From Artificial Intelligence to Energy Reduction: How Green Innovation Channels Corporate Sustainability
Abstract
1. Introduction
2. Literature Review
2.1. Theoretical Foundations
2.2. AI Adoption and Corporate Energy Consumption
2.3. Green Innovation as a Mediating Mechanism
2.4. The Moderating Role of Internal Digital Capabilities
3. Methodology
3.1. Research Design
3.2. Data and Variable Construction
3.2.1. Sample and Data Sources
3.2.2. Energy Consumption Calculation
3.2.3. AI Adoption Intensity
3.2.4. Other Variables
3.3. Empirical Model Specification and Identification Strategy
3.3.1. Main Effect (H1)
3.3.2. Mediation Analysis (H2)
3.3.3. Moderation Analysis (H3, H4)
3.3.4. Comprehensive Endogeneity Controls
- (1)
- Instrumental Variable (IV) Approach: Use lagged AI adoption and industry-average AI (excluding the focal firm) as instruments; test for relevance (first-stage F-statistic) and overidentification (Hansen J).
- (2)
- Control Function Method: First, regress AI on instruments, then include the residual in the main model to correct for endogeneity in flexible panel settings [46].
- (3)
- Placebo (Falsification)Test: Randomly assign 50% of the sample as “pseudo-AI adopters” to ensure observed effects are not due to spurious correlations or unobserved shocks.
- (4)
- Propensity Score Matching Difference-in-Differences (PSM-DID): Construct treatment and control groups using quasi-experimental settings, such as regional AI pilot zones or smart manufacturing policies. Employ matching and DID estimation to enhance comparability and infer causality.
4. Empirical Results
4.1. Descriptive Statistics, Correlation Matrix, and Multicollinearity Diagnostics
4.2. Baseline Regression Results
4.3. Robustness Checks
4.4. Endogeneity Test
4.4.1. Instrumental Variable (IV) Approach
- (1)
- the lagged firm-level AI index (L.AI) and
- (2)
- the industry-average AI adoption level (meanAI_ind),
(1) First_Stage | (2) Second_Stage | |
---|---|---|
Variables | AI | ln_EnCons |
L.AI | 0.855 *** | |
(248.53) | ||
meanAI_ind | 0.184 *** | |
(30.70) | ||
AI | −0.001 *** | |
(−2.76) | ||
Controls | YES | YES |
Year | YES | YES |
Id | YES | YES |
Constant | −0.063 | 7.556 *** |
(−0.88) | (1289.56) | |
Anderson canon. Corr. LM statistic | 2.4 × 104 | |
Cragg-Donald Wald F statistic | 5.1 × 104 | |
Stock-Yogo weak | 19.93 | |
Sargan statistic | 3.450 | |
Observations | 30,632 | 30,632 |
R-squared | 0.789 | 0.943 |
4.4.2. Additional Endogeneity Tests
5. Mechanism Analysis: Mediation and Moderation Effects
5.1. Mediation Analysis: The Role of Green Innovation
Variables | (1) GreenInno | (2) ln_EnCons |
---|---|---|
AI | 0.003 *** | −0.001 ** |
(0.001) | (−2.54) | |
GreenInno | −0.006 ** | |
(−2.09) | ||
Controls | YES | YES |
Constant | 0.039 | 7.297 *** |
(0.027) | (348.49) | |
Sobel Z | −2.369 ** | |
Bootstrap (95% conf. interval) | [−0.00055, −0.00033] | |
Observations | 35,795 | 32,212 |
R-squared | 0.001 | 0.960 |
Number of stkcd | 4885 |
5.2. Moderation Analysis: Digital Capabilities as Amplifiers
- (1)
- Digital Transformation Capability (DCG)—a structural measure of a firm’s digital infrastructure, systems integration, and platform connectivity.
- (2)
- IT-related Executive Background (IT_Back)—a cognitive measure reflecting the proportion of top executives with IT education or professional experience.
5.3. Heterogeneity Analysis
- (1)
- Firm size: Resource endowment effect
- (2)
- Ownership type: Governance and flexibility
- (3)
- Industry energy intensity: Technological inertia in heavy sectors
- (4)
- Regional digital economy development: Leapfrogging potential
6. Discussion and Conclusions
6.1. Discussion of Empirical Findings
6.2. Theoretical and Practical Implications
6.3. Limitations and Future Research
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1
Variable | VIF | 1/VIF |
---|---|---|
Lev | 1.670 | 0.599 |
Size | 1.500 | 0.667 |
ROA | 1.360 | 0.737 |
Growth | 1.110 | 0.905 |
Board | 1.090 | 0.917 |
FirmAge | 1.060 | 0.948 |
AI | 1.040 | 0.966 |
Mean | VIF | 1.260 |
Appendix A.2
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
---|---|---|---|---|---|---|---|---|
Variables | Big Firms | Small Firms | State-Owned | Private-Owned | Energy-Intensive | Non-Energy | High DEI Region | Low DEI Region |
AI | −0.002 *** | −0.001 | −0.001 | −0.001 ** | 0.001 | −0.002 *** | −0.001 * | −0.002 *** |
(0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.000) | (0.001) | (0.001) | |
Controls | YES | YES | YES | YES | YES | YES | YES | YES |
Constant | 7.332 *** | 7.214 *** | 7.264 *** | 7.305 *** | 7.312 *** | 7.286 *** | 7.350 *** | 7.244 *** |
(0.036) | (0.040) | (0.040) | (0.026) | (0.048) | (0.024) | (0.032) | (0.035) | |
Observations | 17,203 | 14,768 | 11,227 | 21,058 | 6093 | 26,237 | 15,631 | 15,763 |
R-squared | 0.956 | 0.964 | 0.962 | 0.957 | 0.961 | 0.959 | 0.952 | 0.957 |
Appendix A.3
Machine Learning | AI Products | AI Chips | Machine Translation | Computer Vision |
Machine learning | AI product | AI chip | Machine translation | Computer vision |
Deep learning | Smart banking | Deep learning | Neural network | Image recognition |
Data mining | Smart insurance | AI processor | Speech synthesis | Feature recognition |
Autonomous driving | Smart healthcare | Deep neural network | Natural language processing | Biometric identification |
Pattern recognition | Smart customer service | LSTM | Voice synthesis | Edge intelligence |
Cloud computing | Smart retail | Big data analytics | Question answering | Facial recognition |
Speech recognition | Smart education | Smart home | Recurrent neural network | Knowledge graph |
Feature extraction | Smart driving | Intelligent chip | Reinforcement learning | Intelligent agent |
Big data processing | Smart accounting | SVM | Distributed computing | Voice interaction |
Knowledge representation | Smart taxation | NLP | Big data operations | Intelligent assessment |
Robotics | Smart logistics | Intelligent sensor | Smart perception | Virtual reality |
Smart manufacturing | Smart mailbox | Smart dialogue | Environmental intelligent network | Augmented reality |
Smart flow control | Smart medical | Augmented intelligence | Cloud service | Big data analytics |
Smart evaluation | Smart finance | Intelligent diagnosis | Intelligent analysis | Intelligent transportation |
Appendix B. Validity Tests of the AI-Technology Measure
- (1)
- Validity Tests of the AI-Technology Measure
Variable | Sample | N | Mean | Std. Dev. | Min | Median | Max |
---|---|---|---|---|---|---|---|
Words | All firms | 28,866 | 2.979 | 12.349 | 0 | 0 | 321 |
Words | CCID Top 100 | 75 | 69.387 | 80.467 | 0 | 34 | 246 |
Words | Non-CCID firms | 28,791 | 2.806 | 11.171 | 0 | 0 | 246 |
Words | AI Concept Firms | 1075 | 21.967 | 38.863 | 0 | 4 | 246 |
Words | Non-Concept Firms | 27,791 | 2.245 | 9.249 | 0 | 0 | 246 |
Sample | N | Mean | MeanDiff |
---|---|---|---|
CCID Top 100 | 75 | 69.387 | 66.581 * |
Non-CCID Firms | 28,791 | 2.806 | — |
AI Concept Firms | 1075 | 21.967 | 19.723 * |
Non-Concept Firms | 27,791 | 2.245 | — |
Variable | Sample | N | Mean | Std. Dev. | Min | Median | Max |
---|---|---|---|---|---|---|---|
Words_MD&A | All firms | 28,866 | 1.442 | 5.959 | 0 | 0 | 162 |
Words_MD&A | CCID Top 100 | 75 | 35.147 | 34.636 | 0 | 26 | 162 |
Words_MD&A | Non-CCID firms | 28,791 | 1.374 | 5.546 | 0 | 0 | 162 |
Words_MD&A | AI Concept Firms | 1075 | 10.269 | 16.662 | 0 | 4 | 162 |
Words_MD&A | Non-Concept Firms | 27,791 | 1.169 | 4.958 | 0 | 0 | 162 |
Sample | N | Mean | MeanDiff |
---|---|---|---|
CCID Top 100 | 75 | 35.147 | 25.972 * |
Non-CCID Firms | 28,791 | 1.374 | — |
AI Concept Firms | 1075 | 10.269 | 9.169 * |
Non-Concept Firms | 27,791 | 1.169 | — |
- (2)
- Correlation Test of Alternative AI Measures
Variable | Lnwords | Lnwords_MD&A | Lnpatents | LnAIad |
---|---|---|---|---|
Lnwords | 1 | |||
Lnwords_MD&A | 0.909 *** | 1 | ||
Lnpatents | 0.272 *** | 0.282 *** | 1 | |
LnAIad | 0.286 *** | 0.330 *** | 0.359 *** | 1 |
- (3)
- Expert Validation through Industry Comparison
No. | Stock Code | Year | Expert Rating | AI-Related Word Count | Average |
---|---|---|---|---|---|
1 | 300047 | 2016 | High | 102 | 41.7 |
2 | 600448 | 2017 | High | 78 | |
3 | 2177 | 2017 | High | 43 | |
4 | 300383 | 2014 | High | 40 | |
5 | 810 | 2015 | High | 25 | |
6 | 2542 | 2016 | High | 83 | |
7 | 2177 | 2017 | High | 47 | |
8 | 66 | 2016 | High | 13 | |
9 | 300688 | 2018 | High | 5 | |
10 | 810 | 2014 | High | 17 | |
11 | 300161 | 2018 | Low | 2 | 1.4 |
12 | 300079 | 2013 | Low | 3 | |
13 | 600455 | 2018 | Low | 4 | |
14 | 2264 | 2018 | Low | 1 | |
15 | 600794 | 2016 | Low | 4 | |
16 | 883 | 2012 | Low | 1 | |
17 | 600108 | 2017 | Low | 0 | |
18 | 300285 | 2016 | Low | 0 | |
19 | 899 | 2015 | Low | 0 | |
20 | 601999 | 2018 | Low | 3 |
References
- Bai, C.A.; Sarkis, J.; Xue, W. Improving operational efficiency and effectiveness through blockchain technology. Prod. Plan. Control 2024, 35, 857–865. [Google Scholar] [CrossRef]
- Baccour, E.; Mhaisen, N.; Abdellatif, A.A.; Erbad, A.; Mohamed, A.; Hamdi, M.; Guizani, M. Pervasive AI for IoT Applications: A Survey on Resource-Efficient Distributed Artificial Intelligence. IEEE Commun. Surv. Tutor. 2022, 24, 2366–2418. [Google Scholar] [CrossRef]
- Abbasi, M.; Nishat, R.I.; Bond, C.; Graham-Knight, J.B.; Lasserre, P.; Lucet, Y.; Najjaran, H. A review of AI and machine learning contribution in business process management (process enhancement and process improvement approaches). Bus. Process Manag. J. 2024. ahead-of-print. [Google Scholar] [CrossRef]
- Khan, S.U.; Khan, N.; Ullah, F.U.M.; Kim, M.J.; Lee, M.Y.; Baik, S.W. Towards intelligent building energy management: AI-based framework for power consumption and generation forecasting. Energy Build. 2023, 279, 112705. [Google Scholar] [CrossRef]
- Goldman Sachs. AI to Drive 165% Increase in Data Center Power Demand by 2030: Goldman Sachs. 2025. Available online: https://www.publicpower.org/periodical/article/ai-drive-165-increase-data-center-power-demand-2030-goldman-sachs (accessed on 26 May 2025).
- Xing, L.; Wei, T.; Zhuo, Y.; Li, G. Assessment of the optimal rebound effects from energy intensity reduction. J. Clean. Prod. 2020, 251, 119668. [Google Scholar] [CrossRef]
- Manigandan, P.; Alam, S.; Alagirisamy, K.; Pachiyappan, D.; Murshed, M.; Mahmood, H. Realizing the Sustainable Development Goals through technological innovation: Juxtaposing the economic and environmental effects of financial development and energy use. Environ. Sci. Pollut. Res. 2023, 30, 8239–8256. [Google Scholar] [CrossRef]
- Barney, J. Firm resources and sustained competitive advantage. J. Manag. 1991, 17, 99–120. [Google Scholar] [CrossRef]
- Teece, D.J. Explicating dynamic capabilities: The nature and microfoundations of (sustainable) enterprise performance. Strateg. Manag. J. 2007, 28, 1319–1350. [Google Scholar] [CrossRef]
- Bunian, S.; Al-Ebrahim, M.A.A.; Nour, A.A. Role and Applications of Artificial Intelligence and Machine Learning in Manufacturing Engineering: A Review. Eng. Sci. 2024, 29, 1088. [Google Scholar] [CrossRef]
- Schipper, L.; Grubb, M. On the rebound? Feedback between energy intensities and energy uses in IEA countries. Energy Policy 2000, 28, 367–388. [Google Scholar] [CrossRef]
- Kaniappan Chinnathai, M.; Alkan, B. A digital life-cycle management framework for sustainable smart manufacturing in energy intensive industries. J. Clean. Prod. 2023, 419, 138259. [Google Scholar] [CrossRef]
- Teece, D.J.; Pisano, G.; Shuen, A. Dynamic Capabilities and Strategic Management. Strateg. Manag. J. 1997, 18, 509–533. [Google Scholar] [CrossRef]
- Whig, P.; Gupta, S.K.; Nadikattu, R.R.; Sharma, P. Application of AI in Environmental Sustainability. In Artificial Intelligence-Driven Models for Environmental Management; John Wiley & Sons: Hoboken, NJ, USA, 2025; pp. 1–41. [Google Scholar]
- IEA. Energy and AI. 2025. Available online: https://iea.blob.core.windows.net/assets/601eaec9-ba91-4623-819b-4ded331ec9e8/EnergyandAI.pdf (accessed on 25 March 2025).
- Wynn, M.; Jones, P. Digital Technology Deployment and the Circular Economy. Sustainability 2022, 14, 9077. [Google Scholar] [CrossRef]
- Feng, F.F.; Li, J.; Zhang, F.; Sun, J. The impact of artificial intelligence on green innovation efficiency: Moderating role of dynamic capability. Int. Rev. Econ. Financ. 2024, 96, 103649. [Google Scholar] [CrossRef]
- Mikalef, P.; Islam, N.; Parida, V.; Singh, H.; Altwaijry, N. Artificial intelligence (AI) competencies for organizational performance: A B2B marketing capabilities perspective. J. Bus. Res. 2023, 164, 113998. [Google Scholar] [CrossRef]
- Pata, U.K.; Erdogan, S.; Ozkan, O. Is reducing fossil fuel intensity important for environmental management and ensuring ecological efficiency in China? J. Environ. Manag. 2023, 329, 117080. [Google Scholar] [CrossRef]
- Somuncu, T.; Hannum, C. The Rebound Effect of Energy Efficiency Policy in the Presence of Energy Theft. Energies 2018, 11, 3379. [Google Scholar] [CrossRef]
- Koidis, C.; Kalaitzidis, A.; Tsampoulatidis, I.; Makavou, K.; Bantsos, A.; Aptalidis, I.; Achillas, C.; Aidonis, D. Advancing Circularity Through Digital Transformation: Harnessing Life Cycle Assessment. In Supply Chains, PT II, ICSC 2024; Spring: Cham, Switzerland, 2025; pp. 14–25. [Google Scholar]
- Terry, S.; Lu, H.; Fidan, I.; Zhang, Y.; Tantawi, K.; Guo, T.; Asiabanpour, B. The Influence of Smart Manufacturing towards Energy Conservation: A Review. Technologies 2020, 8, 31. [Google Scholar] [CrossRef]
- Zeng, M.; Zhang, W. Green finance: The catalyst for artificial intelligence and energy efficiency in Chinese urban sustainable development. Energy Econ. 2024, 139, 107883. [Google Scholar] [CrossRef]
- Mahadik, S.; Gedam, M.; Shah, D.V. Environment sustainability with smart grid sensor. Front. Artif. Intell. 2025, 7, 1510410. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.; Chen, Q.; Zhu, A.; Yang, Z.; Yang, Z. The Impact of Digital Finance on Carbon Emission Performance -An Empirical Analysis of 261 Cities in China. Pol. J. Environ. Stud. 2025, 34, 4071–4082. [Google Scholar] [CrossRef]
- Xi, K.; Shao, X.F. Impact of AI applications on corporate green innovation. Int. Rev. Econ. Financ. 2025, 99, 104007. [Google Scholar] [CrossRef]
- Yang, C.Y.; Zhu, C.H.; Albitar, K. ESG ratings and green innovation: A U-shaped journey towards sustainable development. Bus. Strategy Environ. 2024, 33, 4108–4129. [Google Scholar] [CrossRef]
- Montresor, S.; Vezzani, A. Digital technologies and eco-innovation. Evidence of the twin transition from Italian firms. Ind. Innov. 2023, 30, 766–800. [Google Scholar] [CrossRef]
- Xu, J.W.; Yu, Y.; Zhang, M.; Zhang, J.Z. Impacts of digital transformation on eco-innovation and sustainable performance: Evidence from Chinese manufacturing companies. J. Clean. Prod. 2023, 393, 136278. [Google Scholar] [CrossRef]
- Porter, M.E.; van der Linde, C. Toward a New Conception of the Environment-Competitiveness Relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Taheri Hosseinkhani, N. Artificial Intelligence and Large Language Models in Energy Systems and Climate Strategies: Economic Pathways to Cost-Effective Emissions Reduction and Sustainable Growth. 2025. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5385513 (accessed on 25 May 2025).
- Li, H.; Liu, Z.; Hachard, V. Digital transformation driving green innovation: Evidence from Chinese A-Share firms. Int. Rev. Econ. Financ. 2024, 95, 103487. [Google Scholar] [CrossRef]
- Wei, X.; Jiang, F.; Chen, Y.; Hua, W. Towards green development: The role of intelligent manufacturing in promoting corporate environmental performance. Energy Econ. 2024, 131, 107375. [Google Scholar] [CrossRef]
- Hojnik, J.; Ruzzier, M. What drives eco-innovation? A review of an emerging literature. Environ. Innov. Soc. Transit. 2016, 19, 31–41. [Google Scholar] [CrossRef]
- Devaraj, S.M. Cloud, AI, and Digital Transformation: A Winning Combination. Int. J. Comput. Eng. Technol. 2024, 15, 1020–1032. [Google Scholar]
- Sharma, P.; Angappa, G.; Subramanian, G. Enhancing Supply Chain: Exploring and Exploiting AI Capabilities. J. Comput. Inf. Syst. 2024, 1–15. [Google Scholar] [CrossRef]
- Hambrick, D.C.; Mason, P.A. Upper Echelons: The Organization as a Reflection of Its Top Managers. Acad. Manag. Rev. 1984, 9, 193–206. [Google Scholar] [CrossRef]
- Yu, D.; Zhu, Y. Executives with digital backgrounds and corporate ESG performance: Evidence from China. Res. Int. Bus. Financ. 2025, 75, 102765. [Google Scholar] [CrossRef]
- Zhao, S.; Guan, Y.; Zhou, H.; Hu, F. Making digital technology innovation happen: The role of the CEO’s information technology backgrounds. Econ. Model. 2024, 140, 106866. [Google Scholar] [CrossRef]
- Tornatzky, L.G.; Fleischer, M. The Processes of Technological Innovation Lexington; Lexington Books: Lanham, MD, USA, 1990. [Google Scholar]
- Wang, C.; Liu, T.; Zhu, Y.; Lin, M.; Chang, W.; Wang, X.; Li, D.; Wang, H.; Yoo, J. Digital Economy, Environmental Regulation and Corporate Green Technology Innovation: Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 14084. [Google Scholar] [CrossRef]
- Muawanah, U.; Marini, A.; Sarifah, I. The interconnection between digital literacy, artificial intelligence, and the use of E-learning applications in enhancing the sustainability of Regional Languages: Evidence from Indonesia. Soc. Sci. Humanit. Open 2024, 10, 101169. [Google Scholar] [CrossRef]
- Chen, W.; Srinivasan, S. Going digital: Implications for firm value and performance. Rev. Account. Stud. 2024, 29, 1619–1665. [Google Scholar] [CrossRef]
- Wu, F.; Hu, H.; Lin, H.; Ren, X. Enterprise digital transformation and capital market performance: Empirical evidence from stock liquidity. Manag. World 2021, 37, 130–144. [Google Scholar]
- Baron, R.M.; Kenny, D.A. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Personal. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Control Function Methods in Applied Econometrics. J. Hum. Resour. 2015, 50, 420–445. [Google Scholar] [CrossRef]
- Olawade, D.B.; Fapohunda, O.; Wada, O.Z.; Usman, S.O.; Ige, A.O.; Ajisafe, O.; Oladapo, B.I. Smart waste management: A paradigm shift enabled by artificial intelligence. Waste Manag. Bull. 2024, 2, 244–263. [Google Scholar] [CrossRef]
- Hamade, Y.; Ojo, B.; Ogunrinde, V. Advancing Sustainability and Energy Efficiency in AI-Powered Enterprise Systems. 2025. Available online: https://www.researchgate.net/profile/Victor-Ogunrinde/publication/388856195_Advancing_Sustainability_and_Energy_Efficiency_in_AI-Powered_Enterprise_Systems/links/67aa7345207c0c20fa837f9b/Advancing-Sustainability-and-Energy-Efficiency-in-AI-Powered-Enterprise-Systems.pdf (accessed on 14 April 2024).
- Biggi, G.; Iori, M.; Mazzei, J.; Mina, A. Green intelligence: The AI content of green technologies. Eurasian Bus. Rev. 2025, 1–38. [Google Scholar] [CrossRef]
- Yao, N.; Bai, J.; Yu, Z.; Guo, Q. Does AI orientation facilitate operational efficiency? A contingent strategic orientation perspective. J. Bus. Res. 2025, 186, 114994. [Google Scholar] [CrossRef]
- Han, Y.F.; Zhao, F.; Zhao, B.Y. Navigating a sustainable transition: Green digital finance in manufacturing. Econ. Change Restruct. 2024, 57, 15. [Google Scholar] [CrossRef]
- Pricopoaia, O.; Cristache, N.; Lupașc, A.; Iancu, D. The implications of digital transformation and environmental innovation for sustainability. J. Innov. Knowl. 2025, 10, 100713. [Google Scholar] [CrossRef]
Energy Source | Conversion Factor (to Tce) |
---|---|
Water | 0.0002429 |
Electricity | 1.229 |
Raw coal | 0.7143 |
Natural gas | 13.3 |
Gasoline | 1.4714 |
Diesel | 1.4571 |
District heating | 0.03412 |
Type | Variable Name | Definition | Measurement and Source |
---|---|---|---|
Independent Variable | AI | Firm-level AI adoption intensity | Frequency of AI-related keywords (e.g., “artificial intelligence”, “intelligent algorithms”) in MD&A sections. Constructed using Word2Vec-based text mining. Source: Wind full-text annual reports. Log-transformed. |
Dependent Variable | EnCons | Log of annual energy consumption | Aggregated energy consumption (electricity, coal, gas, oil) from annual reports or CSR disclosures. Converted to kgce using official coefficients. Log-transformed. |
Mediator | GInno | Green innovation capability | Natural log of the total number of green inventions and utility model patents per firm-year. Based on the IPC green technology classification. Source: CSMAR database. |
Moderators | DCG | Digital transformation intensity | Log-transformed frequency of 76 digital-related keywords (e.g., “digitalization”, “cloud computing”, “big data”) in annual reports. Derived from [44]. Source: Wind. |
IT_Back | Executives’ IT-related background | The proportion of board/top executives with IT education or experience (e.g., ERP, e-commerce). Collected from CSMAR and firm annual reports. | |
Control Variables | Size | Firm size | Natural logarithm of total assets. Source: CSMAR balance sheet. |
ROA | Profitability | Net income divided by total assets. Source: CSMAR income statement. | |
Leverage | Financial leverage | Total liabilities/total assets. Source: CSMAR. | |
Growth | Firm growth rate | Year-on-year % growth in revenue. Source: CSMAR. | |
Cashflow | Operating cash flow intensity | Operating cash flow/total assets. Source: CSMAR. | |
FirmAge | Firm age | Current year minus founding year. Source: CSMAR. | |
Fixed Effect | Industry_FE | Industry fixed effects | Based on CSRC primary industry classification codes. |
Year_FE | Year fixed effects | Dummy variables for each sample year. |
Variable | N | Mean | SD | Min | p50 | Max |
---|---|---|---|---|---|---|
EnCons | 32,967 | 1512 | 300.6 | 874.1 | 1545 | 2097 |
AI | 36,353 | 0.837 | 1.179 | 0 | 0 | 4.860 |
Size | 36,415 | 22.17 | 1.297 | 19.68 | 21.98 | 26.09 |
ROA | 36,414 | 0.0425 | 0.0650 | −0.221 | 0.0411 | 0.216 |
Lev | 36,415 | 0.413 | 0.207 | 0.0521 | 0.402 | 0.894 |
Growth | 36,395 | 0.159 | 0.374 | −0.573 | 0.103 | 2.213 |
Board | 36,374 | 2.118 | 0.198 | 1.609 | 2.197 | 2.708 |
FirmAge | 36,415 | 2.916 | 0.338 | 1.386 | 2.944 | 3.526 |
ln_EnCons | AI | Size | ROA | Lev | Growth | Board | FirmAge | |
---|---|---|---|---|---|---|---|---|
ln_EnCons | 0.310 *** | 0.130 *** | −0.029 *** | −0.019 *** | −0.041 *** | −0.141 *** | 0.431 *** | |
AI | 0.281 *** | 0.027 *** | 0.033 *** | −0.066 *** | 0.042 *** | −0.110 *** | 0.073 *** | |
Size | 0.131 *** | 0.003 | −0.031 *** | 0.495 *** | 0.042 *** | 0.245 *** | 0.204 *** | |
ROA | −0.054 *** | −0.016 *** | 0.027 *** | −0.404 *** | 0.358 *** | −0.004 | −0.110 *** | |
Lev | −0.026 *** | −0.086 *** | 0.487 *** | −0.362 *** | −0.001 | 0.134 *** | 0.155 *** | |
Growth | −0.033 *** | 0.018 *** | 0.041 *** | 0.269 *** | 0.020 *** | −0.007 | −0.107 *** | |
Board | −0.143 *** | −0.114 *** | 0.264 *** | 0.019 *** | 0.140 *** | −0.008 | 0.038 *** | |
FirmAge | 0.447 *** | 0.064 *** | 0.175 *** | −0.094 *** | 0.166 *** | −0.070 *** | 0.033 *** |
Variables | (1) ln_EnCons | (2) ln_EnCons | (3) ln_EnCons | (4) ln_EnCons |
---|---|---|---|---|
AI | −0.001 *** | −0.001 *** | −0.001 ** | −0.001 *** |
(−4.08) | (−4.20) | (−2.47) | (−2.63) | |
Controls | YES | YES | YES | YES |
Constant | 7.301 *** | 7.299 *** | 7.298 *** | 7.297 *** |
(23,789.17) | (1332.42) | (1196.78) | (353.75) | |
Year | Yes | Yes | Yes | Yes |
Ind | Yes | |||
Id | Yes | |||
Observations | 32,943 | 32,932 | 32,932 | 32,710 |
R-squared | 0.001 | 0.001 | 0.001 | 0.960 |
Number of years | 12 | 12 | 12 | 12 |
r2_a | 0.000141 | 0.000289 | 0.000205 | 0.954 |
F | 16.66 | 3.931 | 1.657 | 2.037 |
Variables | (1) ln_EnCons | (2) ln_EnCons | (3) F. ln_EnCons | (4) ln_EnCons | (5) ln_EnCons |
---|---|---|---|---|---|
ai | −0.001 ** | ||||
(−2.48) | |||||
AI | −0.001 ** | −0.001 *** | −0.001 ** | ||
(−2.55) | (−2.60) | (−2.50) | |||
L.AI | −0.001 *** | ||||
(−2.58) | |||||
Controls | YES | YES | YES | YES | YES |
Constant | 7.299 *** | 7.322 *** | 7.322 *** | 7.303 *** | 7.287 *** |
(354.75) | (1282.88) | (1315.90) | (346.69) | (335.66) | |
Ind * Year | YES | ||||
Year | YES | YES | YES | YES | YES |
Id | YES | YES | YES | YES | YES |
Observations | 32,710 | 30,655 | 30,643 | 32,702 | 31,813 |
R-squared | 0.960 | 0.943 | 0.943 | 0.960 | 0.960 |
r2_a | 0.954 | 0.943 | 0.943 | 0.954 | 0.954 |
F | 1.936 | 1.968 | 2.075 | 2.226 | 1.830 |
Variables | (1) Control Function | (2) Placebo Test | (3) PSM-DID | (4) Baseline (Unweighted) | (5) Weighted: ln_EnCons |
---|---|---|---|---|---|
AI_hat | −0.032 *** | ||||
(−3.15) | |||||
AI_resid | −0.001 ** | ||||
(−2.54) | |||||
placebo_DID | 0.001 | ||||
(1.05) | |||||
DID | −0.003 ** | ||||
(−2.21) | |||||
AI | −0.001 *** | −0.001 * | |||
(−2.63) | (−1.84) | ||||
Controls | YES | YES | YES | YES | YES |
Constant | 6.658 *** | 7.305 *** | 7.305 *** | 7.297 *** | 7.321 *** |
(117.59) | (356.01) | (356.15) | (353.75) | (390.37) | |
Observations | 32,932 | 32,734 | 32,734 | 32,710 | 27,943 |
R-squared | 0.960 | 0.960 | 0.960 | 0.960 | 0.950 |
r2_a | 0.954 | 0.954 | 0.954 | 0.954 | 0.942 |
F | 1.220 | 1.770 | 2.037 | 0.931 |
Variables | (1) ln_EnCons | (2) ln_EnCons | (3) ln_EnCons |
---|---|---|---|
AI | −0.002 *** | −0.002 ** | −0.002 *** |
(−4.06) | (−2.10) | (−4.30) | |
DCG | 0.001 | ||
(1.48) | |||
AI * DCG | −0.001 *** | ||
(−2.61) | |||
IT_Back | 0.014 | ||
(1.53) | |||
C_AI_IT_Back | −0.014 *** | ||
(−2.89) | |||
Controls | YES | YES | YES |
Constant | 7.308 *** | 7.305 *** | 7.340 *** |
(347.14) | (344.85) | (307.21) | |
Observations | 31,690 | 31,649 | 29,876 |
R-squared | 0.959 | 0.959 | 0.949 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Bu, W. From Artificial Intelligence to Energy Reduction: How Green Innovation Channels Corporate Sustainability. Systems 2025, 13, 757. https://doi.org/10.3390/systems13090757
Zhou Y, Bu W. From Artificial Intelligence to Energy Reduction: How Green Innovation Channels Corporate Sustainability. Systems. 2025; 13(9):757. https://doi.org/10.3390/systems13090757
Chicago/Turabian StyleZhou, Yong, and Wei Bu. 2025. "From Artificial Intelligence to Energy Reduction: How Green Innovation Channels Corporate Sustainability" Systems 13, no. 9: 757. https://doi.org/10.3390/systems13090757
APA StyleZhou, Y., & Bu, W. (2025). From Artificial Intelligence to Energy Reduction: How Green Innovation Channels Corporate Sustainability. Systems, 13(9), 757. https://doi.org/10.3390/systems13090757