Rewiring Sustainability: How Digital Transformation and Fintech Innovation Reshape Environmental Trajectories in the Industry 4.0 Era
Abstract
:1. Introduction
2. Literature Review
3. Variables and Method
3.1. Variables
3.2. Method
4. Results and Discussion
4.1. Unit Root Test
4.2. Cointegration Test
4.3. Results of FMOLS Estimation
4.4. Robustness Test
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, C.; Khan, A.; Xue, J.; Huang, X. Are Digital Economy and Financial Structure Driving Renewable Energy Technology Innovations: A Major Eight Countries Perspective. Appl. Energy 2024, 362, 122990. [Google Scholar] [CrossRef]
- Hossain, M.R.; Rao, A.; Sharma, G.D.; Dev, D.; Kharbanda, A. Empowering Energy Transition: Green Innovation, Digital Finance, and the Path to Sustainable Prosperity through Green Finance Initiatives. Energy Econ. 2024, 136, 107736. [Google Scholar] [CrossRef]
- Hou, F.; Khan, M.A.; Hayat, M.T. Empirical Linkages among Financial Development, Digital Infrastructure, Energy Transition and Natural Resources Footprints in BRICS Region. Resour. Policy 2024, 90, 104748. [Google Scholar] [CrossRef]
- Hasan, I.; Tucci, C.L. The Innovation–Economic Growth Nexus: Global Evidence. Res. Policy 2010, 39, 1264–1276. [Google Scholar] [CrossRef]
- York, J.G.; Venkataraman, S. The Entrepreneur–Environment Nexus: Uncertainty, Innovation, and Allocation. J. Bus. Ventur. 2010, 25, 449–463. [Google Scholar] [CrossRef]
- Van den Bergh, J.C.; Truffer, B.; Kallis, G. Environmental Innovation and Societal Transitions: Introduction and Overview. Environ. Innov. Soc. Transit. 2011, 1, 1–23. [Google Scholar] [CrossRef]
- Horbach, J.; Rammer, C.; Rennings, K. Determinants of Eco-Innovations by Type of Environmental Impact—The Role of Regulatory Push/Pull, Technology Push and Market Pull. Ecol. Econ. 2012, 78, 112–122. [Google Scholar] [CrossRef]
- Saboori, B.; Sulaiman, J. Environmental Degradation, Economic Growth and Energy Consumption: Evidence of the Environmental Kuznets Curve in Malaysia. Energy Policy 2013, 60, 892–905. [Google Scholar] [CrossRef]
- Ghosal, V. Business Strategy and Firm Reorganization: Role of Changing Environmental Standards, Sustainable Business Initiatives and Global Market Conditions. Bus. Strategy Environ. 2015, 24, 123–144. [Google Scholar] [CrossRef]
- Bertrand, O.; Capron, L. Productivity Enhancement at Home via Cross-border Acquisitions: The Roles of Learning and Contemporaneous Domestic Investments. Strateg. Manag. J. 2015, 36, 640–658. [Google Scholar] [CrossRef]
- Guandalini, I. Sustainability through Digital Transformation: A Systematic Literature Review for Research Guidance. J. Bus. Res. 2022, 148, 456–471. [Google Scholar] [CrossRef]
- Horcea-Milcu, A.-I. Values as Leverage Points for Sustainability Transformation: Two Pathways for Transformation Research. Curr. Opin. Environ. Sustain. 2022, 57, 101205. [Google Scholar] [CrossRef]
- Feroz, A.K.; Zo, H.; Chiravuri, A. Digital Transformation and Environmental Sustainability: A Review and Research Agenda. Sustainability 2021, 13, 1530. [Google Scholar] [CrossRef]
- Raihan, A. The Influence of Digital Transformation on Environmental Sustainability. Artif. Intell. 2023, 8, 9. [Google Scholar]
- Muhammad, S.; Pan, Y.; Magazzino, C.; Luo, Y.; Waqas, M. The Fourth Industrial Revolution and Environmental Efficiency: The Role of Fintech Industry. J. Clean. Prod. 2022, 381, 135196. [Google Scholar] [CrossRef]
- Tu, Y.-T. Drivers of Environmental Performance in Asian Economies: Do Natural Resources, Green Innovation and Fintech Really Matter? Resour. Policy 2024, 90, 104832. [Google Scholar] [CrossRef]
- Uddin, M.; Siddik, A.B.; Yuhuan, Z.; Naeem, M.A. Fintech and Environmental Efficiency: The Dual Role of Foreign Direct Investment in G20 Nations. J. Environ. Manag. 2024, 360, 121211. [Google Scholar] [CrossRef]
- Bianchini, S.; Damioli, G.; Ghisetti, C. The Environmental Effects of the “Twin” Green and Digital Transition in European Regions. Environ. Resour. Econ. 2023, 84, 877–918. [Google Scholar] [CrossRef]
- Kovacic, Z.; García Casañas, C.; Argüelles, L.; Yáñez Serrano, P.; Ribera-Fumaz, R.; Prause, L.; March, H. The Twin Green and Digital Transition: High-Level Policy or Science Fiction? Environ. Plan. E Nat. Space 2024, 7, 2251–2278. [Google Scholar] [CrossRef]
- Burinskienė, A.; Nalivaikė, J. Digital and Sustainable (Twin) Transformations: A Case of SMEs in the European Union. Sustainability 2024, 16, 1533. [Google Scholar] [CrossRef]
- Kar, A.K.; Ilavarasan, V.; Gupta, M.P.; Janssen, M.; Kothari, R. Moving beyond Smart Cities: Digital Nations for Social Innovation & Sustainability. Inf. Syst. Front. 2019, 21, 495–501. [Google Scholar] [CrossRef]
- Gomez-Trujillo, A.M.; Gonzalez-Perez, M.A. Digital Transformation as a Strategy to Reach Sustainability. Smart Sustain. Built Environ. 2022, 11, 1137–1162. [Google Scholar] [CrossRef]
- Ostadzad, A.H. Innovation and Carbon Emissions: Fixed-Effects Panel Threshold Model Estimation for Renewable Energy. Renew. Energy 2022, 198, 602–617. [Google Scholar] [CrossRef]
- Li, G.; Wu, H.; Jiang, J.; Zong, Q. Digital Finance and the Low-Carbon Energy Transition (LCET) from the Perspective of Capital-Biased Technical Progress. Energy Econ. 2023, 120, 106623. [Google Scholar] [CrossRef]
- Ullah, S.; Akhtar, P.; Zaefarian, G. Dealing with Endogeneity Bias: The Generalized Method of Moments (GMM) for Panel Data. Ind. Mark. Manag. 2018, 71, 69–78. [Google Scholar] [CrossRef]
- Karimi, M.S.; Doostkouei, S.G.; Shaiban, M.; Easvaralingam, Y.; Khan, Y.A. Investigating the Role of Entrepreneurship in Advancing Renewable Energy for Sustainable Development: Evidence from a System-GMM Panel Data Approach. Sustain. Dev. 2024, 32, 3329–3343. [Google Scholar] [CrossRef]
- Kuziboev, B.; Ibadullaev, E.; Saidmamatov, O.; Rajabov, A.; Marty, P.; Ruzmetov, S.; Sherov, A. The Role of Renewable Energy and Human Capital in Reducing Environmental Degradation in Europe and Central Asia: Panel Quantile Regression and GMM Approach. Energies 2023, 16, 7627. [Google Scholar] [CrossRef]
- Ganda, F. The Interplay between Technological Innovation, Financial Development, Energy Consumption and Natural Resource Rents in the BRICS Economies: Evidence from GMM Panel VAR. Energy Strategy Rev. 2024, 51, 101267. [Google Scholar] [CrossRef]
- Olorogun, L.A. Modelling Financial Development in the Private Sector, FDI, and Sustainable Economic Growth in Sub-Saharan Africa: ARDL Bound Test-FMOLS, DOLS Robust Analysis. J. Knowl. Econ. 2023, 15, 8416–8434. [Google Scholar] [CrossRef]
- Shaari, M.S.; Majekodunmi, T.B.; Sulong, A.; Esquivias, M.A.; Yusoff, W.S. Examining the Interplay between Green Technology, CO2 Emissions, and Life Expectancy in the Asean-5 Countries: Insights from the Panel FMOLS and DOLS Approaches. Discov. Sustain. 2024, 5, 456. [Google Scholar] [CrossRef]
- Malashin, I.; Tynchenko, V.; Gantimurov, A.; Nelyub, V.; Borodulin, A. Boosting-Based Machine Learning Applications in Polymer Science: A Review. Polymers 2025, 17, 499. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Sha, Y.; Ji, H.; Peng, K.; Liang, X. Integrating Multifractal Features into Machine Learning for Improved Prediction. Fractal Fract. 2025, 9, 205. [Google Scholar] [CrossRef]
- Nenavath, S. Impact of Fintech and Green Finance on Environmental Quality Protection in India: By Applying the Semi-Parametric Difference-in-Differences (SDID). Renew. Energy 2022, 193, 913–919. [Google Scholar] [CrossRef]
- Wei, B.; Zhao, C.; Cai, W.; Chen, B.; Lu, Y. The Entrepreneurial Effect of Digital Infrastructure Development: Micro Evidence from China. Inf. Technol. Dev. 2024, 1–31. [Google Scholar] [CrossRef]
- Li, G.; Niu, W. How Does Fintech Promote Urban Innovation? Empirical Evidence from China. Econ. Change Restruct. 2025, 58, 2. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Y. Internet Usage, Human Capital and CO2 Emissions: A Global Perspective. Sustainability 2021, 13, 8268. [Google Scholar] [CrossRef]
- Quaglione, D.; D’Ingiullo, D.; Meleo, L. Fixed and Mobile Broadband Penetration and CO2 Emissions: Evidence from OECD Countries. Econ. Polit. 2023, 40, 795–816. [Google Scholar] [CrossRef]
- Edquist, H.; Bergmark, P. How Is Mobile Broadband Intensity Affecting CO2 Emissions?—A Macro Analysis. Telecommun. Policy 2024, 48, 102668. [Google Scholar] [CrossRef]
- Vanham, D.; Leip, A.; Galli, A.; Kastner, T.; Bruckner, M.; Uwizeye, A.; Van Dijk, K.; Ercin, E.; Dalin, C.; Brandão, M. Environmental Footprint Family to Address Local to Planetary Sustainability and Deliver on the SDGs. Sci. Total Environ. 2019, 693, 133642. [Google Scholar] [CrossRef]
- Desing, H.; Brunner, D.; Takacs, F.; Nahrath, S.; Frankenberger, K.; Hischier, R. A Circular Economy within the Planetary Boundaries: Towards a Resource-Based, Systemic Approach. Resour. Conserv. Recycl. 2020, 155, 104673. [Google Scholar] [CrossRef]
- He, B.; Jie, W.; He, H.; Alsubih, M.; Arnone, G.; Makhmudov, S. From Resources to Resilience: How Green Innovation, Fintech and Natural Resources Shape Sustainability in OECD Countries. Resour. Policy 2024, 91, 104856. [Google Scholar] [CrossRef]
- Gao, X.; Yu, J.; Pertheban, T.R.; Sukumaran, S. Do Fintech Readiness, Digital Trade, and Mineral Resources Rents Contribute to Economic Growth: Exploring the Role of Environmental Policy Stringency. Resour. Policy 2024, 93, 105051. [Google Scholar] [CrossRef]
- Péréa, C.; Gérard, J.; de Benedittis, J. Digital Sobriety: From Awareness of the Negative Impacts of IT Usages to Degrowth Technology at Work. Technol. Forecast. Soc. Change 2023, 194, 122670. [Google Scholar] [CrossRef]
- Marcos, H. Tech Won’t Save Us: Climate Crisis, Techno-Optimism, and International Law. Law Technol. Hum. 2025, 7, 22–46. [Google Scholar] [CrossRef]
- Rockström, J.; Gupta, J.; Qin, D.; Lade, S.J.; Abrams, J.F.; Andersen, L.S.; Armstrong McKay, D.I.; Bai, X.; Bala, G.; Bunn, S.E. Safe and Just Earth System Boundaries. Nature 2023, 619, 102–111. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’sullivan, M.; Jones, M.W.; Andrew, R.M.; Gregor, L.; Hauck, J.; Le Quéré, C.; Luijkx, I.T.; Olsen, A.; Peters, G.P. Global Carbon Budget 2022. Earth Syst. Sci. Data 2022, 14, 4811–4900. [Google Scholar] [CrossRef]
- Huang, J.; Lu, H.; Du, M. Can Digital Economy Narrow the Regional Economic Gap? Evidence from China. J. Asian Econ. 2025, 98, 101929. [Google Scholar] [CrossRef]
- Du, Z.-Y.; Wang, Q. Digital Infrastructure and Innovation: Digital Divide or Digital Dividend? J. Innov. Knowl. 2024, 9, 100542. [Google Scholar] [CrossRef]
- Chen, M.A.; Wu, Q.; Yang, B. How Valuable Is FinTech Innovation? Rev. Financ. Stud. 2019, 32, 2062–2106. [Google Scholar] [CrossRef]
- Abban, O.J.; Xing, Y.H.; Nuţă, A.C.; Nuţă, F.M.; Borah, P.S.; Ofori, C.; Jing, Y.J. Policies for Carbon-Zero Targets: Examining the Spillover Effects of Renewable Energy and Patent Applications on Environmental Quality in Europe. Energy Econ. 2023, 126, 106954. [Google Scholar] [CrossRef]
- Ai, X.-N.; Gao, S.-J.; Li, W.-M.; Liao, H. Greening China: Environmentally Adjusted Multifactor Productivity in the Last Four Decades. Resour. Conserv. Recycl. 2023, 192, 106918. [Google Scholar] [CrossRef]
- Steinebach, Y.; Fernández-i-Marín, X.; Aschenbrenner, C. Who Puts a Price on Carbon, Why and How? A Global Empirical Analysis of Carbon Pricing Policies. Clim. Policy 2021, 21, 277–289. [Google Scholar] [CrossRef]
- Pesaran, M.H. General Diagnostic Tests for Cross-Sectional Dependence in Panels. Empir. Econ. 2021, 60, 13–50. [Google Scholar] [CrossRef]
- Desbordes, R.; Koop, G.; Vicard, V. One Size Does Not Fit All… Panel Data: Bayesian Model Averaging and Data Poolability. Econ. Model. 2018, 75, 364–376. [Google Scholar] [CrossRef]
- Westerlund, J. Testing for Error Correction in Panel Data. Oxf. Bull. Econ. Stat. 2007, 69, 709–748. [Google Scholar] [CrossRef]
- Chudik, A.; Pesaran, M.H. Common Correlated Effects Estimation of Heterogeneous Dynamic Panel Data Models with Weakly Exogenous Regressors. J. Econ. 2015, 188, 393–420. [Google Scholar] [CrossRef]
- Everaert, G.; De Groote, T. Common Correlated Effects Estimation of Dynamic Panels with Cross-Sectional Dependence. Econ. Rev. 2016, 35, 428–463. [Google Scholar] [CrossRef]
- Juodis, A. A Regularization Approach to Common Correlated Effects Estimation. J. Appl. Econ. 2022, 37, 788–810. [Google Scholar] [CrossRef]
- Pedroni, P. Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors. Oxf. Bull. Econ. Stat. 1999, 61, 653–670. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, H.; Irfan, M. How Does Digital Infrastructure Construction Affect Low-Carbon Development? A Multidimensional Interpretation of Evidence from China. J. Clean. Prod. 2023, 396, 136467. [Google Scholar] [CrossRef]
- Teng, M.; Shen, M. The Impact of Fintech on Carbon Efficiency: Evidence from Chinese Cities. J. Clean. Prod. 2023, 425, 138984. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, M.; Zhong, S.; Liu, M. Fintech’s Role in Carbon Emission Efficiency: Dynamic Spatial Analysis. Sci. Rep. 2024, 14, 23941. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Sinha, A.; Tan, Z.; Shah, M.I.; Abbas, S. Achieving Energy Transition in OECD Economies: Discovering the Moderating Roles of Environmental Governance. Renew. Sustain. Energy Rev. 2022, 168, 112808. [Google Scholar] [CrossRef]
- Wang, E.; Gozgor, G.; Mahalik, M.K.; Patel, G.; Hu, G. Effects of Institutional Quality and Political Risk on the Renewable Energy Consumption in the OECD Countries. Resour. Policy 2022, 79, 103041. [Google Scholar] [CrossRef]
- Bakhsh, S.; Zhang, W.; Ali, K.; Anas, M. Energy Transition and Environmental Stability Prospects for OECD Economies: The Prominence Role of Environmental Governance, and Economic Complexity: Does the Geopolitical Risk Matter? J. Environ. Manag. 2024, 354, 120358. [Google Scholar] [CrossRef]
Variable | Form | Definition | Source |
---|---|---|---|
Environmental sustainability | CO2 emissions per capita (metric tons) in log | World Bank WDI; Global Carbon Atlas | |
Digital transformation | Secure Internet Servers per million people in log | World Bank WDI | |
Fintech technological innovation | Annual patent applications (IPC class G06Q) in log | WIPO Statistics; OECD Patent Database | |
Renewable energy | Renewable energy consumption (% of total energy use) | IEA Renewables; World Bank WDI | |
Green capital formation | Environmental fixed capital formation/GDP (%) | OECD Environment Statistics + IEA Green Investment Tracker | |
Carbon pricing | Carbon-priced emissions/total emissions (%) | OECD Effective Carbon Rates + World Bank Carbon Pricing Dashboard | |
High-tech export | High-tech exports/total manufactured exports (%) | World Bank WDI + OECD STAN Database | |
Industry 4.0-intensive employment | Employment in AI, automation, and digital sectors/total employment (%) | Eurostat ICT Employment + OECD Digital Economy Database |
Variables | IPS Test | LLC Test | ||
---|---|---|---|---|
Level | 1st Level | Level | 1st Level | |
−1.487 (0.137) | −5.416 *** (0.000) | −1.321 * (0.093) | −4.928 *** (0.000) | |
−1.107 (0.181) | −4.782 *** (0.000) | −1.433 * (0.076) | −3.925 *** (0.000) | |
−1.359 (0.155) | −5.732 *** (0.000) | −1.214 (0.117) | −4.841 *** (0.000) | |
−0.978 (0.192) | −4.416 *** (0.000) | −1.073 * (0.138) | −3.711 *** (0.000) | |
−1.249 (0.214) | −5.203 *** (0.000) | −1.002 (0.148) | −4.114 *** (0.000) | |
−1.607 (0.112) | −4.943 *** (0.000) | −1.383 * (0.089) | −4.209 *** (0.000) | |
−1.415 (0.129) | −5.154 *** (0.000) | −1.326 * (0.091) | −4.627 *** (0.000) | |
−1.089 (0.172) | −4.881 *** (0.000) | −1.207 (0.103) | −4.021 *** (0.000) |
Method | Statistics | Weighted Statistics |
---|---|---|
Pedroni cointegration test | ||
Panel υ-statistics | 1.984 ** (0.024) | 1.731 ** (0.041) |
Panel ρ statistics | −2.917 *** (0.004) | −2.784 *** (0.006) |
Panel PP-statistics | −3.532 *** (0.001) | −3.119 *** (0.002) |
Panel ADF t-statistics | −2.614 *** (0.009) | −2.491 ** (0.011) |
Group ρ-statistics | −2.345 * (0.010) | |
Group PP t-statistics | −3.416 *** (0.001) | |
Group ADF t-statistics | −2.783 *** (0.005) | |
Kao cointegration test | ||
ADF | −3.092 *** (0.001) |
Variable | FMOLS Model |
---|---|
−0.128 *** (−4.281) | |
−0.102 ** (−2.134) | |
−0.211 *** (−5.743) | |
−0.086 ** (−2.211) | |
−0.073 * (−1.944) | |
−0.147 *** (−3.671) | |
−0.091 ** (−2.538) | |
Country-fixed effects | Yes |
Year-fixed effects | Yes |
3.254 *** (6.178) |
Variable | System-GMM |
---|---|
0.417 *** (3.834) | |
–0.116 *** | |
(–3.991) | |
Yes | |
2.871 *** (5.172) | |
AR(1) test (p-value) | 0.012 |
AR(2) test (p-value) | 0.157 |
Hansen J test (p-value) | 0.296 |
Sargan test (p-value) | 0.173 |
Difference-in-Hansen test (p-value) | 0.452 |
Cragg–Donald F-statistics | 21.384 *** |
Variable | Importance Score (RF) | Importance Score (XGBoost) |
---|---|---|
0.218 | 0.203 | |
0.184 | 0.191 | |
0.161 | 0.173 | |
0.122 | 0.109 | |
0.087 | 0.082 | |
0.114 | 0.117 | |
0.094 | 0.103 | |
Model Performance Metrics | ||
Metric | Random Forest | XGBoost |
RMSE | 0.384 | 0.366 |
MAE | 0.295 | 0.279 |
(Out-of-sample) | 0.741 | 0.763 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teng, Z.; Xia, H.; He, Y. Rewiring Sustainability: How Digital Transformation and Fintech Innovation Reshape Environmental Trajectories in the Industry 4.0 Era. Systems 2025, 13, 400. https://doi.org/10.3390/systems13060400
Teng Z, Xia H, He Y. Rewiring Sustainability: How Digital Transformation and Fintech Innovation Reshape Environmental Trajectories in the Industry 4.0 Era. Systems. 2025; 13(6):400. https://doi.org/10.3390/systems13060400
Chicago/Turabian StyleTeng, Zhuoqi, Han Xia, and Yugang He. 2025. "Rewiring Sustainability: How Digital Transformation and Fintech Innovation Reshape Environmental Trajectories in the Industry 4.0 Era" Systems 13, no. 6: 400. https://doi.org/10.3390/systems13060400
APA StyleTeng, Z., Xia, H., & He, Y. (2025). Rewiring Sustainability: How Digital Transformation and Fintech Innovation Reshape Environmental Trajectories in the Industry 4.0 Era. Systems, 13(6), 400. https://doi.org/10.3390/systems13060400