Framing and Evaluating Task-Centered Generative Artificial Intelligence Literacy for Higher Education Students
Abstract
1. Introduction
2. Literature Review
2.1. Preparing Students for the Digital Age
2.2. Skills, Literacies, and Competencies for the Age of Generative Artificial Intelligence
3. Developing a Task-Centered Generative Artificial Intelligence Literacy Framework
3.1. Characteristics of the Framework
3.1.1. Relevance to Learning Theories: Bloom’s Revised Taxonomy
3.1.2. Relevance to Students’ Actual Learning Experience: A Task-Centered View
3.1.3. Relevance to Instructors Across Disciplines
3.1.4. Being Actionable for Instructors
3.2. Methodology
3.2.1. Participants
3.2.2. Process
3.3. GenAI Literacy Framework
3.3.1. Know
3.3.2. Understand
3.3.3. Apply
3.3.4. Analyze
3.3.5. Evaluate
3.3.6. Create
3.4. Comparing Our Framework with Existing Frameworks
4. Exploring GenAI Literacy Among University Students
4.1. Methodology
4.1.1. Research Field and Research Population
4.1.2. Research Variables
4.1.3. Research Tool, Procedure, and Analysis
4.2. Findings
4.2.1. Using GenAI-Based Tools and Demographics, Academic Profile (RQ1)
- Demographics (Gender, Age)
- Academic Characteristics (Faculty, Education Level)
4.2.2. GenAI Literacy and Demographics, Academic Profile, GenAI Use (RQ2)
- Demographics (Gender, Age)
- Academic Characteristics (Faculty, Education Level)
- Experience in Using GenAI Use
4.2.3. Teaching GenAI Literacy (RQ3)
- Demographics (Gender, Age)
- Academic Characteristics (Faculty, Education Level)
4.2.4. How and Why Should the Use of GenAI Be Taught?
5. Discussion
5.1. A New GenAI Literacy for Higher Education Students
5.2. GenAI Literacy Among Higher-Education Students
5.3. Teaching GenAI Literacy in Higher-Education
6. Conclusions and Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jochim, J.; Lenz-Kesekamp, V.K. Teaching and testing in the era of text-generative AI: Exploring the needs of students and teachers. Inf. Learn. Sci. 2025, 126, 149–169. [Google Scholar] [CrossRef]
- Smolansky, A.; Cram, A.; Raduescu, C.; Zeivots, S.; Huber, E.; Kizilcec, R.F. Educator and student perspectives on the impact of generative AI on assessments in higher education. In Proceedings of the Tenth ACM Conference on Learning @ Scale, Copenhagen, Denmark, 20–22 July 2023; pp. 378–382. [Google Scholar] [CrossRef]
- Wood, D.; Moss, S.H. Evaluating the impact of students’ generative AI use in educational contexts. J. Res. Innov. Teach. Learn. 2024, 17, 152–167. [Google Scholar] [CrossRef]
- Belkina, M.; Daniel, S.; Nikolic, S.; Haque, R.; Lyden, S.; Neal, P.; Grundy, S.; Hassan, G.M. Implementing generative AI (GenAI) in higher education: A systematic review of case studies. Comput. Educ. Artif. Intell. 2025, 8, 100407. [Google Scholar] [CrossRef]
- Kurtz, G.; Amzalag, M.; Shaked, N.; Zaguri, Y.; Kohen-Vacs, D.; Gal, E.; Zailer, G.; Barak-Medina, E. Strategies for integrating generative AI into higher education: Navigating challenges and leveraging opportunities. Educ. Sci. 2024, 14, 503. [Google Scholar] [CrossRef]
- Eshet-Alkalai, Y. Digital literacy: A conceptual framework for survival skills in the digital era. J. Educ. Multimed. Hypermedia 2004, 13, 93–106. [Google Scholar]
- Eshet, Y. Thinking in the digital era: A revised model for digital literacy. Issues Informing Sci. Inf. Technol. 2012, 9, 267–276. [Google Scholar]
- Mioduser, D.; Nachmias, R.; Forkosh-Baruch, A. New literacies for the knowledge society. In International Handbook of Information Technology in Primary and Secondary Education; Voogt, J., Knezek, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 23–42. [Google Scholar] [CrossRef]
- Partnership for 21st Century Skills. P21 Framework Definitions. 2009. Available online: http://www.p21.org/our-work/p21-framework (accessed on 22 June 2025).
- Chiu, T.K.F. Future research recommendations for transforming higher education with generative AI. Comput. Educ. Artif. Intell. 2024, 6, 100197. [Google Scholar] [CrossRef]
- Dake, D.M. Visual thinking skills for the digital age. In Proceedings of the Visual Literacy in the Digital Age: Selected Readings from the Annual Conference of the International Visual Literacy Association, Rochester, NY, USA, 13–17 October 1993. [Google Scholar]
- Jaffe, S.H.; Nachmias, R. Personal information management and learning. Int. J. Technol. Enhanc. Learn. 2011, 3, 570. [Google Scholar] [CrossRef]
- Brennan, K.; Resnick, M. New frameworks for studying and assessing the development of computational thinking. In Proceedings of the 2012 Annual Meeting of the American Educational Research Association, Vancouver, BC, Canada, 13–17 April 2012; pp. 1–25. [Google Scholar]
- Tinmaz, H.; Lee, Y.-T.; Fanea-Ivanovici, M.; Baber, H. A systematic review on digital literacy. Smart Learn. Environ. 2022, 9, 21. [Google Scholar] [CrossRef]
- Marin-Zapata, S.I.; Román-Calderón, J.P.; Robledo-Ardila, C.; Jaramillo-Serna, M.A. Soft skills, do we know what we are talking about? Rev. Manag. Sci. 2022, 16, 969–1000. [Google Scholar] [CrossRef]
- Lambert, B.; Plank, R.E.; Reid, D.A.; Fleming, D. A Competency Model for Entry Level Business-to-Business Services Salespeople. Serv. Mark. Q. 2014, 35, 84–103. [Google Scholar] [CrossRef]
- Kirsch, I.S.; Jungeblut, A.; Jenkins, L.; Kolstad, A. Adult Literacy in America; DIANE Publishing: Collingdale, PA, USA, 1994. [Google Scholar]
- Chacka, C. Skills, competencies and literacies attributed to 4IR/Industry 4.0: Scoping review. IFLA J. 2020, 46, 369–399. [Google Scholar] [CrossRef]
- Martínez-Bravo, M.C.; Sádaba Chalezquer, C.; Serrano-Puche, J. Dimensions of digital literacy in the 21st century competency frameworks. Sustainability 2022, 14, 1867. [Google Scholar] [CrossRef]
- Haenlein, M.; Kaplan, A. A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. Calif. Manag. Rev. 2019, 61, 5–14. [Google Scholar] [CrossRef]
- Wang, P. On defining artificial intelligence. J. Artif. Gen. Intell. 2019, 10, 1–37. [Google Scholar] [CrossRef]
- Chen, L.; Chen, P.; Lin, Z. Artificial intelligence in education: A review. IEEE Access 2020, 8, 75264–75278. [Google Scholar] [CrossRef]
- Doroudi, S. The intertwined histories of artificial intelligence and education. Int. J. Artif. Intell. Educ. 2023, 33, 885–928. [Google Scholar] [CrossRef]
- Creamer, E. ‘Hallucinate’ Chosen as Cambridge Dictionary’s Word of the Year. The Guardian. 2023. Available online: https://www.theguardian.com/books/2023/nov/15/hallucinate-cambridge-dictionary-word-of-the-year (accessed on 22 June 2025).
- Italie, L. What’s Merriam-Webster’s Word of the Year for 2023? Hint: Be True to Yourself. AP News. 2023. Available online: https://apnews.com/article/merriam-webster-word-of-year-2023-a9fea610cb32ed913bc15533acab71cc (accessed on 22 June 2025).
- Macquarie Dictionary. Announcing the Macquarie Dictionary Word of the Year 2023. Macquarie Dictionary. 2022. Available online: https://www.macquariedictionary.com.au/the-word-of-the-year-2022-is/ (accessed on 22 June 2025).
- Wang, B.; Rau, P.-L.P.; Yuan, T. Measuring user competence in using artificial intelligence: Validity and reliability of artificial intelligence literacy scale. Behav. Inf. Technol. 2023, 42, 1324–1337. [Google Scholar] [CrossRef]
- Bozkurt, A. Why generative AI literacy, why now and why it matters in the educational landscape? Kings, queens and GenAI dragons. Open Prax. 2024, 16, 283–290. [Google Scholar] [CrossRef]
- Cha, Y.; Dai, Y.; Lin, Z.; Liu, A.; Lim, C.P. Empowering university educators to support generative AI-enabled learning: Proposing a competency framework. Procedia CIRP 2024, 128, 256–261. [Google Scholar] [CrossRef]
- Jin, Y.; Martinez-Maldonado, R.; Gašević, D.; Yan, L. GLAT: The generative AI literacy assessment test. Comput. Educ. Artif. Intell. 2025, 9, 100436. [Google Scholar] [CrossRef]
- Sattelmaier, L.; Pawlowski, J.M. Towards a generative artificial intelligence competence framework for schools. In Proceedings of the International Conference on Enterprise and Industrial Systems (ICOEINS 2023), Advances in Economics, Business and Management Research 270; Sulistiyo, M.D., Nugraha, R.A., Eds.; Springer Nature: Berlin/Heidelberg, Germany, 2023; pp. 291–307. [Google Scholar] [CrossRef]
- Annapureddy, R.; Fornaroli, A.; Gatica-Perez, D. Generative AI literacy: Twelve defining competencies. Digit. Gov. Res. Pract. 2025, 6, 13. [Google Scholar] [CrossRef]
- Bloom, B.S.; Engelhart, M.D.; Furst, E.J.; Hill, W.H.; Krathwohl, D.R. Taxonomy of Educational Objectives: The Classification of Educational goals. Handbook I: Cognitive Domain; David McKay Company: Ann Arbor, MI, USA, 1956. [Google Scholar]
- Krathwohl, D.R. A revision of Bloom’s taxonomy: An overview. Theory Into Pract. 2002, 41, 212–218. [Google Scholar] [CrossRef]
- Alaghbary, G.S. Integrating technology with Bloom’s revised taxonomy: Web 2.0-enabled learning designs for online learning. Asian EFL J. 2021, 28, 10–37. [Google Scholar]
- Churches, A. Bloom’s Digital Taxonomy. 2008. Available online: http://burtonslifelearning.pbworks.com/f/BloomDigitalTaxonomy2001.pdf (accessed on 22 June 2025).
- Faraon, M.; Granlund, V.; Rönkkö, K. Artificial intelligence practices in higher education using Bloom’s digital taxonomy. In Proceedings of the 2023 5th International Workshop on Artificial Intelligence and Education (WAIE), Tokyo, Japan, 28–30 September 2023; pp. 53–59. [Google Scholar] [CrossRef]
- Coşgun Ögeyik, M. Using Bloom’s digital taxonomy as a framework to evaluate webcast learning experience in the context of COVID-19 pandemic. Educ. Inf. Technol. 2022, 27, 11219–11235. [Google Scholar] [CrossRef]
- Lo, S.M.; Larsen, V.M.; Yee, A.T. A two-dimensional and non-hierarchical framework of Bloom’s taxonomy for biology. FASEB J. 2016, 30 (Suppl. S1), 662.14. [Google Scholar] [CrossRef]
- Bagchi, S.N.; Sharma, R. Hierarchy in Bloom’s Taxonomy: An empirical case-based exploration using MBA students. J. Case Res. 2014, 5, 57–79. [Google Scholar]
- Kunen, S.; Cohen, R.; Solman, R. A levels-of-processing analysis of Bloom’s Taxonomy. J. Educ. Psychol. 1981, 73, 202–211. [Google Scholar] [CrossRef]
- Seddon, G.M. The properties of Bloom’s Taxonomy of educational objectives for the cognitive domain. Rev. Educ. Res. 1978, 48, 303–323. [Google Scholar] [CrossRef]
- Lalwani, A.; Agrawal, S. Validating revised Bloom’s taxonomy using deep knowledge tracing. In Artificial Intelligence in Education; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 225–238. [Google Scholar] [CrossRef]
- Bruehler, B.B. Traversing Bloom’s taxonomy in an introductory scripture course. Teach. Theol. Relig. 2018, 21, 92–109. [Google Scholar] [CrossRef]
- Mullis, I.V.S.; Martin, M.O.; Foy, P.; Hooper, M. TIMSS 2015 International Results in Mathematics; International Association for the Evaluation of Educational Achievement: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Hyder, I.; Bhamani, S. Bloom’s taxonomy (cognitive domain) in higher education settings: Reflection brief. J. Educ. Educ. Dev. 2016, 3, 288–300. [Google Scholar] [CrossRef]
- De Stefano, V. “Negotiating the algorithm”: Automation, artificial intelligence, and labor protection. Comp. Labor Law Policy J. 2019, 41, 15–46. [Google Scholar]
- Safari, N.; Techatassanasoontorn, A.A.; Diaz Andrade, A. Auto-pilot, co-pilot and pilot: Human and generative AI configurations in software development. In Proceedings of the International Conference on Information Systems, Edinburgh, UK, 14–16 August 2024. [Google Scholar]
- Bringman-Rodenbarger, L.; Hortsch, M. How students choose e-learning resources: The importance of ease, familiarity, and convenience. FASEB BioAdvances 2020, 2, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Byungura, J.C.; Hansson, H.; Muparasi, M.; Ruhinda, B. Familiarity with technology among first-year students in Rwandan tertiary education. Electron. J. e-Learn. 2018, 16, 30–45. Available online: https://www.ejel.org (accessed on 22 June 2025).
- Strzelecki, A. To use or not to use ChatGPT in higher education? A study of students’ acceptance and use of technology. Interact. Learn. Environ. 2024, 32, 5142–5155. [Google Scholar] [CrossRef]
- Szymkowiak, A.; Melović, B.; Dabić, M.; Jeganathan, K.; Kundi, G.S. Information technology and Gen Z: The role of teachers, the internet, and technology in the education of young people. Technol. Soc. 2021, 65, 101565. [Google Scholar] [CrossRef]
- Prensky, M. How to teach with technology: Keeping both teachers and students comfortable in an era of exponential change. Emerg. Technol. Learn. 2007, 2, 40–46. [Google Scholar]
- Cassidy, E.D.; Martinez, M.; Shen, L. Not in love, or not in the know? Graduate student and faculty use (and non-use) of e-books. J. Acad. Librariansh. 2012, 38, 326–332. [Google Scholar] [CrossRef]
- Dahlstrom, E.; Brooks, D.C.; Bichsel, J. The Current Ecosystem of Learning Management Systems in Higher Education: Student, Faculty, and IT Perspectives; ECAR: Louisville, CO, USA, 2014. [Google Scholar]
- Dai, Y.; Xiao, J.-Y.; Huang, Y.; Zhai, X.; Wai, F.-C.; Zhang, M. How generative AI enables an online project-based learning platform: An applied study of learning behavior analysis in undergraduate students. Appl. Sci. 2025, 15, 2369. [Google Scholar] [CrossRef]
- Tu, J.; Hadan, H.; Wang, D.M.; Sgandurra, S.A.; Mogavi, R.H.; Nacke, L.E. Augmenting the author: Exploring the potential of AI collaboration in academic writing. arXiv 2024, arXiv:2404.16071. [Google Scholar]
- Federiakin, D.; Molerov, D.; Zlatkin-Troitschanskaia, O.; Maur, A. Prompt engineering as a new 21st century skill. Front. Educ. 2024, 9, 1366434. [Google Scholar] [CrossRef]
- Oppenlaender, J.; Linder, R.; Silvennoinen, J. Prompting AI art: An investigation into the creative skill of prompt engineering. Int. J. Hum. –Comput. Interact. 2024, 1–23. [Google Scholar] [CrossRef]
- Barzilay, A.R. Discrimination without discriminating: Learned gender inequality in the labor market and gig economy. Cornell Law Sch. 2018, 28, 545–568. [Google Scholar] [CrossRef]
- Lobel, O. The Equality Machine: Harnessing Digital Technology for a Brighter, More Inclusive Future; PublicAffairs: New York, NY, USA, 2022. [Google Scholar]
- Doellgast, V.; Wagner, I.; O’Brady, S. Negotiating limits on algorithmic management in digitalised services: Cases from Germany and Norway. Transf. Eur. Rev. Labour Res. 2023, 29, 105–120. [Google Scholar] [CrossRef]
- Al-kfairy, M.; Mustafa, D.; Kshetri, N.; Insiew, M.; Alfandi, O. Ethical challenges and solutions of generative AI: An interdisciplinary perspective. Informatics 2024, 11, 58. [Google Scholar] [CrossRef]
- Hagendorff, T. Mapping the ethics of generative AI: A comprehensive scoping review. Minds Mach. 2024, 34, 39. [Google Scholar] [CrossRef]
- Nguyen, K.V. The use of generative AI tools in higher education: Ethical and pedagogical principles. J. Acad. Ethics 2025. [Google Scholar] [CrossRef]
- Zhu, W.; Huang, L.; Zhou, X.; Li, X.; Shi, G.; Ying, J.; Wang, C. Could AI ethical anxiety, perceived ethical risks and ethical awareness about AI influence university students’ use of generative AI products? An ethical perspective. Int. J. Hum. –Comput. Interact. 2025, 41, 742–764. [Google Scholar] [CrossRef]
- Olson, D.R.; Astington, J.W. Talking about text: How literacy contributes to thought. J. Pragmat. 1990, 14, 705–721. [Google Scholar] [CrossRef]
- Hasannejad, M.R.; Bahador, H.; Kazemi, S.A. Powerful vocabulary acquisition through texts comparison. Int. J. Appl. Linguist. Engl. Lit. 2014, 4, 213–220. [Google Scholar] [CrossRef]
- Henkel, M.; Jacob, A.; Perrey, L. What shapes our trust in scientific information? A review of factors influencing perceived scientificness and credibility. In Proceedings of the 8th European Conference on Information Literacy, Kraków, Poland, 9–12 October 2023; pp. 107–118. [Google Scholar] [CrossRef]
- Metzger, M.J. Making sense of credibility on the web: Models for evaluating online information and recommendations for future research. J. Am. Soc. Inf. Sci. Technol. 2007, 58, 2078–2091. [Google Scholar] [CrossRef]
- Pornpitakpan, C. The persuasiveness of source credibility: A critical review of five decades’ evidence. J. Appl. Soc. Psychol. 2004, 34, 243–281. [Google Scholar] [CrossRef]
- Ou, M.; Zheng, H.; Zeng, Y.; Hansen, P. Trust it or not: Understanding users’ motivations and strategies for assessing the credibility of AI-generated information. New Media Soc. 2024, 14614448241293154. [Google Scholar] [CrossRef]
- Chakraborty, U.; Biswal, S.K. Is ChatGPT a responsible communication: A study on the credibility and adoption of conversational artificial intelligence. J. Promot. Manag. 2024, 30, 929–958. [Google Scholar] [CrossRef]
- Wei, X.; Wang, L.; Lee, L.-K.; Liu, R. The effects of generative AI on collaborative problem-solving and team creativity performance in digital story creation: An experimental study. Int. J. Educ. Technol. High. Educ. 2025, 22, 23. [Google Scholar] [CrossRef]
- Panadero, E. A review of self-regulated learning: Six models and four directions for research. Front. Psychol. 2017, 8, 422. [Google Scholar] [CrossRef]
- Puustinen, M.; Pulkkinen, L. Models of self-regulated learning: A review. Scand. J. Educ. Res. 2001, 45, 269–286. [Google Scholar] [CrossRef]
- Zimmerman, B.J. Becoming a self-regulated learner: An overview. Theory Into Pract. 2002, 41, 64–70. [Google Scholar] [CrossRef]
- Faza, A.; Lestari, I.A. Self-regulated learning in the digital age: A systematic review of strategies, technologies, benefits, and challenges. Int. Rev. Res. Open Distrib. Learn. 2025, 26, 23–58. [Google Scholar] [CrossRef]
- Prasse, D.; Webb, M.; Deschênes, M.; Parent, S.; Aeschlimann, F.; Goda, Y.; Yamada, M.; Raynault, A. Challenges in promoting self-regulated learning in technology supported learning environments: An umbrella review of systematic reviews and meta-rnalyses. Technol. Knowl. Learn. 2024, 29, 1809–1830. [Google Scholar] [CrossRef]
- Thornhill-Miller, B.; Camarda, A.; Mercier, M.; Burkhardt, J.-M.; Morisseau, T.; Bourgeois-Bougrine, S.; Vinchon, F.; El Hayek, S.; Augereau-Landais, M.; Mourey, F.; et al. Creativity, critical thinking, communication, and collaboration: Assessment, certification, and promotion of 21st century skills for the future of work and education. J. Intell. 2023, 11, 54. [Google Scholar] [CrossRef]
- Cain, W. Prompting change: Exploring prompt engineering in large language model AI and its potential to transform education. TechTrends 2024, 68, 47–57. [Google Scholar] [CrossRef]
- Premkumar, P.P.; Yatigammana, M.R.K.N.; Kannangara, S. Impact of generative AI on critical thinking skills in undergraduates: A systematic review. J. Desk Res. Rev. Anal. 2024, 2, 199–215. [Google Scholar] [CrossRef]
- Sardi, J.; Darmansyah Candra, O.; Yuliana, D.F.; Habibullah Yanto, D.T.P.; Eliza, F. How generative AI influences students’ self-regulated learning and critical thinking skills? A systematic review. Int. J. Eng. Pedagog. IJEP 2025, 15, 94–108. [Google Scholar] [CrossRef]
- Akdilek, S.; Akdilek, I.; Punyanunt-Carter, N.M. The influence of generative AI on interpersonal communication dynamics. In The Role of Generative AI in the Communication Classroom; IGI Global: Hershey, PA, USA, 2024; pp. 167–190. [Google Scholar] [CrossRef]
- Gans, J.S. How will generative AI impact communication? Econ. Lett. 2024, 242, 111872. [Google Scholar] [CrossRef]
- Habib, S.; Vogel, T.; Anli, X.; Thorne, E. How does generative artificial intelligence impact student creativity? J. Creat. 2024, 34, 100072. [Google Scholar] [CrossRef]
- Heigl, R. Generative artificial intelligence in creative contexts: A systematic review and future research agenda. Manag. Rev. Q. 2025. [Google Scholar] [CrossRef]
- Rafner, J.; Beaty, R.E.; Kaufman, J.C.; Lubart, T.; Sherson, J. Creativity in the age of generative AI. Nat. Hum. Behav. 2023, 7, 1836–1838. [Google Scholar] [CrossRef] [PubMed]
- Essa, A.; Lataifeh, M. Evaluating Generative AI Tools for Visual Asset Creation—An Educational Approach; Springer Nature: Cham, Switzerland, 2024; pp. 269–282. [Google Scholar] [CrossRef]
- Han, A.; Cai, Z. Design implications of generative AI systems for visual storytelling for young learners. In Proceedings of the 22nd Annual ACM Interaction Design and Children Conference, Chicago, IL, USA, 19–23 June 2023; pp. 470–474. [Google Scholar] [CrossRef]
- Choi, W.; Bak, H.; An, J.; Zhang, Y.; Stvilia, B. College students’ credibility assessments of GenAI-generated information for academic tasks: An interview study. J. Assoc. Inf. Sci. Technol. 2025, 76, 867–883. [Google Scholar] [CrossRef]
- Hersh, W. Search still matters: Information retrieval in the era of generative AI. J. Am. Med. Inform. Assoc. 2024, 31, 2159–2161. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, D.; Creely, E.; Gruber, N.; Leahy, S. Social-emotional learning and generative AI: A critical literature review and framework for teacher education. J. Teach. Educ. 2025, 76, 312–328. [Google Scholar] [CrossRef]
- Ortega-Ochoa, E.; Sabaté, J.-M.; Arguedas, M.; Conesa, J.; Daradoumis, T.; Caballé, S. Exploring the utilization and deficiencies of generative artificial intelligence in students’ cognitive and emotional needs: A systematic mini-review. Front. Artif. Intell. 2024, 7, 1493566. [Google Scholar] [CrossRef]
- Peng, D.; Yu, Z. A literature review of digital literacy over two decades. Educ. Res. Int. 2022, 2022, 2533413. [Google Scholar] [CrossRef]
- Hayes, A.F.; Coutts, J.J. Use Omega rather than Cronbach’s Alpha for estimating reliability. But…. Commun. Methods Meas. 2020, 14, 1–24. [Google Scholar] [CrossRef]
- Kalkbrenner, M.T. Alpha, Omega, and H internal consistency reliability estimates: Reviewing these options and when to use them. Couns. Outcome Res. Eval. 2023, 14, 77–88. [Google Scholar] [CrossRef]
- Luo, J.A. critical review of GenAI policies in higher education assessment: A call to reconsider the “originality” of students’ work. Assess. Eval. High. Educ. 2024, 49, 651–664. [Google Scholar] [CrossRef]
- Wang, H.; Dang, A.; Wu, Z.; Mac, S. Generative AI in higher education: Seeing ChatGPT through universities’ policies, resources, and guidelines. Comput. Educ. Artif. Intell. 2024, 7, 100326. [Google Scholar] [CrossRef]
- Yusuf, A.; Pervin, N.; Román-González, M. Generative AI and the future of higher education: A threat to academic integrity or reformation? Evidence from multicultural perspectives. Int. J. Educ. Technol. High. Educ. 2024, 21, 21. [Google Scholar] [CrossRef]
- O’Dea, X.; Tsz Kit Ng, D.; O’Dea, M.; Shkuratskyy, V. Factors affecting university students’ generative AI literacy: Evidence and evaluation in the UK and Hong Kong contexts. Policy Futures Educ. 2024, 14782103241287401. [Google Scholar] [CrossRef]
- Alvarado-Bravo, N.; Aldana-Trejo, F.; Duran-Herrera, V.; Rasilla-Rovegno, J.; Suarez-Bazalar, R.; Torres-Quiroz, A.; Paredes-Soria, A.; Gonzales-Saldaña, S.H.; Tomás-Quispe, G.; Olivares-Zegarra, S. Artificial intelligence as a tool for the development of soft skills: A bibliometric review in the context of higher education. Int. J. Learn. Teach. Educ. Res. 2024, 23, 379–394. [Google Scholar] [CrossRef]
- Mohammed, F.S.; Ozdamli, F. A systematic literature review of soft skills in information technology education. Behav. Sci. 2024, 14, 894. [Google Scholar] [CrossRef]
- Wang, J.; Fan, W. The effect of ChatGPT on students’ learning performance, learning perception, and higher-order thinking: Insights from a meta-analysis. Humanit. Soc. Sci. Commun. 2025, 12, 621. [Google Scholar] [CrossRef]
- Arowosegbe, A.; Alqahtani, J.S.; Oyelade, T. Students’ perception of generative AI use for academic purpose in UK higher education. Front. Educ. 2024, 9, 1463208. [Google Scholar] [CrossRef]
- Johnston, H.; Wells, R.F.; Shanks, E.M.; Boey, T.; Parsons, B.N. Student perspectives on the use of generative artificial intelligence technologies in higher education. Int. J. Educ. Integr. 2024, 20, 2. [Google Scholar] [CrossRef]
- OECD. At What Age do University Students Earn Their First Degree? OECD: Paris, France, 2014. [Google Scholar]
- Chan, C.K.Y.; Hu, W. Students’ voices on generative AI: Perceptions, benefits, and challenges in higher education. Int. J. Educ. Technol. High. Educ. 2023, 20, 43. [Google Scholar] [CrossRef]
- Țala, M.L.; Muller, C.N.; Nastase, I.A.; State, O.; Gheorghe, G. Exploring university students’ perceptions of generative artificial intelligence in education. Amfiteatru Econ. 2024, 26, 71. [Google Scholar] [CrossRef]
- Sullivan, M.; McAuley, M.; Degiorgio, D.; McLaughlan, P. Improving students’ generative AI literacy: A single workshop can improve confidence and understanding. J. Appl. Learn. Teach. 2024, 7, 88–97. [Google Scholar] [CrossRef]
- Cordero, J.; Torres-Zambrano, J.; Cordero-Castillo, A. Integration of generative artificial intelligence in higher education: Best practices. Educ. Sci. 2024, 15, 32. [Google Scholar] [CrossRef]
- Kelly, A.; Sullivan, M.; Strampel, K. Teaching generative AI in higher education: Strategies, implications, and reflective practices. In Teaching and Learning in the Age of Generative AI: Evidence-Based Approaches to Pedagogy, Ethics, and Beyond; Corbeil, J.R., Corbeil, M.E., Eds.; Routledge: London, UK, 2025; pp. 213–234. [Google Scholar] [CrossRef]
- Riaz, S.; Mushtaq, A. Optimizing generative AI integration in higher education: A framework for enhanced student engagement and learning outcomes. In Proceedings of the 2024 Advances in Science and Engineering Technology International Conferences (ASET), Abu Dhabi, United Arab Emirates, 3–5 June 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Prather, J.; Leinonen, J.; Kiesler, N.; Gorson Benario, J.; Lau, S.; MacNeil, S.; Norouzi, N.; Opel, S.; Pettit, V.; Porter, L.; et al. Beyond the hype: A comprehensive review of current trends in generative AI research, teaching practices, and tools. In Proceedings of the 2024 Working Group Reports on Innovation and Technology in Computer Science Education, Milan, Italy, 8 July 2024; pp. 300–338. [Google Scholar] [CrossRef]
- Hashmi, N.; Bal, A.S. Generative AI in higher education and beyond. Bus. Horiz. 2024, 67, 607–614. [Google Scholar] [CrossRef]
- Đerić, E.; Frank, D.; Vuković, D. Exploring the ethical implications of using generative AI tools in higher education. Informatics 2025, 12, 36. [Google Scholar] [CrossRef]
- Quince, Z.; Petkoff, K.; Michael, R.N.; Daniel, S.; Nikolic, S. The current ethical considerations of using GenAI in engineering education and practice: A systematic literature review. In Proceedings of the 35th Annual Conference of the Australasian Association for Engineering Education (AAEE 2024), Christchurch, New Zealand, 1–4 December 2024; pp. 509–517. [Google Scholar]
- Arista, A.; Shuib, L.; Ismail, M.A. Systematic literature review and bibliometric analysis on ethical policies for generative artificial intelligence (GAI) in higher education institutions (HEIs). In Proceedings of the 2024 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS), Banten, Indonesia, 20–21 November 2024; pp. 454–459. [Google Scholar] [CrossRef]
Bloom’s Category | Skill(s) |
---|---|
Know | Become familiar with GenAI-based tools that can assist in performing a given task Stay updated on innovations in the world of GenAI |
Understand | Understand how to make the most of GenAI-based tools |
Apply | Formulate prompts that lead to the desired results Use GenAI-based tools ethically in the context of a given task |
Analyze | Compare the outputs of different GenAI-based tools to a given task |
Evaluate | Verify the accuracy of the output given by GenAI-based tools by cross-checking with other sources and prior knowledge |
Create | Produce quality output for a given task using GenAI-based tools |
Item # | Category | Item |
---|---|---|
1 | Know | I am familiar with GenAI tools that can help me accomplish this task |
2 | Know | I am up to date on new GenAI tools that can help me with this task |
3 | Understand | I understand how to make optimal use of GenAI tools to complete this task |
4 | Apply | I know how to write prompts that will give me the desired results for carrying out this task |
5 | Apply | I know how to make ethical use of GenAI tools for the purpose of carrying out this task |
6 | Analyze | I know how to compare the outputs of different GenAI tools when performing this task |
7 | Evaluate | I know how to assess the correctness of the output of GenAI tools when performing this task, referring to the limitations of AI, to other sources, and to my previous knowledge |
8 | Create | I know how to produce an optimal outcome for this task using a variety of GenAI tools |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hershkovitz, A.; Tabach, M.; Reich, Y.; Lurie, L.; Cholcman, T. Framing and Evaluating Task-Centered Generative Artificial Intelligence Literacy for Higher Education Students. Systems 2025, 13, 518. https://doi.org/10.3390/systems13070518
Hershkovitz A, Tabach M, Reich Y, Lurie L, Cholcman T. Framing and Evaluating Task-Centered Generative Artificial Intelligence Literacy for Higher Education Students. Systems. 2025; 13(7):518. https://doi.org/10.3390/systems13070518
Chicago/Turabian StyleHershkovitz, Arnon, Michal Tabach, Yoram Reich, Lilach Lurie, and Tamar Cholcman. 2025. "Framing and Evaluating Task-Centered Generative Artificial Intelligence Literacy for Higher Education Students" Systems 13, no. 7: 518. https://doi.org/10.3390/systems13070518
APA StyleHershkovitz, A., Tabach, M., Reich, Y., Lurie, L., & Cholcman, T. (2025). Framing and Evaluating Task-Centered Generative Artificial Intelligence Literacy for Higher Education Students. Systems, 13(7), 518. https://doi.org/10.3390/systems13070518