Multi-Dimensional Pathways of Digitally-Empowered New-Quality Productive Forces in Enterprises: A Configurational Analysis Based on Resource Orchestration Theory
Abstract
1. Introduction
2. Literature Review and Theoretical Framework
2.1. From Traditional Resource-Capability View to Digital Orchestration: Theoretical Evolution and Gaps
2.1.1. Contributions and Limitations of the Traditional RCV Framework
2.1.2. Digital Challenges and Resource Orchestration Theory
2.2. Resource Orchestration Theory-Based D-RCV Framework Construction
2.2.1. The Digital Evolution of New-Quality Productive Factors: Digital Resources and Innovation Performance
2.2.2. The Digital Evolution of New-Quality Productive Capabilities: Digital Dynamic Capabilities and Innovation Performance
3. Research Design
3.1. Research Methods
3.2. Sample Selection and Data Sources
3.3. Variable Measurement
3.4. Validity and Reliability Assessment
4. Data Analysis
4.1. Variable Calibration
4.2. Necessary Condition Analysis
4.3. Analysis of Sufficient Conditions
4.4. Sensitivity Analysis
5. Result
5.1. Digital Resource-Capability Configurations for High Innovation Performance
5.2. Digital Resource-Capability Configurations Generating Non-High Innovation Performance
6. Discussion
6.1. Research Findings
6.2. Theoretical Implications
6.3. Managerial Implications
6.4. Limitations and Future Studies
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NQPF | New-quality productive forces |
NQE | New-quality elements |
NQC | New-quality capabilities |
DI | Digital infrastructure |
DT | Digital talent |
DR | Data resource |
DER | Diverse ecological relation-ships |
DPC | Digital perception capability |
DUC | Digital utilization capability |
DRC | Digital reconfiguration capability |
References
- Li, X.; Tang, H.; Chen, Z. Artificial Intelligence and the New Quality Productive Forces of Enterprises: Digital Intelligence Empowerment Paths and Spatial Spillover Effects. Systems 2025, 13, 105. [Google Scholar] [CrossRef]
- Liu, Y.; He, Z. Synergistic Industrial Agglomeration, New Quality Productive Forces and High-Quality Development of the Manufacturing Industry. Int. Rev. Econ. Financ. 2024, 94, 103373. [Google Scholar] [CrossRef]
- Zhong, Y.; Lai, H.; Zhang, L.; Guo, L.; Lai, X. Does Public Data Openness Accelerate New Quality Productive Forces? Evidence from China. Econ. Anal. Policy 2025, 85, 1409–1427. [Google Scholar] [CrossRef]
- Brynjolfsson, E.; Rock, D.; Syverson, C. The Productivity J-Curve: How Intangibles Complement General Purpose Technologies. Am. Econ. J. Macroecon. 2021, 13, 333–372. [Google Scholar] [CrossRef]
- Simón, C.; Revilla, E.; Sáenz, M.J. Integrating AI in Organizations for Value Creation through Human-AI Teaming: A Dynamic-Capabilities Approach. J. Bus. Res. 2024, 182, 114783. [Google Scholar] [CrossRef]
- Lai, X.; Quan, L.; Guo, C.; Gao, X. Exploring the Digital Era: Has Digital Technology Innovation Reshaped Investment Efficiency in Chinese Enterprises? Res. Int. Bus. Financ. 2025, 75, 102729. [Google Scholar] [CrossRef]
- Victorelli, E.Z.; Dos Reis, J.C.; Hornung, H.; Prado, A.B. Understanding Human-Data Interaction: Literature Review and Recommendations for Design. Int. J. Hum. Comput. Stud. 2020, 134, 13–32. [Google Scholar] [CrossRef]
- Shakina, E.; Parshakov, P.; Alsufiev, A. Rethinking the Corporate Digital Divide: The Complementarity of Technologies and the Demand for Digital Skills. Technol. Forecast. Soc. Change 2021, 162, 120405. [Google Scholar] [CrossRef]
- Goldfarb, A.; Tucker, C. Digital Economics. J. Econ. Lit. 2019, 57, 3–43. [Google Scholar] [CrossRef]
- Barney, J.B.; Ketchen, D.J.; Wright, M. Resource-Based Theory and the Value Creation Framework. J. Manag. 2021, 47, 1936–1955. [Google Scholar] [CrossRef]
- Kamalaldin, A.; Sjödin, D.; Hullova, D.; Parida, V. Configuring Ecosystem Strategies for Digitally Enabled Process Innovation: A Framework for Equipment Suppliers in the Process Industries. Technovation 2021, 105, 102250. [Google Scholar] [CrossRef]
- Chinn, M.D.; Fairlie, R.W. The Determinants of the Global Digital Divide: A Cross-Country Analysis of Computer and Internet Penetration. Oxf. Econ. Pap. 2007, 59, 16–44. [Google Scholar] [CrossRef]
- Nambisan, S. Digital Entrepreneurship: Toward a Digital Technology Perspective of Entrepreneurship. Entrep. Theory Pract. 2017, 41, 1029–1055. [Google Scholar] [CrossRef]
- Wu, K.; Lu, Y. The Digital Dilemma: Corporate Digital Transformation and Default Risk. J. Financ. Stab. 2025, 77, 101393. [Google Scholar] [CrossRef]
- Ding, Y.; Shi, Z.; Xi, R.; Diao, Y.; Hu, Y. Digital Transformation, Productive Services Agglomeration and Innovation Performance. Heliyon 2024, 10, e25534. [Google Scholar] [CrossRef] [PubMed]
- Solow, R. We’d Better Watch Out. N. Y. Rev. Books July 1987, 12, 36. [Google Scholar]
- Albannai, N.A.; Raziq, M.M.; Malik, M.; Scott-Kennel, J.; Igoe, J. Unraveling the Role of Digital Leadership in Developing Digital Dynamic Capabilities for the Digital Transformation of Firms. Benchmarking Int. J. 2024. [Google Scholar] [CrossRef]
- Shen, L.; Zhang, X.; Liu, H. Digital Technology Adoption, Digital Dynamic Capability, and Digital Transformation Performance of Textile Industry: Moderating Role of Digital Innovation Orientation. Manag. Decis. Econ. 2022, 43, 2038–2054. [Google Scholar] [CrossRef]
- Pang, C.; Wang, Q. How Digital Transformation Promotes Disruptive Innovation? Evidence from Chinese Entrepreneurial Firms. J. Knowl. Econ. 2023, 15, 7788–7818. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, H. The Constituent Elements and Generation Pathways of New Quality Productivity from the Perspective of Systems Philosophy. Forum Res. Innov. Manag. 2024, 112–114. [Google Scholar] [CrossRef]
- Elia, S.; Giuffrida, M.; Mariani, M.M.; Bresciani, S. Resources and Digital Export: An RBV Perspective on the Role of Digital Technologies and Capabilities in Cross-Border e-Commerce. J. Bus. Res. 2021, 132, 158–169. [Google Scholar] [CrossRef]
- Sirmon, D.G.; Hitt, M.A.; Ireland, R.D. Managing Firm Resources in Dynamic Environments to Create Value: Looking inside the Black Box. Acad. Manag. Rev. 2007, 32, 273–292. [Google Scholar] [CrossRef]
- Helfat, C.E.; Raubitschek, R.S. Dynamic and Integrative Capabilities for Profiting from Innovation in Digital Platform-Based Ecosystems. Res. Policy 2018, 47, 1391–1399. [Google Scholar] [CrossRef]
- Symeonidou, N.; Leiponen, A.; Autio, E.; Bruneel, J. The Origins of Capabilities: Resource Allocation Strategies, Capability Development, and the Performance of New Firms. J. Bus. Ventur. 2022, 37, 106208. [Google Scholar] [CrossRef]
- Ross, J.-M.; Li, T.X.; Hawk, A.; Reuer, J.J. Resource Idling and Capability Erosion. Acad. Manag. J. 2023, 66, 1334–1359. [Google Scholar] [CrossRef]
- Do, H.; Budhwar, P.; Shipton, H.; Nguyen, H.-D.; Nguyen, B. Building Organizational Resilience, Innovation through Resource-Based Management Initiatives, Organizational Learning and Environmental Dynamism. J. Bus. Res. 2022, 141, 808–821. [Google Scholar] [CrossRef]
- Zhang, J.A.; O’Kane, C.; Chen, G. Business Ties, Political Ties, and Innovation Performance in Chinese Industrial Firms: The Role of Entrepreneurial Orientation and Environmental Dynamism. J. Bus. Res. 2020, 121, 254–267. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment. Am. Econ. Rev. 2018, 108, 1488–1542. [Google Scholar] [CrossRef]
- Muneeb, D.; Ahmad, S.Z.; Bakar, A.R.A.; Tehseen, S. Empowering Resources Recombination through Dynamic Capabilities of an Enterprise. J. Enterp. Inf. Manag. 2022, 36, 1–21. [Google Scholar] [CrossRef]
- Helfat, C.E.; Peteraf, M.A. The Dynamic Resource-based View: Capability Lifecycles. Strateg. Manag. J. 2003, 24, 997–1010. [Google Scholar] [CrossRef]
- Ragin, C.C. Reflections on Casing and Case-Oriented Research. Sage Handb. Case-Based Methods 2009, 31, 522–534. [Google Scholar]
- Fan, X.; Wang, Y.; Lu, X. Digital Transformation Drives Sustainable Innovation Capability Improvement in Manufacturing Enterprises: Based on FsQCA and NCA Approaches. Sustainability 2022, 15, 542. [Google Scholar] [CrossRef]
- Karadağ, H.; Şahin, F.; Karamollaoğlu, N.; Saunila, M. Disentangling the Dynamic Digital Capability, Digital Transformation, and Organizational Performance Relationships in SMEs: A Configurational Analysis Based on fsQCA. Inf. Technol. Manag. 2024. [Google Scholar] [CrossRef]
- Dyer, J.H.; Singh, H.; Hesterly, W.S. The Relational View Revisited: A Dynamic Perspective on Value Creation and Value Capture. Strateg. Manag. J. 2018, 39, 3140–3162. [Google Scholar] [CrossRef]
- Eller, R.; Alford, P.; Kallmünzer, A.; Peters, M. Antecedents, Consequences, and Challenges of Small and Medium-Sized Enterprise Digitalization. J. Bus. Res. 2020, 112, 119–127. [Google Scholar] [CrossRef]
- He, S.; Tang, Y. Effects of Personalized Demands on the Digital Diffusion of Enterprises: A Complex Network Evolution Game Model-Based Study. J. Knowl. Econ. 2023, 15, 12854–12880. [Google Scholar] [CrossRef]
- Warner, K.S.R.; Wäger, M. Building Dynamic Capabilities for Digital Transformation: An Ongoing Process of Strategic Renewal. Long Range Plan. 2019, 52, 326–349. [Google Scholar] [CrossRef]
- Ellström, D.; Holtström, J.; Berg, E.; Josefsson, C. Dynamic Capabilities for Digital Transformation. J. Strategy Manag. 2021, 15, 272–286. [Google Scholar] [CrossRef]
- Awan, U.; Shamim, S.; Khan, Z.; Zia, N.U.; Shariq, S.M.; Khan, M.N. Big Data Analytics Capability and Decision-Making: The Role of Data-Driven Insight on Circular Economy Performance. Technol. Forecast. Soc. Change 2021, 168, 120766. [Google Scholar] [CrossRef]
- Von Briel, F.; Davidsson, P.; Recker, J. Digital Technologies as External Enablers of New Venture Creation in the IT Hardware Sector. Entrep. Theory Pract. 2018, 42, 47–69. [Google Scholar] [CrossRef]
- Veldkamp, L.; Chung, C. Data and the Aggregate Economy. J. Econ. Lit. 2024, 62, 458–484. [Google Scholar] [CrossRef]
- Guo, B.; Li, X.; Liu, T.; Wu, D. Supplier–Supplier Coopetition and Buyer Innovation: A Perspective of Learning and Competitive Tension within the Focal Buyer’s Supplier Network. Int. J. Oper. Prod. Manag. 2023, 43, 1409–1433. [Google Scholar] [CrossRef]
- Autio, E.; Nambisan, S.; Thomas, L.D.W.; Wright, M. Digital Affordances, Spatial Affordances, and the Genesis of Entrepreneurial Ecosystems. Strateg. Entrep. J. 2018, 12, 72–95. [Google Scholar] [CrossRef]
- Chatterjee, S.; Rana, N.P.; Tamilmani, K.; Sharma, A. The Effect of AI-Based CRM on Organization Performance and Competitive Advantage: An Empirical Analysis in the B2B Context. Ind. Mark. Manag. 2021, 97, 205–219. [Google Scholar] [CrossRef]
- Sirmon, D.G.; Hitt, M.A.; Ireland, R.D.; Gilbert, B.A. Resource Orchestration to Create Competitive Advantage: Breadth, Depth, and Life Cycle Effects. J. Manag. 2011, 37, 1390–1412. [Google Scholar] [CrossRef]
- Huiping, Z. How Does Value Co-Creation within Digital Platform Affect the Business Processes Digitization of Participating Enterprises? The Chained Mediating Role of Resource Patchwork and Digital Platform Capability. IEEE Trans. Eng. Manag. 2024, 71, 11066–11077. [Google Scholar] [CrossRef]
- Allen, T. Information Frictions in Trade: Information Frictions in Trade. Econometrica 2014, 82, 2041–2083. [Google Scholar] [CrossRef]
- Du, Z.-Y.; Wang, Q. Digital Infrastructure and Innovation: Digital Divide or Digital Dividend? J. Innov. Knowl. 2024, 9, 100542. [Google Scholar] [CrossRef]
- Osei, D.B. Digital Infrastructure and Innovation in Africa: Does Human Capital Mediates the Effect? Telemat. Inform. 2024, 89, 102111. [Google Scholar] [CrossRef]
- Tian, X.; Lu, H. Digital Infrastructure and Cross-Regional Collaborative Innovation in Enterprises. Financ. Res. Lett. 2023, 58, 104635. [Google Scholar] [CrossRef]
- Sivarajah, U.; Kamal, M.M.; Irani, Z.; Weerakkody, V. Critical Analysis of Big Data Challenges and Analytical Methods. J. Bus. Res. 2017, 70, 263–286. [Google Scholar] [CrossRef]
- Xiao, Y. Relationship between Data Elements, Industry Concentration, and Firms’ Breakthrough Innovation. Financ. Res. Lett. 2025, 72, 106503. [Google Scholar] [CrossRef]
- Akcigit, U.; Liu, Q. The Role of Information in Innovation and Competition. J. Eur. Econ. Assoc. 2016, 14, 828–870. [Google Scholar] [CrossRef]
- Yu, W.; Chavez, R.; Jacobs, M.A.; Feng, M. Data-Driven Supply Chain Capabilities and Performance: A Resource-Based View. Transp. Res. Part E Logist. Transp. Rev. 2018, 114, 371–385. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Z. Exploring Human Resource Management Digital Transformation in the Digital Age. J. Knowl. Econ. 2024, 15, 1482–1498. [Google Scholar] [CrossRef] [PubMed]
- Grimpe, C.; Sofka, W.; Kaiser, U. Competing for Digital Human Capital: The Retention Effect of Digital Expertise in MNC Subsidiaries. J. Int. Bus. Stud. 2023, 54, 657–685. [Google Scholar] [CrossRef]
- Wang, G.; Mansor, Z.D.; Leong, Y.C. Linking Digital Leadership and Employee Digital Performance in SMEs in China: The Chain-Mediating Role of High-Involvement Human Resource Management Practice and Employee Dynamic Capability. Heliyon 2024, 10, e36026. [Google Scholar] [CrossRef] [PubMed]
- Thite, M. Digital Human Resource Development: Where Are We? Where Should We Go and How Do We Go There? Hum. Resour. Dev. Int. 2022, 25, 87–103. [Google Scholar] [CrossRef]
- Zhang, Y.; Iqbal, S.; Tian, H.; Akhtar, S. Digitizing Success: Leveraging Digital Human Resource Practices for Transformative Productivity in Chinese SMEs. Heliyon 2024, 10, e36853. [Google Scholar] [CrossRef] [PubMed]
- Nonaka, I. The Knowledge-Creating Company. In The Economic Impact of Knowledge; Routledge: London, UK, 2009; pp. 175–187. [Google Scholar]
- Penney, C.R.; Combs, J.G. A Transaction Cost Perspective of Alliance Portfolio Diversity. J. Manag. Stud. 2020, 57, 1073–1105. [Google Scholar] [CrossRef]
- de Leeuw, T.; Lokshin, B.; Duysters, G. Returns to Alliance Portfolio Diversity: The Relative Effects of Partner Diversity on Firm’s Innovative Performance and Productivity. J. Bus. Res. 2014, 67, 1839–1849. [Google Scholar] [CrossRef]
- Jacobi, R.; Brenner, E. How Large Corporations Survive Digitalization. In Digital Marketplaces Unleashed; Linnhoff-Popien, C., Schneider, R., Zaddach, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 83–97. ISBN 978-3-662-49275-8. [Google Scholar]
- Yeow, A.; Soh, C.; Hansen, R. Aligning with New Digital Strategy: A Dynamic Capabilities Approach. J. Strateg. Inf. Syst. 2018, 27, 43–58. [Google Scholar] [CrossRef]
- Karimi, J.; Walter, Z. The Role of Dynamic Capabilities in Responding to Digital Disruption: A Factor-Based Study of the Newspaper Industry. J. Manag. Inf. Syst. 2015, 32, 39–81. [Google Scholar] [CrossRef]
- Rai, A.; Tang, X. Leveraging IT Capabilities and Competitive Process Capabilities for the Management of Interorganizational Relationship Portfolios. Inf. Syst. Res. 2010, 21, 516–542. [Google Scholar] [CrossRef]
- Teece, D.J. Explicating Dynamic Capabilities: The Nature and Microfoundations of (Sustainable) Enterprise Performance. Strateg. Manag. J. 2007, 28, 1319–1350. [Google Scholar] [CrossRef]
- Yoo, Y.; Henfridsson, O.; Lyytinen, K. Research Commentary—The New Organizing Logic of Digital Innovation: An Agenda for Information Systems Research. Inf. Syst. Res. 2010, 21, 724–735. [Google Scholar] [CrossRef]
- Schumacher, A.; Erol, S.; Sihn, W. A Maturity Model for Assessing Industry 4.0 Readiness and Maturity of Manufacturing Enterprises. Procedia Cirp 2016, 52, 161–166. [Google Scholar] [CrossRef]
- De Carolis, A.; Macchi, M.; Negri, E.; Terzi, S. A Maturity Model for Assessing the Digital Readiness of Manufacturing Companies. In Advances in Production Management Systems. The Path to Intelligent, Collaborative and Sustainable Manufacturing; Lödding, H., Riedel, R., Thoben, K.-D., Von Cieminski, G., Kiritsis, D., Eds.; IFIP Advances in Information and Communication Technology; Springer International Publishing: Cham, Switzerland, 2017; Volume 513, pp. 13–20. ISBN 978-3-319-66922-9. [Google Scholar]
- Bell, G.G. Clusters, Networks, and Firm Innovativeness. Strateg. Manag. J. 2005, 26, 287–295. [Google Scholar] [CrossRef]
- Ritter, T.; Gemunden, H.G. The Impact of a Company’s Business Strategy on Its Technological Competence, Network Competence and Innovation Success. J. Bus. Res. 2004, 57, 548–556. [Google Scholar] [CrossRef]
- Li, L.; Yi, Z.; Jiang, F.; Zhang, S.; Zhou, J. Exploring the Mechanism of Digital Transformation Empowering Green Innovation in Construction Enterprises. Dev. Built Environ. 2023, 15, 100199. [Google Scholar] [CrossRef]
- AL-Khatib, A.W. Intellectual Capital and Innovation Performance: The Moderating Role of Big Data Analytics: Evidence from the Banking Sector in Jordan. EuroMed J. Bus. 2022, 17, 391–423. [Google Scholar] [CrossRef]
- Suoniemi, S.; Meyer-Waarden, L.; Munzel, A.; Zablah, A.R.; Straub, D. Big Data and Firm Performance: The Roles of Market-Directed Capabilities and Business Strategy. Inf. Manag. 2020, 57, 103365. [Google Scholar] [CrossRef]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.; Danks, N.P.; Ray, S. An introduction to structural equation modeling. In Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R: A Workbook; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–29. [Google Scholar] [CrossRef]
- Bagozzi, R.P.; Yi, Y. On the Evaluation of Structural Equation Models. J. Acad. Mark. Sci. 1988, 16, 74–94. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Pappas, I.O.; Kourouthanassis, P.E.; Giannakos, M.N.; Chrissikopoulos, V. Explaining Online Shopping Behavior with fsQCA: The Role of Cognitive and Affective Perceptions. J. Bus. Res. 2016, 69, 794–803. [Google Scholar] [CrossRef]
- Rihoux, B. Qualitative Comparative Analysis (QCA) and Related Systematic Comparative Methods: Recent Advances and Remaining Challenges for Social Science Research. Int. Sociol. 2006, 21, 679–706. [Google Scholar] [CrossRef]
- Fiss, P.C. Building Better Causal Theories: A Fuzzy Set Approach to Typologies in Organization Research. Acad. Manag. J. 2011, 54, 393–420. [Google Scholar] [CrossRef]
- Zheng, Y.; Lin, C.; Yan, J.; Guo, Y. How to Enhance the Innovation Capacity of Technology-Based Enterprises: A Fuzzy Set Qualitative Comparative Analysis. Int. Rev. Econ. Financ. 2025, 97, 103817. [Google Scholar] [CrossRef]
- Xie, G.; Tian, Y.; Huang, L.; Li, M.; Blenkinsopp, J. What Kind of Rural Digital Configurations Contribute to High County-Level Economic Growth? A Study Conducted in China’s Digital Village Pilot Counties. Systems 2025, 13, 488. [Google Scholar] [CrossRef]
- Fredrich, V.; Bouncken, R.B.; Kraus, S. The Race Is on: Configurations of Absorptive Capacity, Interdependence and Slack Resources for Interorganizational Learning in Coopetition Alliances. J. Bus. Res. 2019, 101, 862–868. [Google Scholar] [CrossRef]
- Lee, D.Y.; Dawes, P.L. Guanxi, Trust, and Long-Term Orientation in Chinese Business Markets. J. Int. Mark. 2005, 13, 28–56. [Google Scholar] [CrossRef]
- Lee, M.-J.; Roh, T. Unpacking the Sustainable Performance in the Business Ecosystem: Coopetition Strategy, Open Innovation, and Digitalization Capability. J. Clean. Prod. 2023, 412, 137433. [Google Scholar] [CrossRef]
- Li, L. Digital Transformation and Sustainable Performance: The Moderating Role of Market Turbulence. Ind. Mark. Manag. 2022, 104, 28–37. [Google Scholar] [CrossRef]
- Zia, N.U.; Shamim, S.; Zeng, J.; Awan, U.; Chromjakova, F.; Akhtar, P.; Orel, M. Avoiding Crisis-Driven Business Failure through Digital Dynamic Capabilities. B2B Distribution Firms during the COVID-19 and Beyond. Ind. Mark. Manag. 2023, 113, 14–29. [Google Scholar] [CrossRef]
- Yu, W.; Liu, Q.; Chavez, R.; Zheng, L. Does Training Provision Matter? Unravelling the Impact of Digital Transformation on Environmental Sustainability. Inf. Technol. People 2023, 38, 1089–1109. [Google Scholar] [CrossRef]
- Al Nuaimi, F.M.S.; Singh, S.K.; Ahmad, S.Z. Open Innovation in SMEs: A Dynamic Capabilities Perspective. J. Knowl. Manag. 2024, 28, 484–504. [Google Scholar] [CrossRef]
- Yang, W.; Wang, X. The Impact of Patent Protection on Technological Innovation: A Global Value Chain Division of Labor Perspective. Technol. Forecast. Soc. Change 2024, 203, 123370. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, Y.; Shi, X.; Gao, Y. When and How Do Innovation Ecosystems Outperform Integrated Organizations? On Technological Interdependencies and Ecosystem Performance. Ind. Manag. Data Syst. 2022, 122, 2091–2120. [Google Scholar] [CrossRef]
- Hongyun, T.; Sohu, J.M.; Khan, A.U.; Junejo, I.; Shaikh, S.N.; Akhtar, S.; Bilal, M. Navigating the Digital Landscape: Examining the Interdependencies of Digital Transformation and Big Data in Driving SMEs’ Innovation Performance. Kybernetes 2025, 54, 1797–1825. [Google Scholar] [CrossRef]
- Ganzarain, J.; Errasti, N. Three Stage Maturity Model in SME’s toward Industry 4.0. J. Ind. Eng. Manag. 2016, 9, 1119–1128. [Google Scholar] [CrossRef]
- Cozzolino, A.; Corbo, L.; Aversa, P. Digital Platform-Based Ecosystems: The Evolution of Collaboration and Competition between Incumbent Producers and Entrant Platforms. J. Bus. Res. 2021, 126, 385–400. [Google Scholar] [CrossRef]
Characteristics | Frequency | Percent of Sample | |
---|---|---|---|
Ages | 1–3 | 42 | 20.6% |
3–5 | 63 | 30.8% | |
5–10 | 63 | 30.8% | |
>10 | 36 | 17.8% | |
Number of founders | 1 | 23 | 11.1% |
2 | 70 | 34.4% | |
3 | 76 | 37.2% | |
>3 | 36 | 17.4% | |
Enterprise size | 0–10 | 25 | 12.1% |
11–50 | 30 | 14.4% | |
51–100 | 57 | 27.7% | |
101–500 | 47 | 23.1% | |
>500 | 47 | 22.7% | |
Nature of Company | State-owned Enterprises | 41 | 20.0% |
Private enterprise | 82 | 39.9% | |
Foreign-funded Enterprises | 45 | 21.9% | |
Sino-foreign Joint Venture | 37 | 18.2% | |
Digital transformation phase | Initial period | 81 | 39.3% |
Growing period | 78 | 38.1% | |
Maturity period | 46 | 22.5% |
Factors | Items | Factor Loadings | Cronbach’s α | KMO | AVE | CR |
---|---|---|---|---|---|---|
DI | DI1 | 0.757 | 0.888 | 0.837 | 0.662 | 0.887 |
DI2 | 0.788 | |||||
DI3 | 0.864 | |||||
DI4 | 0.841 | |||||
DT | DT1 | 0.862 | 0.908 | 0.887 | 0.671 | 0.91 |
DT2 | 0.863 | |||||
DT3 | 0.685 | |||||
DT4 | 0.794 | |||||
DT5 | 0.875 | |||||
DR | DR1 | 0.734 | 0.944 | 0.956 | 0.593 | 0.945 |
DR2 | 0.853 | |||||
DR3 | 0.569 | |||||
DR4 | 0.748 | |||||
DR5 | 0.842 | |||||
DR6 | 0.826 | |||||
DR7 | 0.809 | |||||
DR8 | 0.812 | |||||
DR9 | 0.825 | |||||
DR10 | 0.758 | |||||
DR11 | 0.627 | |||||
DR12 | 0.783 | |||||
DER | DER1 | 0.698 | 0.887 | 0.81 | 0.67 | 0.89 |
DER2 | 0.887 | |||||
DER3 | 0.825 | |||||
DER4 | 0.852 | |||||
DPC | DSC1 | 0.842 | 0.894 | 0.885 | 0.633 | 0.896 |
DSC2 | 0.82 | |||||
DSC3 | 0.827 | |||||
DSC4 | 0.791 | |||||
DSC5 | 0.689 | |||||
DUC | DUC1 | 0.833 | 0.91 | 0.856 | 0.671 | 0.91 |
DUC2 | 0.851 | |||||
DUC3 | 0.863 | |||||
DUC4 | 0.834 | |||||
DUC5 | 0.706 | |||||
DRC | DRC1 | 0.805 | 0.908 | 0.899 | 0.628 | 0.909 |
DRC2 | 0.712 | |||||
DRC3 | 0.871 | |||||
DRC4 | 0.675 | |||||
DRC5 | 0.835 | |||||
DRC6 | 0.837 | |||||
IP | IP1 | 0.694 | 0.892 | 0.863 | 0.593 | 0.945 |
IP2 | 0.816 | |||||
IP3 | 0.868 | |||||
IP4 | 0.74 | |||||
IP5 | 0.826 |
Condition Variable | High Innovation Performance | Non-High Innovation Performance | |||
---|---|---|---|---|---|
Consistency | Coverage | Consistency | Coverage | ||
New-quality elements | DI | 0.825 | 0.849 | 0.742 | 0.283 |
~DI | 0.303 | 0.761 | 0.603 | 0.560 | |
DT | 0.801 | 0.886 | 0.622 | 0.255 | |
~DT | 0.326 | 0.700 | 0.722 | 0.573 | |
DR | 0.859 | 0.859 | 0.736 | 0.272 | |
~DR | 0.272 | 0.736 | 0.618 | 0.619 | |
DER | 0.720 | 0.870 | 0.637 | 0.285 | |
~DER | 0.408 | 0.752 | 0.710 | 0.484 | |
New-quality capabilities | DPC | 0.873 | 0.872 | 0.683 | 0.253 |
~DPC | 0.252 | 0.682 | 0.653 | 0.655 | |
DUC | 0.874 | 0.873 | 0.676 | 0.250 | |
~DUC | 0.250 | 0.676 | 0.657 | 0.659 | |
DRC | 0.874 | 0.878 | 0.674 | 0.251 | |
~DRC | 0.255 | 0.678 | 0.673 | 0.644 |
Conditional Variable | High Innovation Performance | Non-High Innovation Performance | |||||
---|---|---|---|---|---|---|---|
S1 | S2a | S2b | S2c | S3a | S3b | NS1 | |
DI | ● | ● | ● | ● | ⊗ | ● | |
DT | ⊗ | ● | ● | ● | ● | ● | ⊗ |
DR | ● | ● | ● | ● | ● | ||
DER | ● | ⊗ | ● | ⊗ | ● | ● | ⊗ |
DPC | ● | ● | ● | ● | ● | ⊗ | ⊗ |
DUC | ● | ● | ● | ⊗ | ● | ● | ⊗ |
DRC | ● | ● | ⊗ | ● | ⊗ | ⊗ | |
raw coverage | 0.198 | 0.266 | 0.509 | 0.103 | 0.559 | 0.090 | 0.317 |
unique coverage | 0.056 | 0.106 | 0.003 | 0.003 | 0.049 | 0.004 | 0.317 |
consistency | 0.894 | 0.958 | 0.972 | 0.978 | 0.965 | 0.966 | 0.876 |
Solution coverage | 0.753 | 0.317 | |||||
Solution consistency | 0.948 | 0.876 |
Conditional Variables | High IP (the Consistency Threshold Increased from 0.8 to 0.85) | High IP (the Case Frequency Threshold Increased from 1 to 2) | High IP (the PRI Consistency Threshold Increased from 0.75 to 0.8) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | S2a | S2b | S2c | S3a | S3b | S1 | S2a | S2b | S3 | S1 | S2a | S2b | S2c | S3 | |
DI | ● | ● | ● | ● | ⊗ | ● | ● | ● | ● | ● | ● | ● | |||
DT | ⊗ | ● | ● | ● | ● | ● | ⊗ | ● | ● | ● | ⊗ | ● | ● | ● | ● |
DR | ● | ● | ● | ● | ● | ● | ● | ⊗ | ● | ● | ● | ||||
DER | ● | ⊗ | ● | ⊗ | ● | ● | ● | ● | ● | ● | ⊗ | ● | ⊗ | ● | |
DPC | ● | ● | ● | ● | ● | ⊗ | ● | ● | ● | ● | ● | ● | ● | ● | ● |
DUC | ● | ● | ● | ⊗ | ● | ● | ● | ● | ● | ● | ● | ● | ● | ⊗ | ● |
DRC | ● | ● | ⊗ | ● | ⊗ | ● | ● | ● | ● | ● | ⊗ | ● | |||
raw coverage | 0.198 | 0.266 | 0.509 | 0.103 | 0.559 | 0.090 | 0.198 | 0.510 | 0.628 | 0.559 | 0.266 | 0.509 | 0.559 | 0.103 | 0.135 |
unique coverage | 0.056 | 0.106 | 0.003 | 0.003 | 0.049 | 0.004 | 0.059 | 0.004 | 0.123 | 0.054 | 0.106 | 0.004 | 0.054 | 0.003 | 0.023 |
consistency | 0.894 | 0.958 | 0.972 | 0.978 | 0.965 | 0.966 | 0.894 | 0.972 | 0.970 | 0.965 | 0.958 | 0.972 | 0.965 | 0.978 | 0.935 |
Solution coverage | 0.753 | 0.740 | 0.716 | ||||||||||||
Solution consistency | 0.948 | 0.950 | 0.959 |
Conditional Variables | Non-High IP (the Consistency Threshold Increased from 0.8 to 0.85) | Non-High IP (the Case Frequency Threshold Increased from 1 to 2) |
---|---|---|
NS1 | ||
DI | ● | ● |
DT | ⊗ | ⊗ |
DR | ● | ● |
DER | ⊗ | ⊗ |
DPC | ⊗ | ⊗ |
DUC | ⊗ | ⊗ |
DRC | ⊗ | |
raw coverage | 0.317 | 0.317 |
unique coverage | 0.317 | 0.317 |
consistency | 0.876 | 0.876 |
Solution coverage | 0.317 | 0.317 |
Solution consistency | 0.876 | 0.876 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Wang, S.; Guo, K.; Wang, L. Multi-Dimensional Pathways of Digitally-Empowered New-Quality Productive Forces in Enterprises: A Configurational Analysis Based on Resource Orchestration Theory. Systems 2025, 13, 623. https://doi.org/10.3390/systems13080623
Ma Y, Wang S, Guo K, Wang L. Multi-Dimensional Pathways of Digitally-Empowered New-Quality Productive Forces in Enterprises: A Configurational Analysis Based on Resource Orchestration Theory. Systems. 2025; 13(8):623. https://doi.org/10.3390/systems13080623
Chicago/Turabian StyleMa, Yilin, Shuxiang Wang, Kaiqi Guo, and Liya Wang. 2025. "Multi-Dimensional Pathways of Digitally-Empowered New-Quality Productive Forces in Enterprises: A Configurational Analysis Based on Resource Orchestration Theory" Systems 13, no. 8: 623. https://doi.org/10.3390/systems13080623
APA StyleMa, Y., Wang, S., Guo, K., & Wang, L. (2025). Multi-Dimensional Pathways of Digitally-Empowered New-Quality Productive Forces in Enterprises: A Configurational Analysis Based on Resource Orchestration Theory. Systems, 13(8), 623. https://doi.org/10.3390/systems13080623