0.744 | 0.186 | 0.119 | 0.841 |
PV3 | 0.123 | 0.111 | 0.265 | 0.214 | 0.209 | 0.064 | 0.683 | 0.046 | 0.405 | 0.823 |
PV4 | 0.139 | 0.024 | 0.261 | 0.129 | 0.175 | 0.272 | 0.627 | 0.147 | 0.376 | 0.765 |
AT1 | 0.177 | 0.094 | 0.062 | 0.324 | 0.163 | 0.163 | 0.354 | 0.467 | 0.458 | 0.755 |
AT2 | 0.238 | 0.128 | 0.12 | 0.154 | 0.182 | 0.151 | 0.283 | 0.236 | 0.752 | 0.868 |
AT3 | 0.236 | 0.093 | 0.124 | 0.309 | −0.014 | 0.355 | 0.294 | 0.224 | 0.589 | 0.784 |
BI1 | 0.077 | −0.01 | 0.051 | 0.367 | 0.212 | 0.486 | 0.166 | 0.269 | 0.34 | 0.771 |
BI2 | 0.137 | −0.027 | 0.175 | 0.122 | 0.141 | 0.699 | 0.194 | 0.418 | 0.248 | 0.847 |
BI3 | 0.213 | 0.117 | 0.141 | 0.29 | 0.019 | 0.72 | 0.379 | 0.179 | 0.102 | 0.868 |
Factor Loading Coefficients After Rotation (Deleted TR1, TS3, PV1, AT1, and BI1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Name | Factor Loading Coefficient | Commonality | ||||||||
PU | PR | BI | PUE | SI | TS | PV | TR | AT | ||
PU1 | 0.727 | 0.013 | 0.087 | 0.251 | 0.241 | 0.192 | 0.176 | 0.162 | 0.165 | 0.798 |
PU2 | 0.646 | 0.004 | 0.243 | 0.394 | 0.191 | 0.171 | 0.276 | −0.013 | 0.183 | 0.811 |
PU3 | 0.75 | 0.014 | −0.007 | 0.16 | 0.176 | 0.187 | 0.077 | 0.301 | 0.194 | 0.763 |
PU4 | 0.624 | 0.003 | 0.228 | 0.245 | 0.104 | 0.077 | 0.222 | 0.155 | 0.4 | 0.817 |
PUE1 | 0.306 | 0.048 | 0.103 | 0.641 | 0.397 | 0.159 | 0.287 | 0.153 | 0.111 | 0.814 |
PUE2 | 0.255 | 0.004 | 0.002 | 0.648 | 0.252 | 0.218 | 0.17 | 0.373 | 0.118 | 0.796 |
PUE3 | 0.181 | 0.109 | 0.254 | 0.77 | 0.13 | 0.168 | −0.034 | 0.246 | 0.152 | 0.825 |
PR1 | −0.069 | 0.87 | 0.161 | 0.154 | 0.03 | 0.005 | 0.109 | −0.083 | 0.131 | 0.826 |
PR2 | −0.032 | 0.844 | 0.207 | 0.036 | −0.056 | 0.02 | 0.058 | −0.083 | 0.246 | 0.844 |
PR3 | 0.143 | 0.713 | 0.121 | −0.102 | 0.113 | 0.213 | −0.076 | 0.166 | −0.253 | 0.824 |
SI1 | −0.015 | 0.266 | 0.77 | 0.081 | 0.152 | 0.194 | 0.13 | 0.168 | 0.129 | 0.791 |
SI2 | 0.154 | 0.21 | 0.825 | 0.177 | 0.041 | 0.169 | 0.133 | 0.05 | 0.046 | 0.828 |
SI3 | 0.125 | 0.143 | 0.623 | 0.076 | 0.416 | 0.147 | 0.102 | 0.271 | 0.227 | 0.758 |
TR2 | 0.166 | −0.05 | 0.152 | 0.171 | 0.214 | 0.119 | 0.246 | 0.786 | 0.209 | 0.881 |
TR3 | 0.092 | −0.024 | 0.173 | 0.366 | 0.234 | 0.131 | 0.236 | 0.702 | 0.204 | 0.838 |
TS1 | 0.161 | 0.036 | 0.217 | 0.259 | 0.765 | 0.12 | 0.176 | 0.237 | 0.229 | 0.866 |
TS2 | 0.154 | 0.001 | 0.108 | 0.203 | 0.806 | 0.181 | 0.239 | 0.209 | 0.177 | 0.898 |
PV2 | 0.14 | 0.111 | 0.25 | 0.193 | 0.205 | 0.744 | 0.1 | 0.056 | 0.32 | 0.839 |
PV3 | 0.11 | 0.148 | 0.12 | 0.224 | 0.078 | 0.690 | 0.518 | 0.143 | 0.126 | 0.833 |
PV4 | 0.15 | 0.028 | 0.225 | 0.121 | 0.145 | 0.651 | 0.267 | 0.214 | 0.31 | 0.787 |
AT2 | 0.225 | 0.133 | 0.085 | 0.16 | 0.163 | 0.366 | 0.113 | 0.265 | 0.732 | 0.879 |
AT3 | 0.196 | 0.087 | 0.099 | 0.011 | 0.313 | 0.273 | 0.401 | 0.192 | 0.615 | 0.777 |
BI2 | 0.108 | −0.041 | 0.163 | 0.134 | 0.137 | 0.132 | 0.692 | 0.44 | 0.29 | 0.859 |
BI3 | 0.175 | 0.102 | 0.128 | 0.036 | 0.296 | 0.274 | 0.769 | 0.177 | 0.163 | 0.868 |
Fit Index | Judgment Criteria | CFA Model | Fitting Results |
---|---|---|---|
CMIN/DF | 1–3 Excellent, 3–5 Good | 2.545 | Excellent |
RMSEA | <0.05 Excellent, <0.08 Good | 0.077 | Good |
GFI | >0.9 Excellent, >0.85 Good | 0.855 | Good |
AGFI | >0.9 Excellent, >0.8 Good | 0.799 | Accept |
IFI | >0.9 Excellent, >0.8 Good | 0.926 | Excellent |
TLI | >0.9 Excellent, >0.8 Good | 0.904 | Excellent |
CFI | >0.9 Excellent, >0.8 Good | 0.925 | Excellent |
PNFI | >0.5 Good | 0.692 | Good |
PCFI | >0.5 Good | 0.724 | Good |
PGFI | >0.5 Good | 0.616 | Good |
Latent Variables | Explicit Variables | Coef. | SE | t | p | Factor Loading | SMC | AVE | CR |
---|---|---|---|---|---|---|---|---|---|
PU | PU1 | 1.000 | - | - | - | 0.768 | 0.683 | 0.671 | 0.890 |
PU2 | 1.079 | 0.076 | 14.198 | 0.000 | 0.840 | 0.705 | |||
PU3 | 1.050 | 0.075 | 13.938 | 0.000 | 0.826 | 0.590 | |||
PU4 | 1.053 | 0.074 | 14.181 | 0.000 | 0.839 | 0.704 | |||
PUE | PUE1 | 1.000 | - | - | - | 0.744 | 0.761 | 0.666 | 0.857 |
PUE2 | 1.122 | 0.085 | 13.246 | 0.000 | 0.828 | 0.685 | |||
PUE3 | 1.181 | 0.085 | 13.939 | 0.000 | 0.873 | 0.553 | |||
AT | AT2 | 1.000 | - | - | - | 0.826 | 0.671 | 0.740 | 0.850 |
AT3 | 1.010 | 0.067 | 15.053 | 0.000 | 0.819 | 0.682 | |||
BI | BI2 | 1.000 | - | - | - | 0.819 | 0.777 | 0.723 | 0.839 |
BI3 | 1.077 | 0.069 | 15.582 | 0.000 | 0.881 | 0.671 | |||
SI | SI1 | 1.000 | - | - | - | 0.794 | 0.671 | 0.627 | 0.834 |
SI2 | 0.892 | 0.072 | 12.377 | 0.000 | 0.761 | 0.579 | |||
SI3 | 0.966 | 0.073 | 13.321 | 0.000 | 0.819 | 0.631 | |||
TS | TS1 | 1.000 | - | - | - | 0.886 | 0.852 | 0.819 | 0.901 |
TS2 | 1.042 | 0.053 | 19.589 | 0.000 | 0.923 | 0.786 | |||
PV | PV2 | 1.000 | - | - | - | 0.802 | 0.723 | 0.678 | 0.863 |
PV3 | 0.969 | 0.068 | 14.290 | 0.000 | 0.817 | 0.667 | |||
PV4 | 1.037 | 0.069 | 14.984 | 0.000 | 0.850 | 0.643 | |||
TR | TR2 | 1.000 | - | - | - | 0.901 | 0.747 | 0.779 | 0.876 |
TR3 | 1.018 | 0.058 | 17.489 | 0.000 | 0.864 | 0.812 | |||
PR | PR1 | 1.000 | - | - | - | 0.662 | 0.743 | 0.640 | 0.840 |
PR2 | 1.229 | 0.111 | 11.103 | 0.000 | 0.859 | 0.738 | |||
PR3 | 1.280 | 0.115 | 11.109 | 0.000 | 0.862 | 0.439 |
PU | PUE | AT | BI | SI | TS | PV | TR | PR | |
---|---|---|---|---|---|---|---|---|---|
PU | 0.819 | ||||||||
PUE | 0.801 | 0.816 | |||||||
AT | 0.713 | 0.635 | 0.860 | ||||||
BI | 0.638 | 0.643 | 0.794 | 0.850 | |||||
SI | 0.516 | 0.551 | 0.576 | 0.568 | 0.792 | ||||
TS | 0.652 | 0.752 | 0.684 | 0.673 | 0.602 | 0.905 | |||
PV | 0.662 | 0.664 | 0.817 | 0.765 | 0.664 | 0.618 | 0.823 | ||
TR | 0.631 | 0.745 | 0.658 | 0.758 | 0.556 | 0.717 | 0.626 | 0.883 | |
PR | 0.124 | 0.159 | 0.255 | 0.150* | 0.505 | 0.140 | 0.298 | 0.057 | 0.800 |
PU | PUE | AT | BI | SI | TS | PV | TR | PR | |
---|---|---|---|---|---|---|---|---|---|
PU | |||||||||
PUE | 0.795 | ||||||||
AT | 0.716 | 0.638 | |||||||
BI | 0.64 | 0.619 | 0.788 | ||||||
SI | 0.514 | 0.571 | 0.576 | 0.57 | |||||
TS | 0.651 | 0.738 | 0.682 | 0.688 | 0.592 | ||||
PV | 0.66 | 0.666 | 0.822 | 0.778 | 0.663 | 0.623 | |||
TR | 0.635 | 0.747 | 0.665 | 0.752 | 0.552 | 0.717 | 0.624 | ||
PR | 0.126 | 0.182 | 0.255 | 0.16 | 0.518 | 0.145 | 0.311 | 0.059 |
PU | PUE | PR | SI | TR | TS | PV | AT | BI | |
---|---|---|---|---|---|---|---|---|---|
PU | 1 | ||||||||
PUE | 0.695 ** | 1 | |||||||
PR | 0.119 * | 0.154 * | 1 | ||||||
SI | 0.444 ** | 0.484 ** | 0.430 ** | 1 | |||||
TR | 0.560 ** | 0.645 ** | 0.150 * | 0.474 ** | 1 | ||||
TS | 0.583 ** | 0.648 ** | 0.126 * | 0.517 ** | 0.636 ** | 1 | |||
PV | 0.578 ** | 0.572 ** | 0.263 ** | 0.563 ** | 0.543 ** | 0.549 ** | 1 | ||
AT | 0.622 ** | 0.545 ** | 0.214 ** | 0.488 ** | 0.573 ** | 0.597 ** | 0.703 ** | 1 | |
BI | 0.553 ** | 0.525 ** | 0.133 * | 0.479 ** | 0.644 ** | 0.597 ** | 0.663 ** | 0.665 ** | 1 |
PR | SI | TR | TS | PV | PU | PUE | AT | BI | |
---|---|---|---|---|---|---|---|---|---|
PR | 1.313 | ||||||||
SI | 1.968 | ||||||||
TR | 2.856 | ||||||||
TS | 2.068 | 1.681 | 2.551 | ||||||
PV | 1.884 | 1.681 | 2.371 | ||||||
PU | 2.238 | 2.297 | |||||||
PUE | 1.946 | 2.627 | 2.089 | ||||||
AT | 1.854 | ||||||||
BI |
Fit Index | Judgment Criteria | Fitted Value | Fitted Result |
---|---|---|---|
CMIN/DF | 1–3 Excellent, 3–5 Good | 2.437 | Excellent |
RMSEA | <0.05 Excellent, <0.08 Good | 0.074 | Good |
GFI | >0.9 Excellent, >0.85 Good | 0.852 | Good |
AGFI | >0.9 Excellent, >0.8 Good | 0.805 | Good |
IFI | >0.9 Excellent, >0.8 Good | 0.926 | Excellent |
TLI | >0.9 Excellent, >0.8 Good | 0.909 | Excellent |
CFI | >0.9 Excellent, >0.8 Good | 0.925 | Excellent |
PNFI | >0.5 Good | 0.727 | Good |
PCFI | >0.5 Good | 0.764 | Good |
PGFI | >0.5 Good | 0.647 | Good |
Path | Std. (β) | S.E. | C.R. | p | R2 | ||
---|---|---|---|---|---|---|---|
PUE | ← | TS | 0.608 | 0.066 | 7.199 | *** | 0.655 |
PUE | ← | PV | 0.27 | 0.076 | 3.52 | *** | |
PU | ← | PUE | 0.56 | 0.118 | 5.384 | *** | 0.676 |
PU | ← | PV | 0.137 | 0.084 | 1.442 | 0.149 | |
PU | ← | TS | 0.199 | 0.082 | 2.714 | ** | |
AT | ← | PUE | 0.145 | 0.091 | 1.978 | * | 0.861 |
AT | ← | PU | 0.155 | 0.088 | 2.063 | * | |
AT | ← | TR | 0.3 | 0.094 | 2.877 | ** | |
AT | ← | PV | 0.477 | 0.091 | 5.895 | *** | |
AT | ← | TS | 0.256 | 0.118 | 2.214 | * | |
AT | ← | SI | 0.096 | 0.079 | 1.212 | 0.225 | |
AT | ← | PR | −0.013 | 0.051 | −0.236 | 0.813 | |
BI | ← | AT | 0.995 | 0.103 | 9.374 | *** | 0.855 |
BI | ← | PU | −0.098 | 0.087 | −1.1 | 0.271 |
Hypothesis | Decision | |
---|---|---|
H1 | AT has a significant positive impact on BI. | Supported |
H2a | PU has a significant positive effect on AT. | Supported |
H2b | PU has a significant positive effect on BI. | Not supported |
H3a | PUE has a significant positive effect on BI. | Supported |
H3b | PUE has a significant positive effect on PU. | Supported |
H4 | SI has a significant positive effect on AT. | Not supported |
H5a | TS has a significant positive effect on AT. | Supported |
H5b | TS has a significant positive effect on PU. | Supported |
H5c | TS has a significant positive effect on PUE. | Supported |
H6a | PV has a significant positive effect on AT. | Supported |
H6b | PV has a significant positive effect on PU. | Not Supported |
H6c | PV has a significant positive effect on PUE. | Supported |
H7 | TR has a significant positive effect on AT. | Supported |
H8 | PR has a significant negative effect on AT. | Not supported |
BI: Model 1 | BI: Model 2 | BI: Model 3 | ||||
---|---|---|---|---|---|---|
B | t | B | t | B | t | |
Constant | 0.584 * | 3.151 | 0.62 * | 3.339 | 0.776 * | 3.912 |
AT | 0.604 * | 11.174 | 0.604 * | 11.111 | 0.606 * | 11.329 |
PU | 0.184 * | 3.2 | 0.174 * | 3.01 | 0.183 * | 3.217 |
Age | −0.1 * | −2.539 | ||||
R-squared | 0.547 | 0.549 | 0.558 | |||
Adjusted R-squared | 0.543 | 0.545 | 0.553 | |||
F-value | 154.977 | 152.115 | 107.654 |
AT: Model 1 | AT: Model 2 | AT: Model 3 | ||||
---|---|---|---|---|---|---|
B | t | B | t | B | t | |
Constant | 0.01 | 0.047 | −0.067 | −0.309 | −0.052 | −0.232 |
PU | 0.23 * | 3.878 | 0.235 * | 3.918 | 0.23 * | 3.884 |
PUE | 0.112 * | 2.164 | 0.105 * | 2.076 | 0.119 * | 2.286 |
PR | −0.052 | −0.356 | −0.058 | −0.278 | −0.052 | −0.332 |
SI | 0.02 | 1.162 | 0.016 | 1.302 | 0.019 | 1.167 |
TR | 0.105 | 1.7 | 0.094 | 1.495 | 0.103 | 1.665 |
TS | 0.184 * | 2.7 | 0.184 * | 3.213 | 0.194 * | 3.41 |
PV | 0.522 * | 3.7 | 0.532 * | 7.386 | 0.519 * | 7.296 |
Age | 0.034 | 0.924 | ||||
R-squared | 0.649 | 0.658 | 0.65 | |||
Adjusted R-squared | 0.639 | 0.648 | 0.639 | |||
F-value | 107.654 | 67.206 | 58.326 |
PU: Model 1 | PU: Model 2 | PU: Model 3 | ||||
---|---|---|---|---|---|---|
B | t | B | t | B | t | |
Constant | 0.601 * | 3.07 | 0.595 * | 3.005 | 0.609 * | 2.926 |
TS | 0.172 * | 3.252 | 0.188 * | 3.443 | 0.171 * | 3.156 |
PV | 0.24 * | 3.572 | 0.225 * | 3.276 | 0.24 * | 3.566 |
PUE | 0.448 * | 7.59 | 0.448 * | 7.511 | 0.449 * | 7.493 |
Age | −0.004 | −0.105 | ||||
R-squared | 0.551 | 0.554 | 0.551 | |||
Adjusted R-squared | 0.546 | 0.548 | 0.544 | |||
F-value | 104.876 | 103.017 | 78.356 |
PU: Model 1 | PU: Model 2 | PU: Model 3 | ||||
---|---|---|---|---|---|---|
B | t | B | t | B | t | |
Constant | 1.044 * | 5.307 | 1.044 * | 5.236 | 0.831 * | 3.943 |
TS | 0.388 * | 7.692 | 0.384 * | 7.278 | 0.407 * | 8.081 |
PV | 0.373 * | 5.564 | 0.376 * | 5.458 | 0.355 * | 5.337 |
Age | 0.105 * | 2.611 | ||||
R-squared | 0.486 | 0.481 | 0.499 | |||
Adjusted R-squared | 0.482 | 0.477 | 0.494 | |||
F-value | 121.542 | 116.041 | 85.133 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Lu, T.; Rong, H.; Pan, D.; Luo, W.; Gao, Y. Acceptance of Navigate on Autopilot of New Energy Vehicles in China: An Extended Technology Acceptance Model. Systems 2025, 13, 791. https://doi.org/10.3390/systems13090791
Wang Y, Lu T, Rong H, Pan D, Luo W, Gao Y. Acceptance of Navigate on Autopilot of New Energy Vehicles in China: An Extended Technology Acceptance Model. Systems. 2025; 13(9):791. https://doi.org/10.3390/systems13090791
Chicago/Turabian StyleWang, Yi, Tianle Lu, Haojiang Rong, Dong Pan, Wei Luo, and Yacong Gao. 2025. "Acceptance of Navigate on Autopilot of New Energy Vehicles in China: An Extended Technology Acceptance Model" Systems 13, no. 9: 791. https://doi.org/10.3390/systems13090791
APA StyleWang, Y., Lu, T., Rong, H., Pan, D., Luo, W., & Gao, Y. (2025). Acceptance of Navigate on Autopilot of New Energy Vehicles in China: An Extended Technology Acceptance Model. Systems, 13(9), 791. https://doi.org/10.3390/systems13090791