A Multilevel Fuzzy AHP Model for Green Furniture Evaluation: Enhancing Resource Efficiency and Circular Design Through Lifecycle Integration
Abstract
1. Introduction
2. Literature Review
2.1. Lifecycle Assessment
2.2. Green Furniture
2.3. Multilevel Fuzzy Comprehensive Evaluation Method
3. Material
3.1. Principles of Evaluation
3.2. Element of Green Furniture Evaluation
3.3. Content of Green Furniture Evaluation
3.4. Criteria for the Evaluation of Green Furniture
4. Methods
4.1. Green Furniture Evaluation Methodology
4.2. Multilevel Fuzzy Comprehensive Evaluation Theory and Methods
4.2.1. Establishment of Various Types of Indicator Sets in Evaluations
4.2.2. Multilevel Comprehensive Fuzzy Evaluation
4.3. Constructing a Comprehensive FAHP Evaluation Model for Green Furniture
4.3.1. Green Furniture Evaluation FAHP Hierarchy Model
4.3.2. Fuzzy Judgment Matrix and Weights of the Criterion Layer
4.3.3. Fuzzy Judgment Matrix and Weights of the Indicator Layer
5. Result and Discussion
5.1. Valuation of Each Evaluation Index
5.2. Discussion of Results
5.3. Comparative Analysis with a Market Benchmark
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- He, B.; Wang, J.; Huang, S.; Wang, Y. Low-carbon product design for product life cycle. J. Eng. Des. 2015, 26, 321–339. [Google Scholar] [CrossRef]
- Keller, J.; Scagnetti, C.; Albrecht, S. The Relevance of Recyclability for the Life Cycle Assessment of Packaging Based on Design for Life Cycle. Sustainability 2022, 14, 4076. [Google Scholar] [CrossRef]
- França, W.T.; Barros, M.V.; Salvador, R.; de Francisco, A.C.; Moreira, M.T.; Piekarski, C.M. Integrating life cycle assessment and life cycle cost: A review of environmental-economic studies. Int. J. Life Cycle Assess. 2021, 26, 244–274. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Fung, K.Y.; Bakshi, B.R.; Ng, K.M. Sustainable product design: A life-cycle approach. Chem. Eng. Sci. 2020, 217, 115508. [Google Scholar] [CrossRef]
- Xiong, X.; Ma, Q.; Yuan, Y.; Wu, Z.; Zhang, M. Current situation and key manufacturing considerations of green furniture in China: A review. J. Clean. Prod. 2020, 267, 121957. [Google Scholar] [CrossRef]
- Zhu, W.; He, Y. Green product design in supply chains under competition. Eur. J. Oper. Res. 2017, 258, 165–180. [Google Scholar] [CrossRef]
- Zhu, J.; Niu, J. Green material characteristics applied to office desk furniture. BioResources 2022, 17, 2228–2242. [Google Scholar] [CrossRef]
- de Medeiros, J.F.; Ribeiro, J.L.D. Environmentally sustainable innovation: Expected attributes in the purchase of green products. J. Clean. Prod. 2017, 142, 240–248. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, Q.Q.; Xu, Q. Alliance Decision of Supply Chain Considering Product Greenness and Recycling Competition. Sustainability 2019, 11, 6900. [Google Scholar] [CrossRef]
- Gebrehiwet, T.; Luo, H. Risk Level Evaluation on Construction Project Lifecycle Using Fuzzy Comprehensive Evaluation and TOPSIS. Symmetry 2018, 11, 12. [Google Scholar] [CrossRef]
- Adem, A.; Çolak, A.; Dağdeviren, M. An integrated model using SWOT analysis and Hesitant fuzzy linguistic term set for evaluation occupational safety risks in life cycle of wind turbine. Saf. Sci. 2018, 106, 184–190. [Google Scholar] [CrossRef]
- Xie, X.; Zhu, J.; Ding, S.; Chen, J. AHP and GCA Combined Approach to Green Design Evaluation of Kindergarten Furniture. Sustainability 2023, 16, 1. [Google Scholar] [CrossRef]
- Schrijvers, D.; Loubet, P.; Sonnemann, G. Archetypes of Goal and Scope Definitions for Consistent Allocation in LCA. Sustainability 2020, 12, 5587. [Google Scholar] [CrossRef]
- Zanghelini, G.M.; de Souza Junior, H.R.A.; Kulay, L.; Cherubini, E.; Ribeiro, P.T.; Soares, S.R. A bibliometric overview of Brazilian LCA research. Int. J. Life Cycle Assess. 2016, 21, 1759–1775. [Google Scholar] [CrossRef]
- Ridoutt, B.G.; Pfister, S.; Manzardo, A.; Bare, J.; Boulay, A.-M.; Cherubini, F.; Fantke, P.; Frischknecht, R.; Hauschild, M.; Henderson, A.; et al. Area of concern: A new paradigm in life cycle assessment for the development of footprint metrics. Int. J. Life Cycle Assess. 2015, 21, 276–280. [Google Scholar] [CrossRef]
- Jeswani, H.K.; Azapagic, A.; Schepelmann, P.; Ritthoff, M. Options for broadening and deepening the LCA approaches. J. Clean. Prod. 2010, 18, 120–127. [Google Scholar] [CrossRef]
- Pieragostini, C.; Mussati, M.C.; Aguirre, P. On process optimization considering LCA methodology. J. Environ. Manag. 2012, 96, 43–54. [Google Scholar] [CrossRef]
- Lee, K.; Tae, S.; Shin, S. Development of a Life Cycle Assessment Program for building (SUSB-LCA) in South Korea. Renew. Sustain. Energy Rev. 2009, 13, 1994–2002. [Google Scholar] [CrossRef]
- Shih, Y.-H.; Tseng, C.-H. Cost-benefit analysis of sustainable energy development using life-cycle co-benefits assessment and the system dynamics approach. Appl. Energy 2014, 119, 57–66. [Google Scholar] [CrossRef]
- Blengini, G.A.; Di Carlo, T. The changing role of life cycle phases, subsystems and materials in the LCA of low energy buildings. Energy Build. 2010, 42, 869–880. [Google Scholar] [CrossRef]
- Di Maria, F.; Sordi, A.; Micale, C. Experimental and life cycle assessment analysis of gas emission from mechanically-biologically pretreated waste in a landfill with energy recovery. Waste Manag. 2013, 33, 2557–2567. [Google Scholar] [CrossRef]
- Oblak, L.; Jošt, M. Methodology for Studying the Ecological Quality of Furniture. Drv. Ind. 2011, 62, 171–176. [Google Scholar] [CrossRef]
- Shahsavar, T.; Kubeš, V.; Baran, D. Willingness to pay for eco-friendly furniture based on demographic factors. J. Clean. Prod. 2020, 250, 119466. [Google Scholar] [CrossRef]
- Ratnasingam, J.; Wagner, K. Green manufacturing practices among wooden furniture manufacturers in Malaysia. Eur. J. Wood Wood Prod. 2009, 67, 485–486. [Google Scholar] [CrossRef]
- Wei, P.; Madina, Z.; Jan, N. Application of Environmentally Friendly Materials in the Design of Children’s Furniture Based on Fuzzy Technology. Math. Probl. Eng. 2022, 2022, 5165699. [Google Scholar] [CrossRef]
- Ge, S.; Ouyang, H.; Ye, H.; Shi, Y.; Sheng, Y.; Peng, W. High-performance and environmentally friendly acrylonitrile butadiene styrene/wood composite for versatile applications in furniture and construction. Adv. Compos. Hybrid Mater. 2023, 6, 44. [Google Scholar] [CrossRef]
- Yeğin, T.; Ikram, M. Performance Evaluation of Green Furniture Brands in the Marketing 4.0 Period: An Integrated MCDM Approach. Sustainability 2022, 14, 10644. [Google Scholar] [CrossRef]
- Abu, F.; Gholami, H.; Mat Saman, M.Z.; Zakuan, N.; Streimikiene, D. The implementation of lean manufacturing in the furniture industry: A review and analysis on the motives, barriers, challenges, and the applications. J. Clean. Prod. 2019, 234, 660–680. [Google Scholar] [CrossRef]
- Zuo, R.; Cheng, Q.; Agterberg, F.P. Application of a hybrid method combining multilevel fuzzy comprehensive evaluation with asymmetric fuzzy relation analysis to mapping prospectivity. Ore Geol. Rev. 2009, 35, 101–108. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, Y.; Qiao, H.; Wu, Y.; Liu, M.; Li, L. Research on the Optimization Technology of Mechanical Product Design Plan Based on Fuzzy Comprehensive Evaluation Analysis Method. Sci. Program. 2022, 2022, 1458003. [Google Scholar] [CrossRef]
- He, P.; Guo, Y.; Wang, X.; Zhang, S.; Zhong, Z. A Multi-Level Fuzzy Evaluation Method for the Reliability of Integrated Energy Systems. Appl. Sci. 2022, 13, 274. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, D.; Wang, Z.; Qian, C. An optimal configuration method of multi-level manufacturing resources based on community evolution for social manufacturing. Robot. Comput.-Integr. Manuf. 2020, 65, 101964. [Google Scholar] [CrossRef]
- Si, C.; Xiaomei, Z.; Yuan, X.; Elhoseny, M. Optimization of regional forestry industrial structure and economic benefit based on deviation share and multi-level fuzzy comprehensive evaluation. J. Intell. Fuzzy Syst. 2019, 37, 145–157. [Google Scholar] [CrossRef]
- Wang, S.; Xiao, W. Application of Product Life Cycle Management Method in Furniture Modular Design. Math. Probl. Eng. 2022, 2022, 7192152. [Google Scholar] [CrossRef]
- Babarenda Gamage, G.; Boyle, C.; McLaren, S.J.; McLaren, J. Life cycle assessment of commercial furniture: A case study of Formway LIFE chair. Int. J. Life Cycle Assess. 2008, 13, 401–411. [Google Scholar] [CrossRef]
- Susanty, A.; Tjahjono, B.; Sulistyani, R.E. An investigation into circular economy practices in the traditional wooden furniture industry. Prod. Plan. Control 2020, 31, 1336–1348. [Google Scholar] [CrossRef]
- Fontana, R.; Buratto, M.; Marzola, M.; Trioschi, G.; Bandera, B.; Buffone, C.; Vogli, L.; Marconi, P. An Evaluation of Hospital Cleaning Regimes—Microbiological Evaluation and LCA Analysis after Traditional and Sustainable/Green Procedures. Sustainability 2022, 14, 11465. [Google Scholar] [CrossRef]
- Li, C.; Liu, F.; Tan, X.; Du, Y. A methodology for selecting a green technology portfolio based on synergy. Int. J. Prod. Res. 2010, 48, 7289–7302. [Google Scholar] [CrossRef]
- Chen, T.-L.; Chen, C.-C.; Chuang, Y.-C.; Liou, J.J.H. A Hybrid MADM Model for Product Design Evaluation and Improvement. Sustainability 2020, 12, 6743. [Google Scholar] [CrossRef]
- Lacasa, E.; Santolaya, J.L.; Biedermann, A. Obtaining sustainable production from the product design analysis. J. Clean. Prod. 2016, 139, 706–716. [Google Scholar] [CrossRef]
- Berlin, J.; Sonesson, U.; Tillman, A.-M. A life cycle based method to minimise environmental impact of dairy production through product sequencing. J. Clean. Prod. 2007, 15, 347–356. [Google Scholar] [CrossRef]
- Driessen, P.H.; Hillebrand, B.; Kok, R.A.W.; Verhallen, T.M.M. Green New Product Development: The Pivotal Role of Product Greenness. IEEE Trans. Eng. Manag. 2013, 60, 315–326. [Google Scholar] [CrossRef]
- Augé, J.; Scherrmann, M.-C. Determination of the global material economy (GME) of synthesis sequences—A green chemistry metric to evaluate the greenness of products. New J. Chem. 2012, 36, 1091–1098. [Google Scholar] [CrossRef]
- Du, Y.-W.; Wang, S.-S.; Wang, Y.-M. Group fuzzy comprehensive evaluation method under ignorance. Expert. Syst. Appl. 2019, 126, 92–111. [Google Scholar] [CrossRef]
- Vidal, R.; Sánchez-Pantoja, N. Method based on life cycle assessment and TOPSIS to integrate environmental award criteria into green public procurement. Sustain. Cities Soc. 2019, 44, 465–474. [Google Scholar] [CrossRef]
- Goepel, K.D. Comparison of Judgment Scales of the Analytical Hierarchy Process—A New Approach. Int. J. Inf. Technol. Decis. Mak. 2019, 18, 445–463. [Google Scholar] [CrossRef]
- dos Santos, B.M.; Godoy, L.P.; Campos, L.M.S. Performance evaluation of green suppliers using entropy-TOPSIS-F. J. Clean. Prod. 2019, 207, 498–509. [Google Scholar] [CrossRef]
- Lu, J.; Ma, J.; Zhang, G.; Zhu, Y.; Zeng, X.; Koehl, L. Theme-Based Comprehensive Evaluation in New Product Development Using Fuzzy Hierarchical Criteria Group Decision-Making Method. IEEE Trans. Ind. Electron. 2011, 58, 2236–2246. [Google Scholar] [CrossRef]
- Lu, P.; Hsiao, S.W.; Wu, F. A Product Shape Design and Evaluation Model Based on Morphology Preference and Macroscopic Shape Information. Entropy 2021, 23, 639. [Google Scholar] [CrossRef]
- Zhou, L.; Li, H.; Sun, K. Teaching performance evaluation by means of a hierarchical multifactorial evaluation model based on type-2 fuzzy sets. Appl. Intell. 2016, 46, 34–44. [Google Scholar] [CrossRef]
- Liu, H.-T. An integrated fuzzy decision approach for product design and evaluation. J. Intell. Fuzzy Syst. 2013, 25, 709–721. [Google Scholar] [CrossRef]
- Ye, J. Fuzzy decision-making method based on the weighted correlation coefficient under intuitionistic fuzzy environment. Eur. J. Oper. Res. 2010, 205, 202–204. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, R.; Zhang, X. A Multi-Level Fuzzy Comprehensive Evaluation Method for Knowledge Transfer Efficiency in Innovation Cluster. Mob. Inf. Syst. 2022, 2022, 3949597. [Google Scholar] [CrossRef]
- Li, Y. Research on efficiency evaluation model of integrated energy system based on hybrid multi-attribute decision-making. Environ. Sci. Pollut. Res. Int. 2019, 26, 17866–17874. [Google Scholar] [CrossRef]
- Yin, S.; Zhang, N.; Li, B. Improving the Effectiveness of Multi-Agent Cooperation for Green Manufacturing in China: A Theoretical Framework to Measure the Performance of Green Technology Innovation. Int. J. Environ. Res. Public. Health 2020, 17, 3211. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, F.; Hui, X.; Li, K. Group decision-making method based on entropy and experts cluster analysis. J. Syst. Eng. Electron. 2011, 22, 468–472. [Google Scholar] [CrossRef]
- Redante, R.C.; de Medeiros, J.F.; Vidor, G.; Cruz, C.M.L.; Ribeiro, J.L.D. Creative approaches and green product development: Using design thinking to promote stakeholders’ engagement. Sustain. Prod. Consum. 2019, 19, 247–256. [Google Scholar] [CrossRef]
A | B1 | B2 | B3 | B4 | B5 |
---|---|---|---|---|---|
B1 | 0.5 | 0.5 | 0.7 | 0.9 | 0.5 |
B2 | 0.5 | 0.5 | 0.7 | 0.9 | 0.7 |
B3 | 0.3 | 0.3 | 0.5 | 0.7 | 0.1 |
B4 | 0.1 | 0.1 | 0.3 | 0.5 | 0.3 |
B5 | 0.5 | 0.3 | 0.9 | 0.7 | 0.5 |
B1 | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
C1 | 0.5 | 0.9 | 0.7 | 0.6 | 0.5 |
C2 | 0.1 | 0.5 | 0.3 | 0.2 | 0.9 |
C3 | 0.3 | 0.7 | 0.5 | 0.4 | 0.7 |
C4 | 0.4 | 0.8 | 0.6 | 0.5 | 0.8 |
C5 | 0.5 | 0.1 | 0.3 | 0.2 | 0.5 |
B2 | C6 | C7 | C8 | C9 | C10 |
---|---|---|---|---|---|
C6 | 0.5 | 0.9 | 0.7 | 0.6 | 0.5 |
C7 | 0.1 | 0.5 | 0.3 | 0.2 | 0.9 |
C8 | 0.3 | 0.7 | 0.5 | 0.4 | 0.7 |
C9 | 0.4 | 0.8 | 0.6 | 0.5 | 0.8 |
C10 | 0.5 | 0.1 | 0.3 | 0.2 | 0.5 |
B3 | C11 | C12 | C13 | C14 |
---|---|---|---|---|
C11 | 0.5 | 0.8 | 0.6 | 0.7 |
C12 | 0.2 | 0.5 | 0.3 | 0.4 |
C13 | 0.4 | 0.7 | 0.5 | 0.6 |
C14 | 0.3 | 0.6 | 0.4 | 0.5 |
B4 | C15 | C16 | C17 | C18 |
---|---|---|---|---|
C15 | 0.5 | 0.9 | 0.7 | 0.6 |
C16 | 0.1 | 0.5 | 0.3 | 0.2 |
C17 | 0.3 | 0.7 | 0.5 | 0.4 |
C18 | 0.4 | 0.8 | 0.6 | 0.5 |
B5 | C19 | C20 |
---|---|---|
C19 | 0.5 | 0.7 |
C20 | 0.3 | 0.5 |
Level of Importance | Corresponding Indicator |
---|---|
The first level of importance | C1, C6, C11, C15, C19, C20 |
The second level of importance | C4, C17, C18, C13 |
The third level of importance | C3, C8, C10, C14 |
The fourth level of importance | C5, C7, C12 |
The fifth level of importance | C2, C9, C16 |
Evaluation Elements | Evaluation Factors | Evaluation Level V | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No. | ui | Level of importance | No.j | Uji | Level aji | No.k | ukij | Level akij | V1 | V2 | V3 | V4 | V5 |
Fuzzy matrix | |||||||||||||
None | Few | Some | Many | Numerous | |||||||||
1 | Environmental Attribute Index | 0.20 | 1 | Atmospheric pollutants | 0.10 | 1 | Exhaust gas | 0.25 | 0.10 | 0.30 | 0.40 | 0.20 | 0.00 |
2 | Particulate matter | 0.75 | 0.10 | 0.20 | 0.40 | 0.20 | 0.10 | ||||||
2 | Water pollutants | 0.35 | 1 | Water toxicity | 0.65 | 0.20 | 0.20 | 0.40 | 0.10 | 0.10 | |||
2 | Water quality | 0.35 | 0.20 | 0.20 | 0.25 | 0.35 | 0.00 | ||||||
3 | Solid waste pollutants | 0.35 | 1 | Organic pollutants | 0.60 | 0.15 | 0.25 | 0.30 | 0.20 | 0.10 | |||
2 | Inorganic pollutants | 0.40 | 0.20 | 0.30 | 0.30 | 0.20 | 0.00 | ||||||
4 | Noise pollutants | 0.20 | 1 | Production noise | 1.00 | 0.20 | 0.20 | 0.30 | 0.20 | 0.10 | |||
2 | μ Basic Attribute Indicators | 0.40 | 1 | Quality indicators | 0.55 | 1 | Quality grade rate | 0.25 | 0.30 | 0.40 | 0.20 | 0.10 | 0.00 |
2 | Structure disassembly | 0.25 | 0.05 | 0.15 | 0.45 | 0.25 | 0.10 | ||||||
3 | Product sales rate | 0.10 | 0.20 | 0.30 | 0.35 | 0.15 | 0.00 | ||||||
4 | Safety and health | 0.15 | 0.10 | 0.30 | 0.35 | 0.15 | 0.10 | ||||||
5 | Maintenance and repairability | 0.25 | 0.15 | 0.20 | 0.30 | 0.20 | 0.15 | ||||||
2 | Functional indicators | 0.45 | 1 | Function of use | 0.50 | 0.30 | 0.35 | 0.20 | 0.15 | 0.00 | |||
2 | Form function | 0.30 | 0.25 | 0.35 | 0.25 | 0.15 | 0.00 | ||||||
3 | Taste function | 0.20 | 0.25 | 0.40 | 0.25 | 0.10 | 0.00 | ||||||
3 | Resource Attributes Indicators | 1 | Human resources | 0.15 | 1 | The proportion of professional staff | 0.60 | 0.35 | 0.40 | 0.20 | 0.05 | 0.00 | |
2 | Green knowledge penetration rate | 0.40 | 0.10 | 0.25 | 0.35 | 0.20 | 0.10 | ||||||
0.30 | 2 | Equipment resources | 0.25 | 1 | The utilization rate of equipment resources | 0.65 | 0.20 | 0.35 | 0.35 | 0.10 | 0.00 | ||
2 | The utilization rate of advanced equipment | 0.35 | 0.10 | 0.30 | 0.40 | 0.20 | 0.00 | ||||||
3 | Material resources | 0.60 | 1 | Material utilization rate | 0.40 | 0.20 | 0.35 | 0.35 | 0.10 | 0.00 | |||
2 | Material recycling rate | 0.30 | 0.10 | 0.30 | 0.45 | 0.15 | 0.00 | ||||||
3 | Toxic material ratio | 0.20 | 0.05 | 0.15 | 0.40 | 0.30 | 0.10 | ||||||
4 | Renewable material ratio | 0.10 | 0.10 | 0.20 | 0.30 | 0.25 | 0.15 | ||||||
4 | Energy Attribute Indicators | 0.10 | 1 | Energy utilization | 0.10 | Excellent | Good | Average | Poor | Terrible | |||
1 | Energy type | 0.40 | 0.20 | 0.30 | 0.30 | 0.20 | 0.00 | ||||||
2 | Energy utilization | 0.60 | 0.30 | 0.30 | 0.20 | 0.20 | 0.00 |
Evaluation Attribute | Weight | Prototype Score | Reference Product Score |
---|---|---|---|
Environmental | 27.2% | 75.0 | 58.5 |
Resource | 27.2% | 82.0 | 55.0 |
Energy | 19.0% | 68.0 | 62.0 |
Economic | 9.6% | 60.5 | 75.0 |
Quality | 17.0% | 72.0 | 70.0 |
Overall Score | 100% | 70.38 | 62.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, W.; Jiang, M. A Multilevel Fuzzy AHP Model for Green Furniture Evaluation: Enhancing Resource Efficiency and Circular Design Through Lifecycle Integration. Systems 2025, 13, 734. https://doi.org/10.3390/systems13090734
Deng W, Jiang M. A Multilevel Fuzzy AHP Model for Green Furniture Evaluation: Enhancing Resource Efficiency and Circular Design Through Lifecycle Integration. Systems. 2025; 13(9):734. https://doi.org/10.3390/systems13090734
Chicago/Turabian StyleDeng, Wenxin, and Mu Jiang. 2025. "A Multilevel Fuzzy AHP Model for Green Furniture Evaluation: Enhancing Resource Efficiency and Circular Design Through Lifecycle Integration" Systems 13, no. 9: 734. https://doi.org/10.3390/systems13090734
APA StyleDeng, W., & Jiang, M. (2025). A Multilevel Fuzzy AHP Model for Green Furniture Evaluation: Enhancing Resource Efficiency and Circular Design Through Lifecycle Integration. Systems, 13(9), 734. https://doi.org/10.3390/systems13090734