Building Information Modeling and Big Data in Sustainable Building Management: Research Developments and Thematic Trends via Data Visualization Analysis
Abstract
1. Introduction
2. Methods
2.1. Data Collection
2.2. Data Analysis
3. Results of the Quantitative Analysis
3.1. Analysis of Intellectual Base
3.1.1. Descriptive Statistics
3.1.2. Trends and Identification of Journal Articles
3.1.3. Research Subject Category
3.2. Analysis of the Research Front
3.2.1. Co-Word Analysis and Clustering
3.2.2. Knowledge Evolution Path
4. Synthesis of Research Themes
4.1. Smart Technologies for Sustainable Building Systems in Building Information Management (BIM) and Big Data Integration (BBi)-Aided Sustainable Building Management (SBM)
4.1.1. Technologies and Tools for Smart Building Systems
4.1.2. Operational and Performance Optimization
- Information Management (Asset Management and Facility Management)
- Predictive Maintenance
- Structural Health Monitoring
4.1.3. Sustainability and Resource Efficiency
4.1.4. Industry 4.0 and Smart City
4.2. Advanced Technologies of BBi-Aided SBM
4.2.1. Physical Simulation to Virtual Simulation
4.2.2. Leveraging Artificial Intelligence
4.3. Interoperability and Data Integration for BBi-Aided SBM
4.3.1. Common Collaboration Standard
4.3.2. Technologies for Managing Semantics
- Semantic Web
- Linked Data
4.3.3. Cloud Computing
4.3.4. Data Integration and Visualization
4.3.5. Data Management Optimization
4.4. Data Mining and Green Building
4.4.1. Data Mining and Management
4.4.2. Smart, Green Building and Sustainability
5. Discussion
5.1. Research Hotspots and Development Trends of the Big Data-Driven BIM in SBM
5.2. Stakeholder Value of the Big Data-Driven BIM in SBM
5.3. Potential Directions and Opportunities of the BBi-Aided SBM
5.4. Comparative Analysis with Past Review Studies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AEC | Architectural, Engineering, and Construction |
BIM | Building information management |
SBM | Sustainable building management |
BBi-aided SBM | BIM and big data integration for SBM |
IoT | Internet of things |
AI | Artificial intelligence |
IFC | Industry foundation classes |
AM | Asset management |
FM | Facility management |
SHM | Structural health monitoring |
3D | Three-dimensional |
AR | Augmented reality |
VR | Virtual reality |
KPI | Key business performance indicator |
References
- Nikmehr, B.; Hosseini, M.R.; Martek, I.; Zavadskas, E.K.; Antucheviciene, J. Digitalization as a Strategic Means of Achieving Sustainable Efficiencies in Construction Management: A Critical Review. Sustainability 2021, 13, 5040. [Google Scholar] [CrossRef]
- Borkowski, A.S. A Literature Review of BIM Definitions: Narrow and Broad Views. Technologies 2023, 11, 176. [Google Scholar] [CrossRef]
- Wong, J.K.W.; Zhou, J. Enhancing environmental sustainability over building life cycles through green BIM: A review. Autom. Constr. 2015, 57, 156–165. [Google Scholar] [CrossRef]
- Gan, V.J.; Lo, I.M.; Ma, J.; Tse, K.T.; Cheng, J.C.; Chan, C.M. Simulation optimisation towards energy efficient green buildings: Current status and future trends. J. Clean. Prod. 2020, 254, 120012. [Google Scholar] [CrossRef]
- Schlueter, A.; Thesseling, F. Building information model based energy/exergy performance assessment in early design stages. Autom. Constr. 2009, 18, 153–163. [Google Scholar] [CrossRef]
- Penttilä, H. Describing the Changes in Architectural Information Technology to Understand Design Complexity and Free-Form Architectural Expression. J. Inf. Technol. Constr. 2006, 11, 395–408. Available online: https://itcon.org/paper/2006/29 (accessed on 5 February 2025).
- Awan, U.; Shamim, S.; Khan, Z.; Zia, N.U.; Shariq, S.M.; Khan, M.N. Big data analytics capability and decision-making: The role of data-driven insight on circular economy performance. Technol. Forecast. Soc. Chang. 2021, 168, 120766. [Google Scholar] [CrossRef]
- Phillips-Wren, G.; Hoskisson, A. An analytical Journey Towards Big Data. J. Decis. Syst. 2015, 24, 87–102. Available online: https://www.tandfonline.com/doi/abs/10.1080/12460125.2015.994333 (accessed on 5 February 2025). [CrossRef]
- Remund, D.; Aikat, D. “Deb” Drowning in Data: A Review of Information Overload within Organizations and the Viability of Strategic Communication Principles. In Information Overload; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 231–250. ISBN 978-1-118-36049-1. [Google Scholar]
- Bilal, M.; Oyedele, L.O.; Qadir, J.; Munir, K.; Ajayi, S.O.; Akinade, O.O.; Owolabi, H.A.; Alaka, H.A.; Pasha, M. Big Data in the construction industry: A review of present status, opportunities, and future trends. Adv. Eng. Inform. 2016, 30, 500–521. [Google Scholar] [CrossRef]
- Zhong, R.Y.; Newman, S.T.; Huang, G.Q.; Lan, S. Big Data for supply chain management in the service and manufacturing sectors: Challenges, opportunities, and future perspectives. Comput. Ind. Eng. 2016, 101, 572–591. [Google Scholar] [CrossRef]
- You, Z.; Wu, C. A framework for data-driven informatization of the construction company. Adv. Eng. Inform. 2019, 39, 269–277. [Google Scholar] [CrossRef]
- Alavi, A.H.; Gandomi, A.H. Big data in civil engineering. Autom. Constr. 2017, 79, 1–2. [Google Scholar] [CrossRef]
- Mehmood, M.U.; Chun, D.; Han, H.; Jeon, G.; Chen, K. A review of the applications of artificial intelligence and big data to buildings for energy-efficiency and a comfortable indoor living environment. Energy Build. 2019, 202, 109383. [Google Scholar] [CrossRef]
- Tang, S.; Shelden, D.R.; Eastman, C.M.; Pishdad-Bozorgi, P.; Gao, X. A review of building information modeling (BIM) and the internet of things (IoT) devices integration: Present status and future trends. Autom. Constr. 2019, 101, 127–139. [Google Scholar] [CrossRef]
- Chong, H.Y.; Wong, J.S.; Wang, X. An explanatory case study on cloud computing applications in the built environment. Autom. Constr. 2014, 44, 152–162. [Google Scholar] [CrossRef]
- Lin, J.-R.; Hu, Z.-Z.; Zhang, J.-P.; Yu, F.-Q. A Natural-Language-Based Approach to Intelligent Data Retrieval and Representation for Cloud BIM. Comput.-Aided Civ. Infrastruct. Eng. 2016, 31, 18–33. [Google Scholar] [CrossRef]
- Kubicki, S.; Guerriero, A.; Schwartz, L.; Daher, E.; Idris, B. Assessment of synchronous interactive devices for BIM project coordination: Prospective ergonomics approach. Autom. Constr. 2019, 101, 160–178. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, S.; Liu, Y.; Si, S. A big data analytics architecture for cleaner manufacturing and maintenance processes of complex products. J. Clean. Prod. 2017, 142, 626–641. [Google Scholar] [CrossRef]
- Zhou, Z.; Irizarry, J.; Li, Q. Applying advanced technology to improve safety management in the construction industry: A literature review. Constr. Manag. Econ. 2013, 31, 606–622. [Google Scholar] [CrossRef]
- Liu, H.; Al-Hussein, M.; Lu, M. BIM-based integrated approach for detailed construction scheduling under resource constraints. Autom. Constr. 2015, 53, 29–43. [Google Scholar] [CrossRef]
- Issa, U.H. Implementation of lean construction techniques for minimizing the risks effect on project construction time. Alex. Eng. J. 2013, 52, 697–704. [Google Scholar] [CrossRef]
- Howell, S.; Rezgui, Y.; Hippolyte, J.L.; Jayan, B.; Li, H. Towards the next generation of smart grids: Semantic and holonic multi-agent management of distributed energy resources. Renew. Sustain. Energy Rev. 2017, 77, 193–214. [Google Scholar] [CrossRef]
- Lu, Y.; Li, Y.; Skibniewski, M.; Wu, Z.; Wang, R.; Le, Y. Information and Communication Technology Applications in Architecture, Engineering, and Construction Organizations: A 15-Year Review. J. Manag. Eng. 2015, 31, A4014010. [Google Scholar] [CrossRef]
- Curry, E.; O’Donnell, J.; Corry, E.; Hasan, S.; Keane, M.; O’Riain, S. Linking building data in the cloud: Integrating cross-domain building data using linked data. Adv. Eng. Inform. 2013, 27, 206–219. [Google Scholar] [CrossRef]
- He, F.; Miao, X.; Wong, C.W.; Lee, S. Contemporary corporate eco-innovation research: A systematic review. J. Clean. Prod. 2018, 174, 502–526. [Google Scholar] [CrossRef]
- Yang, R.; Wong, C.W.; Miao, X. Analysis of the trend in the knowledge of environmental responsibility research. J. Clean. Prod. 2021, 278, 123402. [Google Scholar] [CrossRef]
- Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. FASEB J. 2008, 22, 338–342. [Google Scholar] [CrossRef]
- Shiffrin, R.M.; Börner, K. Mapping knowledge domains. Proc. Natl. Acad. Sci. USA 2004, 101, 5183–5185. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. J. Informetr. 2011, 5, 146–166. [Google Scholar] [CrossRef]
- Ouyang, W.; Wang, Y.; Lin, C.; He, M.; Hao, F.; Liu, H.; Zhu, W. Heavy metal loss from agricultural watershed to aquatic system: A scientometrics review. Sci. Total Environ. 2018, 637–638, 208–220. [Google Scholar] [CrossRef]
- Liu, Z.; Ren, L.; Xiao, C.; Zhang, K.; Demian, P. Virtual Reality Aided Therapy towards Health 4.0: A Two-Decade Bibliometric Analysis. Int. J. Environ. Res. Public Health 2022, 19, 1525. [Google Scholar] [CrossRef]
- Thulasi, K.; Arunachalam, S. Mapping of cholera research in India using HistCite. Ann. Libr. Inf. Stud. 2010, 57, 310–326. [Google Scholar]
- Zong, Q.-J.; Shen, H.-Z.; Yuan, Q.-J.; Hu, X.-W.; Hou, Z.-P.; Deng, S.-G. Doctoral dissertations of Library and Information Science in China: A co-word analysis. Scientometrics 2013, 94, 781–799. [Google Scholar] [CrossRef]
- Corrales-Garay, D.; Ortiz-de-Urbina-Criado, M.; Mora-Valentín, E.M. Knowledge areas, themes and future research on open data: A co-word analysis. Gov. Inf. Q. 2019, 36, 77–87. [Google Scholar] [CrossRef]
- Opoku, D.-G.J.; Perera, S.; Osei-Kyei, R.; Rashidi, M. Digital twin application in the construction industry: A literature review. J. Build. Eng. 2021, 40, 102726. [Google Scholar] [CrossRef]
- Shahzad, M.; Shafiq, M.T.; Douglas, D.; Kassem, M. Digital Twins in Built Environments: An Investigation of the Characteristics, Applications, and Challenges. Buildings 2022, 12, 120. [Google Scholar] [CrossRef]
- Eneyew, D.D.; Capretz, M.A.M.; Bitsuamlak, G.T. Toward Smart-Building Digital Twins: BIM and IoT Data Integration. IEEE Access 2022, 10, 130487–130506. [Google Scholar] [CrossRef]
- Datta, S.D.; Islam, M.; Sobuz, M.H.R.; Ahmed, S.; Kar, M. Artificial intelligence and machine learning applications in the project lifecycle of the construction industry: A comprehensive review. Heliyon 2024, 10, e26888. [Google Scholar] [CrossRef]
- Siccardi, S.; Villa, V. Trends in Adopting BIM, IoT and DT for Facility Management: A Scientometric Analysis and Keyword Co-Occurrence Network Review. Buildings 2023, 13, 15. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Wang, J.; Lim, M.K.; Wang, C.; Tseng, M.L. The evolution of the Internet of Things (IoT) over the past 20 years. Comput. Ind. Eng. 2021, 155, 107174. [Google Scholar] [CrossRef]
- Manfren, M.; Gonzalez-Carreon, K.M.; James, P.A.B. Interpretable Data-Driven Methods for Building Energy Modelling—A Review of Critical Connections and Gaps. Energies 2024, 17, 881. [Google Scholar] [CrossRef]
- Cheng, J.C.; Chen, W.; Chen, K.; Wang, Q. Data-driven predictive maintenance planning framework for MEP components based on BIM and IoT using machine learning algorithms. Autom. Constr. 2020, 112, 103087. [Google Scholar] [CrossRef]
- Piras, G.; Muzi, F.; Tiburcio, V.A. Digital Management Methodology for Building Production Optimization through Digital Twin and Artificial Intelligence Integration. Buildings 2024, 14, 2110. [Google Scholar] [CrossRef]
- Reja, V.K.; Varghese, K.; Ha, Q.P. Computer vision-based construction progress monitoring. Autom. Constr. 2022, 138, 104245. [Google Scholar] [CrossRef]
- Shi, J.; Pan, Z.; Jiang, L.; Zhai, X. An ontology-based methodology to establish city information model of digital twin city by merging BIM, GIS and IoT. Adv. Eng. Inform. 2023, 57, 102114. [Google Scholar] [CrossRef]
- Lu, Q.; Xie, X.; Parlikad, A.K.; Schooling, J.M. Digital twin-enabled anomaly detection for built asset monitoring in operation and maintenance. Autom. Constr. 2020, 118, 103277. [Google Scholar] [CrossRef]
- Moretti, N.; Ellul, C.; Cecconi, F.R.; Papapesios, N.; Dejaco, M.C. GeoBIM for built environment condition assessment supporting asset management decision making. Autom. Constr. 2021, 130, 103859. [Google Scholar] [CrossRef]
- Ni, Y.; Sun, B.; Wang, Y. Blockchain-Based BIM Digital Project Management Mechanism Research. IEEE Access 2021, 9, 161342–161351. [Google Scholar] [CrossRef]
- Alshammari, K.; Beach, T.; Rezgui, Y.; Alelwani, R. Built Environment Cybersecurity: Development and Validation of a Semantically Defined Access Management Framework on a University Case Study. Appl. Sci. 2023, 13, 7518. [Google Scholar] [CrossRef]
- Hosamo, H.H.; Svennevig, P.R.; Svidt, K.; Han, D.; Nielsen, H.K. A Digital Twin predictive maintenance framework of air handling units based on automatic fault detection and diagnostics. Energy Build. 2022, 261, 111988. [Google Scholar] [CrossRef]
- Yang, S.-W.; Lee, Y.; Kim, S.-A. Design and Validation of a Real-Time Maintenance Monitoring System Using BIM and Digital Twin Integration. Buildings 2025, 15, 1312. [Google Scholar] [CrossRef]
- Khajavi, S.H.; Motlagh, N.H.; Jaribion, A.; Werner, L.C.; Holmström, J. Digital Twin: Vision, Benefits, Boundaries, and Creation for Buildings. IEEE Access 2019, 7, 147406–147419. [Google Scholar] [CrossRef]
- Boddupalli, C.; Sadhu, A.; Rezazadeh Azar, E.; Pattyson, S. Improved visualization of infrastructure monitoring data using building information modeling. Struct. Infrastruct. Eng. 2019, 15, 1247–1263. [Google Scholar] [CrossRef]
- Sadhu, A.; Peplinski, J.E.; Mohammadkhorasani, A.; Moreu, F. A Review of Data Management and Visualization Techniques for Structural Health Monitoring Using BIM and Virtual or Augmented Reality. J. Struct. Eng. 2023, 149, 03122006. [Google Scholar] [CrossRef]
- Dixit, M.K.; Fernández-Solís, J.L.; Lavy, S.; Culp, C.H. Identification of parameters for embodied energy measurement: A literature review. Energy Build. 2010, 42, 1238–1247. [Google Scholar] [CrossRef]
- Hannan, M.A.; Faisal, M.; Ker, P.J.; Mun, L.H.; Parvin, K.; Mahlia, T.M.I.; Blaabjerg, F. A Review of Internet of Energy Based Building Energy Management Systems: Issues and Recommendations. IEEE Access 2018, 6, 38997–39014. Available online: https://ieeexplore.ieee.org/abstract/document/8403212 (accessed on 7 February 2025). [CrossRef]
- Nikmehr, B.; Hosseini, M.R.; Wang, J.; Chileshe, N.; Rameezdeen, R. BIM-Based Tools for Managing Construction and Demolition Waste (CDW): A Scoping Review. Sustainability 2021, 13, 8427. [Google Scholar] [CrossRef]
- Lee, J.; Edil, T.B.; Benson, C.H.; Tinjum, J.M. Building Environmentally and Economically Sustainable Transportation Infrastructure: Green Highway Rating System. J. Constr. Eng. Manag. 2013, 139, A4013006. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, Y.; Shen, M.; Peh, L.C. Transition from building information modeling (BIM) to integrated digital delivery (IDD) in sustainable building management: A knowledge discovery approach based review. J. Clean. Prod. 2021, 291, 125223. [Google Scholar] [CrossRef]
- Jrade, A.; Jalaei, F. Integrating building information modelling with sustainability to design building projects at the conceptual stage. Build. Simul. 2013, 6, 429–444. [Google Scholar] [CrossRef]
- Doan, D.T.; Naismith, N.; Zhang, T.; Ghaffarianhoseini, A.; Tookey, J. A critical comparison of green building rating systems. Build. Environ. 2017, 123, 243–260. [Google Scholar] [CrossRef]
- Akbarieh, A.; Jayasinghe, L.B.; Waldmann, D.; Teferle, F.N. BIM-Based End-of-Lifecycle Decision Making and Digital Deconstruction: Literature Review. Sustainability 2020, 12, 2670. [Google Scholar] [CrossRef]
- Hong, T.; Wang, Z.; Luo, X.; Zhang, W. State-of-the-art on research and applications of machine learning in the building life cycle. Energy Build. 2020, 212, 109831. [Google Scholar] [CrossRef]
- Wang, H.; Chen, X.; Jia, F.; Cheng, X. Digital twin-supported smart city: Status, challenges and future research directions. Expert Syst. Appl. 2023, 217, 119531. [Google Scholar] [CrossRef]
- Wang, M.; Wang, C.C.; Sepasgozar, S.; Zlatanova, S. A Systematic Review of Digital Technology Adoption in Off-Site Construction: Current Status and Future Direction towards Industry 4.0. Buildings 2020, 10, 204. [Google Scholar] [CrossRef]
- Turner, C.J.; Oyekan, J.; Stergioulas, L.; Griffin, D. Utilizing Industry 4.0 on the Construction Site: Challenges and Opportunities. IEEE Trans. Ind. Inform. 2021, 17, 746–756. [Google Scholar] [CrossRef]
- Forcael, E.; Ferrari, I.; Opazo-Vega, A.; Pulido-Arcas, J.A. Construction 4.0: A Literature Review. Sustainability 2020, 12, 9755. [Google Scholar] [CrossRef]
- Yuan, X.; Anumba, C.J. Cyber-Physical Systems for Temporary Structures Monitoring. In Cyber-Physical Systems in the Built Environment; Anumba, C.J., Roofigari-Esfahan, N., Eds.; Springer: Cham, Switzerland, 2020; pp. 107–138. ISBN 978-3-030-41560-0. [Google Scholar]
- Madni, A.M.; Madni, C.C.; Lucero, S.D. Leveraging Digital Twin Technology in Model-Based Systems Engineering. Systems 2019, 7, 7. [Google Scholar] [CrossRef]
- Borgia, E. The Internet of Things vision: Key features, applications and open issues. Comput. Commun. 2014, 54, 1–31. [Google Scholar] [CrossRef]
- Bibri, S.E. The IoT for smart sustainable cities of the future: An analytical framework for sensor-based big data applications for environmental sustainability. Sustain. Cities Soc. 2018, 38, 230–253. [Google Scholar] [CrossRef]
- Bock, T. The future of construction automation: Technological disruption and the upcoming ubiquity of robotics. Autom. Constr. 2015, 59, 113–121. [Google Scholar] [CrossRef]
- Teisserenc, B.; Sepasgozar, S. Project Data Categorization, Adoption Factors, and Non-Functional Requirements for Blockchain Based Digital Twins in the Construction Industry 4.0. Buildings 2021, 11, 626. [Google Scholar] [CrossRef]
- De Soto, B.G.; Agustí-Juan, I.; Hunhevicz, J.; Joss, S.; Graser, K.; Habert, G.; Adey, B.T. Productivity of digital fabrication in construction: Cost and time analysis of a robotically built wall. Autom. Constr. 2018, 92, 297–311. [Google Scholar] [CrossRef]
- Atherinis, D.; Bakowski, B.; Velcek, M.; Moon, S. Developing and Laboratory Testing a Smart System for Automated Falsework Inspection in Construction. J. Constr. Eng. Manag. 2018, 144, 04017119. [Google Scholar] [CrossRef]
- You, Z.; Feng, L. Integration of Industry 4.0 Related Technologies in Construction Industry: A Framework of Cyber-Physical System. IEEE Access 2020, 8, 122908–122922. [Google Scholar] [CrossRef]
- Schiavi, B.; Havard, V.; Beddiar, K.; Baudry, D. BIM data flow architecture with AR/VR technologies: Use cases in architecture, engineering and construction. Autom. Constr. 2022, 134, 104054. [Google Scholar] [CrossRef]
- Manzoor, B.; Othman, I.; Pomares, J.C. Digital Technologies in the Architecture, Engineering and Construction (AEC) Industry—A Bibliometric—Qualitative Literature Review of Research Activities. Int. J. Environ. Res. Public Health 2021, 18, 6135. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhang, S.; Li, Y.; Wang, Y.; Yang, B. Towards cloud Augmented Reality for construction application by BIM and SNS integration. Autom. Constr. 2013, 33, 37–47. [Google Scholar] [CrossRef]
- Kwiatek, C.; Sharif, M.; Li, S.; Haas, C.; Walbridge, S. Impact of augmented reality and spatial cognition on assembly in construction. Autom. Constr. 2019, 108, 102935. [Google Scholar] [CrossRef]
- Zollmann, S.; Hoppe, C.; Kluckner, S.; Poglitsch, C.; Bischof, H.; Reitmayr, G. Augmented Reality for Construction Site Monitoring and Documentation. Proc. IEEE 2014, 102, 137–154. [Google Scholar] [CrossRef]
- Du, J.; Zou, Z.; Shi, Y.; Zhao, D. Zero latency: Real-time synchronization of BIM data in virtual reality for collaborative decision-making. Autom. Constr. 2018, 85, 51–64. [Google Scholar] [CrossRef]
- Tuegel, E.J.; Ingraffea, A.R.; Eason, T.G.; Spottswood, S.M. Reengineering Aircraft Structural Life Prediction Using a Digital Twin. Int. J. Aerosp. Eng. 2011, 2011, 154798. [Google Scholar] [CrossRef]
- Ge, Z.; Song, Z.; Ding, S.X.; Huang, B. Data Mining and Analytics in the Process Industry: The Role of Machine Learning. IEEE Access 2017, 5, 20590–20616. Available online: https://ieeexplore.ieee.org/abstract/document/8051033 (accessed on 7 February 2025). [CrossRef]
- Hwang, B.-G.; Shan, M.; Looi, K.-Y. Knowledge-based decision support system for prefabricated prefinished volumetric construction. Autom. Constr. 2018, 94, 168–178. [Google Scholar] [CrossRef]
- Ahn, S.; Han, S.; Al-Hussein, M. Improvement of transportation cost estimation for prefabricated construction using geo-fence-based large-scale GPS data feature extraction and support vector regression. Adv. Eng. Inform. 2020, 43, 101012. [Google Scholar] [CrossRef]
- Arashpour, M.; Bai, Y.; Aranda-Mena, G.; Bab-Hadiashar, A.; Hosseini, R.; Kalutara, P. Optimizing decisions in advanced manufacturing of prefabricated products: Theorizing supply chain configurations in off-site construction. Autom. Constr. 2017, 84, 146–153. [Google Scholar] [CrossRef]
- Bayram, S.; Ocal, M.E.; Laptali Oral, E.; Atis, C.D. Comparison of multi layer perceptron (MLP) and radial basis function (RBF) for construction cost estimation: The case of Turkey. J. Civ. Eng. Manag. 2016, 22, 480–490. [Google Scholar] [CrossRef]
- Trost, S.M.; Oberlender, G.D. Predicting Accuracy of Early Cost Estimates Using Factor Analysis and Multivariate Regression. J. Constr. Eng. Manag. 2003, 129, 198–204. [Google Scholar] [CrossRef]
- Shamim, M.M.I.; Hamid, A.B.b.A.; Nyamasvisva, T.E.; Rafi, N.S.B. Advancement of Artificial Intelligence in Cost Estimation for Project Management Success: A Systematic Review of Machine Learning, Deep Learning, Regression, and Hybrid Models. Modelling 2025, 6, 35. [Google Scholar] [CrossRef]
- Zhou, M.; Zhuang, H.; Li, C.; Su, X. Xiong’an station, China—How the largest station in Asia was built in just 2 years. Proc. Inst. Civ. Eng.—Civ. Eng. 2022, 175, 113–118. [Google Scholar] [CrossRef]
- Debrah, C.; Chan, A.P.; Darko, A. Artificial intelligence in green building. Autom. Constr. 2022, 137, 104192. [Google Scholar] [CrossRef]
- Bloch, T.; Sacks, R. Clustering Information Types for Semantic Enrichment of Building Information Models to Support Automated Code Compliance Checking. J. Comput. Civ. Eng. 2020, 34, 04020040. [Google Scholar] [CrossRef]
- Alavi, H.; Gordo-Gregorio, P.; Forcada, N.; Bayramova, A.; Edwards, D.J. AI-Driven BIM Integration for Optimizing Healthcare Facility Design. Buildings 2024, 14, 2354. [Google Scholar] [CrossRef]
- Lu, H.; Li, Y.; Chen, M.; Kim, H.; Serikawa, S. Brain Intelligence: Go beyond Artificial Intelligence. Mob. Netw. Appl. 2018, 23, 368–375. [Google Scholar] [CrossRef]
- Chen, L.-K.; Yuan, R.-P.; Ji, X.-J.; Lu, X.-Y.; Xiao, J.; Tao, J.-B.; Kang, X.; Li, X.; He, Z.-H.; Quan, S.; et al. Modular composite building in urgent emergency engineering projects: A case study of accelerated design and construction of Wuhan Thunder God Mountain/Leishenshan hospital to COVID-19 pandemic. Autom. Constr. 2021, 124, 103555. [Google Scholar] [CrossRef]
- Döllner, J. Geospatial Artificial Intelligence: Potentials of Machine Learning for 3D Point Clouds and Geospatial Digital Twins. PFG—J. Photogramm. Remote Sens. Geoinf. Sci. 2020, 88, 15–24. [Google Scholar] [CrossRef]
- Adewale, B.A.; Ene, V.O.; Ogunbayo, B.F.; Aigbavboa, C.O. A Systematic Review of the Applications of AI in a Sustainable Building’s Lifecycle. Buildings 2024, 14, 2137. [Google Scholar] [CrossRef]
- Das, M.; Cheng, J.C.P.; Law, K.H. An ontology-based web service framework for construction supply chain collaboration and management. Eng. Constr. Archit. Manag. 2015, 22, 551–572. [Google Scholar] [CrossRef]
- El-Mekawy, M.; Östman, A.; Hijazi, I. A Unified Building Model for 3D Urban GIS. ISPRS Int. J. Geo-Inf. 2012, 1, 120–145. [Google Scholar] [CrossRef]
- Wang, M.; Deng, Y.; Won, J.; Cheng, J.C. An integrated underground utility management and decision support based on BIM and GIS. Autom. Constr. 2019, 107, 102931. [Google Scholar] [CrossRef]
- Borrmann, A.; Kolbe, T.; Donaubauer, A.; Steuer, H.; Jubierre, J.R.; Flurl, M. Multi-Scale Geometric-Semantic Modeling of Shield Tunnels for GIS and BIM Applications. Comput.-Aided Civ. Infrastruct. Eng. 2015, 30, 263–281. [Google Scholar] [CrossRef]
- Knoth, L.; Scholz, J.; Strobl, J.; Mittlböck, M.; Vockner, B.; Atzl, C.; Rajabifard, A.; Atazadeh, B. Cross-Domain Building Models—A Step towards Interoperability. ISPRS Int. J. Geo-Inf. 2018, 7, 363. [Google Scholar] [CrossRef]
- Tashakkori, H.; Rajabifard, A.; Kalantari, M. A new 3D indoor/outdoor spatial model for indoor emergency response facilitation. Build. Environ. 2015, 89, 170–182. [Google Scholar] [CrossRef]
- Pan, Z.; Shi, J.; Jiang, L. A Novel HDF-Based Data Compression and Integration Approach to Support BIM-GIS Practical Applications. Adv. Civ. Eng. 2020, 2020, 8865107. [Google Scholar] [CrossRef]
- Zhu, J.; Wu, P. Towards Effective BIM/GIS Data Integration for Smart City by Integrating Computer Graphics Technique. Remote Sens. 2021, 13, 1889. [Google Scholar] [CrossRef]
- Čuš-Babič, N.; Guerra De Oliveira, S.F.; Tibaut, A. Interoperability of Infrastructure and Transportation Information Models: A Public Transport Case Study. Appl. Sci. 2022, 12, 6234. [Google Scholar] [CrossRef]
- Stouffs, R.; Tauscher, H.; Biljecki, F. Achieving Complete and Near-Lossless Conversion from IFC to CityGML. ISPRS Int. J. Geo-Inf. 2018, 7, 355. [Google Scholar] [CrossRef]
- Hernández, J.L.; Lerones, P.M.; Álvarez, S.; Bonsma, P.; van Delft, A.; Deighton, R.; Braun, J.-D. An IFC-based interoperable framework for building linked-data. In Proceedings of the LDAC2018—6th Linked Data in Architecture and Construction Workshop, London, UK, 19–21 June 2018. [Google Scholar]
- Kuster, C.; Hippolyte, J.-L.; Rezgui, Y. The UDSA ontology: An ontology to support real time urban sustainability assessment. Adv. Eng. Softw. 2020, 140, 102731. [Google Scholar] [CrossRef]
- Niknam, M.; Karshenas, S. Integrating distributed sources of information for construction cost estimating using Semantic Web and Semantic Web Service technologies. Autom. Constr. 2015, 57, 222–238. [Google Scholar] [CrossRef]
- Costa, G.; Sicilia, A. Alternatives for facilitating automatic transformation of BIM data using semantic query languages. Autom. Constr. 2020, 120, 103384. [Google Scholar] [CrossRef]
- Howell, S.; Rezgui, Y.; Beach, T. Integrating building and urban semantics to empower smart water solutions. Autom. Constr. 2017, 81, 434–448. [Google Scholar] [CrossRef]
- Kebede, R.; Moscati, A.; Tan, H.; Johansson, P. Integration of manufacturers’ product data in BIM platforms using semantic web technologies. Autom. Constr. 2022, 144, 104630. [Google Scholar] [CrossRef]
- Jiang, L.; Shi, J.; Wang, C.; Pan, Z. Intelligent control of building fire protection system using digital twins and semantic web technologies. Autom. Constr. 2023, 147, 104728. [Google Scholar] [CrossRef]
- Pauwels, P.; Zhang, S.; Lee, Y.-C. Semantic web technologies in AEC industry: A literature overview. Autom. Constr. 2017, 73, 145–165. [Google Scholar] [CrossRef]
- He, D.; Li, Z.; Wu, C.; Ning, X. An E-Commerce Platform for Industrialized Construction Procurement Based on BIM and Linked Data. Sustainability 2018, 10, 2613. [Google Scholar] [CrossRef]
- Sharafat, A.; Khan, M.S.; Latif, K.; Seo, J. BIM-Based Tunnel Information Modeling Framework for Visualization, Management, and Simulation of Drill-and-Blast Tunneling Projects. J. Comput. Civ. Eng. 2021, 35, 04020068. [Google Scholar] [CrossRef]
- Zhang, Y.-Y.; Hu, Z.-Z.; Lin, J.-R.; Zhang, J.-P. Linking data model and formula to automate KPI calculation for building performance benchmarking. Energy Rep. 2021, 7, 1326–1337. [Google Scholar] [CrossRef]
- Barnaghi, P.; Wang, W.; Henson, C.; Taylor, K. Semantics for the Internet of Things: Early Progress and Back to the Future. Int. J. Semant. Web Inf. Syst. 2012, 8, 1–21. [Google Scholar] [CrossRef]
- Boje, C.; Guerriero, A.; Kubicki, S.; Rezgui, Y. Towards a semantic Construction Digital Twin: Directions for future research. Autom. Constr. 2020, 114, 103179. [Google Scholar] [CrossRef]
- Chang, C.-C.; Huang, T.-W.; Chen, Y.-H.; Lin, J.J.; Chen, C.-S. Autonomous dimensional inspection and issue tracking of rebar using semantically enriched 3D models. Autom. Constr. 2024, 160, 105303. [Google Scholar] [CrossRef]
- Bello, S.A.; Oyedele, L.O.; Akinade, O.O.; Bilal, M.; Delgado, J.M.D.; Akanbi, L.A.; Ajayi, A.O.; Owolabi, H.A. Cloud computing in construction industry: Use cases, benefits and challenges. Autom. Constr. 2021, 122, 103441. [Google Scholar] [CrossRef]
- Altohami, A.B.A.; Haron, N.A.; Ales@Alias, A.H.; Law, T.H. Investigating Approaches of Integrating BIM, IoT, and Facility Management for Renovating Existing Buildings: A Review. Sustainability 2021, 13, 3930. [Google Scholar] [CrossRef]
- Redmond, A.; Hore, A.; Alshawi, M.; West, R. Exploring how information exchanges can be enhanced through Cloud BIM. Autom. Constr. 2012, 24, 175–183. [Google Scholar] [CrossRef]
- Alreshidi, E.; Mourshed, M.; Rezgui, Y. Cloud-Based BIM Governance Platform Requirements and Specifications: Software Engineering Approach Using BPMN and UML. J. Comput. Civ. Eng. 2016, 30, 04015063. [Google Scholar] [CrossRef]
- Zhou, X.; Li, H.; Wang, J.; Zhao, J.; Xie, Q.; Li, L.; Liu, J.; Yu, J. CloudFAS: Cloud-based building fire alarm system using Building Information Modelling. J. Build. Eng. 2022, 53, 104571. [Google Scholar] [CrossRef]
- Tarek, H.; Marzouk, M. Integrated Augmented Reality and Cloud Computing Approach for Infrastructure Utilities Maintenance. J. Pipeline Syst. Eng. Pract. 2022, 13, 04021064. [Google Scholar] [CrossRef]
- Kineber, A.F.; Oke, A.E.; Alyanbaawi, A.; Abubakar, A.S.; Hamed, M.M. Exploring the Cloud Computing Implementation Drivers for Sustainable Construction Projects—A Structural Equation Modeling Approach. Sustainability 2022, 14, 14789. [Google Scholar] [CrossRef]
- Ivson, P.; Moreira, A.; Queiroz, F.; Santos, W.; Celes, W. A Systematic Review of Visualization in Building Information Modeling. IEEE Trans. Vis. Comput. Graph. 2020, 26, 3109–3127. [Google Scholar] [CrossRef]
- Irizarry, J.; Karan, E.P.; Jalaei, F. Integrating BIM and GIS to improve the visual monitoring of construction supply chain management. Autom. Constr. 2013, 31, 241–254. [Google Scholar] [CrossRef]
- Amirebrahimi, S.; Rajabifard, A.; Mendis, P.; Ngo, T. A BIM-GIS integration method in support of the assessment and 3D visualisation of flood damage to a building. J. Spat. Sci. 2016, 61, 317–350. [Google Scholar] [CrossRef]
- Xia, H.; Liu, Z.; Maria, E.; Liu, X.; Lin, C. Study on city digital twin technologies for sustainable smart city design: A review and bibliometric analysis of geographic information system and building information modeling integration. Sustain. Cities Soc. 2022, 84, 104009. [Google Scholar] [CrossRef]
- Zhu, J.; Wu, P. BIM/GIS data integration from the perspective of information flow. Autom. Constr. 2022, 136, 104166. [Google Scholar] [CrossRef]
- Desogus, G.; Quaquero, E.; Rubiu, G.; Gatto, G.; Perra, C. BIM and IoT Sensors Integration: A Framework for Consumption and Indoor Conditions Data Monitoring of Existing Buildings. Sustainability 2021, 13, 4496. [Google Scholar] [CrossRef]
- von Landesberger, T.; Kuijper, A.; Schreck, T.; Kohlhammer, J.; van Wijk, J.J.; Fekete, J.-D.; Fellner, D.W. Visual Analysis of Large Graphs: State-of-the-Art and Future Research Challenges. Comput. Graph. Forum 2011, 30, 1719–1749. [Google Scholar] [CrossRef]
- Wongsuphasawat, K.; Moritz, D.; Anand, A.; Mackinlay, J.; Howe, B.; Heer, J. Voyager: Exploratory Analysis via Faceted Browsing of Visualization Recommendations. IEEE Trans. Vis. Comput. Graph. 2016, 22, 649–658. [Google Scholar] [CrossRef]
- Beata, P.A.; Jeffers, A.E.; Kamat, V.R. Real-Time Fire Monitoring and Visualization for the Post-Ignition Fire State in a Building. Fire Technol. 2018, 54, 995–1027. [Google Scholar] [CrossRef]
- Lam, P.-D.; Gu, B.-H.; Lam, H.-K.; Ok, S.-Y.; Lee, S.-H. Digital Twin Smart City: Integrating IFC and CityGML with Semantic Graph for Advanced 3D City Model Visualization. Sensors 2024, 24, 3761. [Google Scholar] [CrossRef]
- Sadri, H.; Yitmen, I.; Tagliabue, L.C.; Westphal, F.; Tezel, A.; Taheri, A.; Sibenik, G. Integration of Blockchain and Digital Twins in the Smart Built Environment Adopting Disruptive Technologies—A Systematic Review. Sustainability 2023, 15, 3713. [Google Scholar] [CrossRef]
- Oyekan, J.; Hutabarat, W.; Turner, C.; Tiwari, A.; Prajapat, N.; Ince, N.; Gan, X.-P.; Waller, T. A 3D Immersive Discrete Event Simulator for Enabling Prototyping of Factory Layouts. Procedia CIRP 2015, 38, 63–67. [Google Scholar] [CrossRef]
- Sepasgozar, S.M.E. Differentiating Digital Twin from Digital Shadow: Elucidating a Paradigm Shift to Expedite a Smart, Sustainable Built Environment. Buildings 2021, 11, 151. [Google Scholar] [CrossRef]
- Li, J.; Greenwood, D.; Kassem, M. Blockchain in the built environment and construction industry: A systematic review, conceptual models and practical use cases. Autom. Constr. 2019, 102, 288–307. [Google Scholar] [CrossRef]
- Tao, F.; Sui, F.; Liu, A.; Qi, Q.; Zhang, M.; Song, B.; Guo, Z.; Lu, S.C.-Y.; Nee, A.Y.C. Digital twin-driven product design framework. Int. J. Prod. Res. 2019, 57, 3935–3953. [Google Scholar] [CrossRef]
- Li, J.; Greenwood, D.; Kassem, M. A BIM-data mining integrated digital twin framework for advanced project management. Autom. Constr. 2021, 124, 103564. [Google Scholar] [CrossRef]
- Liu, Z.; Meng, X.; Xing, Z.; Jiang, A. Digital Twin-Based Safety Risk Coupling of Prefabricated Building Hoisting. Sensors 2021, 21, 3583. [Google Scholar] [CrossRef]
- White, G.; Zink, A.; Codecá, L.; Clarke, S. A digital twin smart city for citizen feedback. Cities 2021, 110, 103064. [Google Scholar] [CrossRef]
- Lauria, M.; Azzalin, M. Digital Twin Approach in Buildings: Future Challenges via a Critical Literature Review. Buildings 2024, 14, 376. [Google Scholar] [CrossRef]
- Lee, D.; Lee, S.H.; Masoud, N.; Krishnan, M.S.; Li, V.C. Integrated digital twin and blockchain framework to support accountable information sharing in construction projects. Autom. Constr. 2021, 127, 103688. [Google Scholar] [CrossRef]
- Mahmudnia, D.; Arashpour, M.; Yang, R. Blockchain in construction management: Applications, advantages and limitations. Autom. Constr. 2022, 140, 104379. [Google Scholar] [CrossRef]
- Putz, B.; Dietz, M.; Empl, P.; Pernul, G. EtherTwin: Blockchain-based Secure Digital Twin Information Management. Inf. Process. Manag. 2021, 58, 102425. [Google Scholar] [CrossRef]
- Motaghifard, A.; Omidvari, M.; Kazemi, A. Forecasting of safe-green buildings using decision tree algorithm: Data mining approach. Environ. Dev. Sustain. 2023, 25, 10323–10350. [Google Scholar] [CrossRef]
- Breunig, M.; Bradley, P.E.; Jahn, M.; Kuper, P.; Mazroob, N.; Rösch, N.; Al-Doori, M.; Stefanakis, E.; Jadidi, M. Geospatial Data Management Research: Progress and Future Directions. ISPRS Int. J. Geo-Inf. 2020, 9, 95. [Google Scholar] [CrossRef]
- Agarwal, R.; Dhar, V. Editorial—Big Data, Data Science, and Analytics: The Opportunity and Challenge for IS Research. Inf. Syst. Res. 2014, 25, 443–448. [Google Scholar] [CrossRef]
- Lu, W.; Chen, X.; Ho, D.C.W.; Wang, H. Analysis of the construction waste management performance in Hong Kong: The public and private sectors compared using big data. J. Clean. Prod. 2016, 112, 521–531. [Google Scholar] [CrossRef]
- Štefanič, M.; Stankovski, V. A review of technologies and applications for smart construction. Proc. Inst. Civ. Eng.—Civ. Eng. 2019, 172, 83–87. [Google Scholar] [CrossRef]
- Lin, B.; Liu, H. CO2 mitigation potential in China’s building construction industry: A comparison of energy performance. Build. Environ. 2015, 94, 239–251. [Google Scholar] [CrossRef]
- Wei, T.; Chen, Y. Green building design based on BIM and value engineering. J. Ambient Intell. Humaniz. Comput. 2020, 11, 3699–3706. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L.; Dounis, A.I.; Yang, R. Multi-agent control system with information fusion based comfort model for smart buildings. Appl. Energy 2012, 99, 247–254. [Google Scholar] [CrossRef]
- Asif, M.; Naeem, G.; Khalid, M. Digitalization for sustainable buildings: Technologies, applications, potential, and challenges. J. Clean. Prod. 2024, 450, 141814. [Google Scholar] [CrossRef]
- Qi, Q.; Tao, F. Digital Twin and Big Data Towards Smart Manufacturing and Industry 4.0: 360 Degree Comparison. IEEE Access 2018, 6, 3585–3593. [Google Scholar] [CrossRef]
- Buckman, A.H.; Mayfield, M.; Beck, S.B.M. What is a Smart Building? Smart Sustain. Built Environ. 2014, 3, 92–109. [Google Scholar] [CrossRef]
- Gonçalves, D.; Sheikhnejad, Y.; Oliveira, M.; Martins, N. One step forward toward smart city Utopia: Smart building energy management based on adaptive surrogate modelling. Energy Build. 2020, 223, 110146. [Google Scholar] [CrossRef]
- Wu, X.; Cao, Y.; Liu, W.; He, Y.; Xu, G.; Chen, Z.-S.; Liu, Y.; Skibniewski, M.J. BIM-driven building greenness evaluation system: An integrated perspective drawn from model data and collective experts’ judgments. J. Clean. Prod. 2023, 406, 136883. [Google Scholar] [CrossRef]
- Wong, J.K.-W.; Kuan, K.-L. Implementing ‘BEAM Plus’ for BIM-based sustainability analysis. Autom. Constr. 2014, 44, 163–175. [Google Scholar] [CrossRef]
- Ansah, M.K.; Chen, X.; Yang, H.; Lu, L.; Lam, P.T. A review and outlook for integrated BIM application in green building assessment. Sustain. Cities Soc. 2019, 48, 101576. [Google Scholar] [CrossRef]
- Wu, W.; Issa, R.R. Leveraging cloud-BIM for LEED automation. J. Inf. Technol. Constr. ITcon 2012, 17, 367–384. [Google Scholar]
Stages | String and Filter | No. of Articles |
---|---|---|
#1 | Database: Web of Science (Core Collection) Topic = (“building information model*” OR “BIM” OR” building information management” OR “green building information model*” OR “green bim”) Timespan: all year; document types: article and review | 11,680 |
#2 | Database: Web of Science (Core Collection) Topic = (“sustainab* building*” OR “building life cycle” OR “green building*” OR “sustainab* building design” OR “building environment* sustainab*” OR “sustainab* building construction” OR “sustainab* building operation”) Timespan: all year; document types: article and review | 6015 |
#3 | Database: Web of Science (Core Collection) Topic = (“big data*” OR “bigdata*” OR “bigdata analytics” OR “digital twin” OR “cloud computing” OR “data security” OR “real-time computing” OR “data integration” OR “data model*” OR “data mining” OR “data visualization” OR “data sharing”) Timespan: all year; document types: article and review | 178,242 |
(#2 OR #1) AND #3 | Remove duplicates | 1014 |
Software | Core Function | Complementary Role |
---|---|---|
HistCite | Literature/citation time series analysis; High-impact journal identification | Provide a core literature benchmark for the field, laying the foundation for subsequent subject analysis (Bibliometrix/CiteSpace) |
Bibexcel | Co-word matrix construction; Keyword frequency statistics | Generate structured data for SPSS clustering and CiteSpace evolution analysis |
CiteSpace | Knowledge evolution path; Research frontier detection | Reveal interdisciplinary hubs and knowledge turning points, forming a spatial and temporal complementarity with the Bibliometrix subject map |
SPSS Statistics | Hierarchical cluster analysis; Statistical validation | Convert Bibexcel’s matrix into a visual subject cluster to verify CiteSpace’s automatic clustering results |
Bibliometrix | Topic map analysis; Collaboration network visualization | Quantify the development stage of the research subject, and form a “dynamic-static” dual perspective with CiteSpace’s evolution path |
No. | Keyword | Freq. | No. | Keyword | Freq. |
---|---|---|---|---|---|
1 | BIM | 546 | 25 | Data model | 21 |
2 | Digital Twin | 302 | 26 | Virtual reality | 21 |
3 | Construction industry | 132 | 27 | Thermal comfort | 20 |
4 | Internet of things | 98 | 28 | Energy efficiency | 19 |
5 | Big data | 71 | 29 | Linked data | 19 |
6 | Facility management | 67 | 30 | Smart city | 19 |
7 | Internet | 63 | 31 | Life cycle assessment | 19 |
8 | Integration | 59 | 32 | Structural health monitoring | 18 |
9 | Industry foundation classes | 54 | 33 | Circular economy | 17 |
10 | Artificial intelligence | 46 | 34 | Fault detection | 16 |
11 | GIS | 45 | 35 | Infrastructure | 16 |
12 | Augmented reality | 39 | 36 | Ontology | 16 |
13 | Simulation | 35 | 37 | Sustainability | 16 |
14 | Cloud computing | 34 | 38 | Cyber–physical system | 14 |
15 | Green building | 34 | 39 | Neural network | 14 |
16 | Machine learning | 34 | 40 | Algorithm | 13 |
17 | Data mining | 32 | 41 | Construction management | 13 |
18 | Industry 4 | 32 | 42 | Energy performance | 13 |
19 | Life cycle management | 31 | 43 | Decision-making | 12 |
20 | Visualization | 31 | 44 | Asset management | 11 |
21 | Semantic web | 24 | 45 | Built environment | 11 |
22 | Smart construction | 24 | 46 | Collaboration | 11 |
23 | Data integration | 23 | 47 | Information technology | 11 |
24 | Deep learning | 22 |
BIM | Digital Twin | IoT | IFC | AI | Facility Management | Construction Industry | Machine Learning | Sustainability | |
---|---|---|---|---|---|---|---|---|---|
BIM | |||||||||
Digital Twin | 133 | ||||||||
Internet of Things | 50 | 40 | |||||||
IFC | 42 | 6 | 3 | ||||||
Artificial Intelligence | 15 | 17 | 13 | 1 | |||||
Facility management | 15 | 11 | 6 | 0 | 0 | ||||
Construction Industry | 14 | 12 | 0 | 1 | 0 | 0 | |||
Machine Learning | 11 | 9 | 4 | 0 | 11 | 2 | 2 | ||
Sustainability | 10 | 11 | 2 | 5 | 6 | 0 | 2 | 0 |
Years 2010 to 2014 | Years 2015 to 2018 | Years 2019 to 2024 | ||||||
---|---|---|---|---|---|---|---|---|
Keyword | Freq. | Centrality | Keyword | Freq. | Centrality | Keyword | Freq. | Centrality |
BIM | 12 | 0.21 | BIM | 39 | 0.13 | BIM | 463 | 0.01 |
Design | 6 | 0.22 | Model | 24 | 0.33 | Digital twin | 302 | 0.01 |
System | 5 | 0.3 | System | 19 | 0.18 | System | 132 | 0.03 |
Model | 4 | 0.19 | Design | 18 | 0.28 | Management | 125 | 0.02 |
IFC | 3 | 0.09 | Management | 17 | 0.16 | Framework | 117 | 0.05 |
Management | 3 | 0.07 | Framework | 14 | 0.19 | Construction industry | 113 | 0.03 |
Tracking | 2 | 0.01 | Construction | 14 | 0.14 | Model | 105 | 0.03 |
AEC | 2 | 0.0 | IFC | 12 | 0.15 | Design | 97 | 0.02 |
Framework | 2 | 0.05 | Performance | 10 | 0.12 | IoT | 96 | 0.01 |
Construction | 2 | 0.01 | Information technology | 9 | 0.05 | Technology | 65 | 0.03 |
GIS | 2 | 0.0 | Technology | 9 | 0.12 | Big data | 63 | 0.02 |
Commerce | 1 | 0.0 | Architecture | 7 | 0.08 | Internet | 63 | 0.02 |
Bridge | 1 | 0.0 | Consumption | 7 | 0.17 | Facility management | 62 | 0.02 |
Industry | 1 | 0.0 | GIS | 5 | 0.05 | Performance | 59 | 0.03 |
Augmented reality | 1 | 0.0 | Environment | 4 | 0.01 | Integration | 59 | 0.04 |
Thematic Category | Cluster | Keyword |
---|---|---|
Smart technologies for sustainable building systems | 1 | Structural Health Monitoring, Digital Transformation, Operation and Maintenance, Smart City, Predictive Maintenance, Information Management, Facility management, Industry 4.0, Construction Industry, Energy Efficiency, IoT, Sustainability, Machine Learning, Asset Management, Computer Vision, Sustainable Construction, Circular Economy, Life Cycle, BIM, Construction Management, Sustainable Development, Ontology |
Advanced technologies | 2 | Artificial Intelligence, Augmented Reality, Virtual Reality, Deep Learning |
Interoperability and data integration | 3 | Interoperability, Citygml, Data Integration, Linked Data, Semantic Web, Ifc, Gis, Big Data, Blockchain, Cloud Computing, Integration, Visualization, Digital Twin, Smart Building |
Data mining and green building | 4 | Data Mining, Green Building |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Deng, L.; Wang, F.; Xiong, W.; Wu, T.; Demian, P.; Osmani, M. Building Information Modeling and Big Data in Sustainable Building Management: Research Developments and Thematic Trends via Data Visualization Analysis. Systems 2025, 13, 595. https://doi.org/10.3390/systems13070595
Liu Z, Deng L, Wang F, Xiong W, Wu T, Demian P, Osmani M. Building Information Modeling and Big Data in Sustainable Building Management: Research Developments and Thematic Trends via Data Visualization Analysis. Systems. 2025; 13(7):595. https://doi.org/10.3390/systems13070595
Chicago/Turabian StyleLiu, Zhen, Langyue Deng, Fenghong Wang, Wei Xiong, Tzuhui Wu, Peter Demian, and Mohamed Osmani. 2025. "Building Information Modeling and Big Data in Sustainable Building Management: Research Developments and Thematic Trends via Data Visualization Analysis" Systems 13, no. 7: 595. https://doi.org/10.3390/systems13070595
APA StyleLiu, Z., Deng, L., Wang, F., Xiong, W., Wu, T., Demian, P., & Osmani, M. (2025). Building Information Modeling and Big Data in Sustainable Building Management: Research Developments and Thematic Trends via Data Visualization Analysis. Systems, 13(7), 595. https://doi.org/10.3390/systems13070595