Coupling Coordination and Decoupling Dynamics of Land Space Conflicts with Urbanization and Eco-Environment: A Case Study of Jiangsu Province, China
Abstract
1. Introduction
2. Theoretical Analysis
2.1. Urbanization and Eco-Environment
2.2. Impact of Urbanization and Eco-Environment on LSC
2.3. Analysis Framework
3. Materials and Methods
3.1. Study Area
3.2. Data Sources and Pre-Processing
3.3. Methods
3.3.1. Measurement Model of LSC
- (1)
- External pressure (P): The source of risk faced by the land space, which is selected to be expressed by the area-weighted mean fractal dimension index (FRAC_AM), the larger the value is, the greater the pressure of the landscape patches to be disturbed by neighboring patches, which is calculated in Fragstats4.2 [1,24,49].
- (2)
- Vulnerability (V): The characteristics of the land space as a risk carrier, which can reflect its sensitivity to external disturbances, the larger the value the more likely to be damaged under the action of external disturbances. Combined with the existing results, the vulnerability of different types of land space is assigned values (cultivated land-4, woodland-2, grassland-3, water space-5, construction land-1, and unutilized land-6) [2,24], and normalized, with the following formula:
- (3)
3.3.2. Evaluation of UL and EL
3.3.3. Coupling Coordination Degree Model
3.3.4. Geographic Detector
3.3.5. Tapio Decoupling Model
4. Results
4.1. Evolutionary Characteristics of LSC Intensity, UL, and EL
4.1.1. Evolutionary Characteristics of LSC Intensity
4.1.2. Evolutionary Characteristics of UL
4.1.3. Evolutionary Characteristics of EL
4.2. The Interaction Between UL and EL
4.3. The Interaction Between LSC Intensity and UL
4.3.1. Analysis of Urbanization Drivers of LSC Intensity
4.3.2. Analysis of the Decoupling of LSC Intensity and UL
4.4. The Interaction Between LSC Intensity and EL
4.4.1. Analysis of Eco-Environment Drivers of LSC Intensity
4.4.2. Analysis of the Decoupling of LSC Intensity and EL
4.5. Systematic Analysis Based on “Degree of Coupling Coordination-Type of Decoupling”
5. Discussion
5.1. Management Recommendations
- (1)
- H-D-ND (High coordination—Decoupling–Negative decoupling): Nanjing, Wuxi, Changzhou, Suzhou
- (2)
- M-ND-ND (Moderate coordination–Negative decoupling–Negative decoupling): Zhenjiang, Nantong, Yangzhou, Taizhou
- (3)
- M-D-ND (Moderate coordination–Decoupling–Negative decoupling): Xuzhou, Yancheng
- (4)
- B-D-ND (Basic coordination–Decoupling–Negative decoupling): Lianyungang, Huai’an
- (5)
- B-ND-D (Basic coordination–Negative decoupling–Decoupling): Suqian
5.2. Mechanistic Insights and Theoretical Contributions
5.3. Policy Transfer and Comparative Relevance
5.4. Limitations and Future Work
6. Conclusions
- (1)
- This paper provides new evidence on the long-term spatiotemporal dynamics of the UL–EL–LSC intensity system in a rapidly urbanizing region. We document a continuous intensification of LSC intensity, with a distinct south-to-north gradient, alongside steady UL growth and fluctuating EL conditions. The coupling coordination between UL and EL showed significant improvement and strong spatial clustering, evolving from disorder to high coordination in Southern Jiangsu. Decoupling analysis further revealed that urbanization’s driving effect on LSC intensity weakened over time, whereas the pressure from the eco-environment became increasingly prominent.
- (2)
- This paper advances the theoretical framework for analyzing land space governance by integrating coupling coordination and decoupling analysis. We demonstrate that the interactions between factors across the urbanization and eco-environment subsystems exert a stronger influence on LSC intensity than factors within a single subsystem. This underscores the necessity of a cross-system perspective in understanding and managing the complex drivers of LSC intensity.
- (3)
- This paper proposes a practical city typology based on coupling–decoupling patterns, classifying the 13 cities of Jiangsu into five distinct categories: H-D-ND, M-ND-ND, M-D-ND, B-D-ND, and B-ND-D. This typology provides a clear and actionable basis for policymakers to design tailored spatial governance strategies. It enables differentiated management recommendations across regions, focusing on promoting sustainable urbanization, protecting the eco-environment, mitigating LSC, and optimizing territorial spatial layouts. This approach not only supports high-quality development in Jiangsu but also offers a transferable methodology for other rapidly developing regions facing similar land governance challenges.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Indicators | 2000 | 2005 | 2010 | 2015 | 2020 | Indicators | 2000 | 2005 | 2010 | 2015 | 2020 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| A11 | 0.093 | 0.068 | 0.087 | 0.073 | 0.100 | B11 | 0.156 | 0.199 | 0.128 | 0.171 | 0.152 |
| A12 | 0.043 | 0.048 | 0.040 | 0.042 | 0.033 | B12 | 0.104 | 0.112 | 0.212 | 0.105 | 0.111 |
| A13 | 0.071 | 0.057 | 0.052 | 0.044 | 0.093 | B13 | 0.067 | 0.081 | 0.103 | 0.132 | 0.146 |
| A21 | 0.113 | 0.119 | 0.090 | 0.074 | 0.073 | B14 | 0.114 | 0.054 | 0.076 | 0.089 | 0.055 |
| A22 | 0.097 | 0.111 | 0.099 | 0.078 | 0.059 | B15 | 0.063 | 0.075 | 0.076 | 0.105 | 0.150 |
| A23 | 0.048 | 0.059 | 0.062 | 0.068 | 0.086 | B21 | 0.063 | 0.078 | 0.065 | 0.042 | 0.042 |
| A24 | 0.039 | 0.051 | 0.049 | 0.062 | 0.075 | B22 | 0.071 | 0.088 | 0.066 | 0.049 | 0.064 |
| A31 | 0.159 | 0.144 | 0.123 | 0.117 | 0.132 | B23 | 0.144 | 0.070 | 0.054 | 0.090 | 0.108 |
| A32 | 0.104 | 0.039 | 0.105 | 0.059 | 0.070 | B24 | 0.057 | 0.131 | 0.073 | 0.085 | 0.081 |
| A33 | 0.075 | 0.071 | 0.039 | 0.168 | 0.068 | B31 | 0.092 | 0.032 | 0.057 | 0.059 | 0.046 |
| A41 | 0.110 | 0.169 | 0.139 | 0.105 | 0.093 | B32 | 0.034 | 0.035 | 0.048 | 0.034 | 0.023 |
| A42 | 0.048 | 0.064 | 0.115 | 0.110 | 0.118 | B33 | 0.035 | 0.045 | 0.042 | 0.039 | 0.022 |
| Driving Factors | Discretization Methods | Number of Partition Points | Driving Factors | Discretization Methods | Number of Partition Points |
|---|---|---|---|---|---|
| A11 | Standard deviation | 4 | B11 | Geometrical interval | 6 |
| A12 | Standard deviation | 4 | B12 | Geometrical interval | 6 |
| A13 | Geometrical interval | 6 | B13 | Geometrical interval | 6 |
| A21 | Standard deviation | 4 | B14 | Geometrical interval | 6 |
| A22 | Standard deviation | 4 | B15 | Geometrical interval | 6 |
| A23 | Geometrical interval | 6 | B21 | Geometrical interval | 6 |
| A24 | Standard deviation | 4 | B22 | Standard deviation | 4 |
| A31 | Geometrical interval | 6 | B23 | Geometrical interval | 6 |
| A32 | Geometrical interval | 6 | B24 | Standard deviation | 4 |
| A33 | Standard deviation | 4 | B31 | Geometrical interval | 6 |
| A41 | Geometrical interval | 6 | B32 | Standard deviation | 4 |
| A42 | Geometrical interval | 6 | B33 | Geometrical interval | 6 |
| City | Dc Between LSC Intensity and UL | Dc Between LSC Intensity and EL | |||||||
|---|---|---|---|---|---|---|---|---|---|
| 2000–2005 | 2005–2010 | 2010–2015 | 2015–2020 | 2000–2005 | 2005–2010 | 2010–2015 | 2015–2020 | ||
| Southern Jiangsu | Nanjing | 2.29 | 1.30 | −1.51 | 0.19 | −0.68 | −0.93 | 2.24 | −1.93 |
| Wuxi | 1.66 | 0.89 | 7.95 | 0.17 | 4.99 | 1.81 | −6.66 | −0.65 | |
| Changzhou | 3.10 | 5.75 | 1.59 | 0.10 | −0.96 | 1.32 | 0.73 | −0.16 | |
| Suzhou | 2.25 | 0.36 | 12.17 | 0.19 | 2.1 | 0.71 | −2.27 | −0.16 | |
| Zhenjiang | −1.09 | 1.14 | 1.04 | 1.40 | −0.73 | −12.81 | 9.6 | −0.08 | |
| Central Jiangsu | Nantong | 2.6 | −8.95 | 0.3 | −11.66 | 0.68 | 19.58 | −107.62 | −0.13 |
| Yangzhou | 1.46 | −6.74 | 0.42 | −26.36 | −96.34 | −13.94 | 2.26 | −0.14 | |
| Taizhou | −1.15 | 0.59 | 0.4 | −0.25 | 2.43 | −0.74 | −0.8 | −1.73 | |
| Northern Jiangsu | Xuzhou | 6.12 | 1.96 | 0.98 | 0.15 | −0.8 | −0.44 | 0.4 | −0.84 |
| Lianyungang | 0.16 | 46.71 | −0.85 | 0.09 | −0.86 | −0.37 | 1.52 | 1.22 | |
| Huai’an | 1.45 | 10.93 | 0.26 | 0.11 | 0.67 | −0.65 | −3.2 | −0.53 | |
| Yancheng | 1.18 | 0.38 | 0.14 | 0.43 | 0.44 | −0.4 | 0.32 | −2.48 | |
| Suqian | 0.17 | 0.19 | 1.06 | −0.32 | 0.36 | −0.6 | 6.93 | 0.17 | |
References
- Liu, X.; Li, X.; Zhang, Y.; Wang, Y.; Chen, J.; Geng, Y. Spatiotemporal evolution and relationship between construction land expansion and territorial space conflicts at the county level in Jiangsu Province. Ecol. Indic. 2023, 154, 110662. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, A. Identification of land use conflicts and dynamic response analysis of Natural-Social factors in rapidly urbanizing areas—A case study of urban agglomeration in the middle reaches of Yangtze River. Ecol. Indic. 2024, 161, 112009. [Google Scholar] [CrossRef]
- Han, B.; Jin, X.; Zhao, Q.; Chen, H. Spatiotemporal patterns and mechanisms of land-use conflicts affecting high-quality development in China. Appl. Geogr. 2023, 155, 102972. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Li, P.; Geng, Y.; Chen, J.; Hu, G. Delineation of and conflict coordination in municipal territorial space functional zones: A case study of Xuzhou, China. Land 2025, 14, 761. [Google Scholar] [CrossRef]
- Ren, Q.; He, C.; Huang, Q.; Shi, P.; Zhang, D.; Guneralp, B. Impacts of urban expansion on natural habitats in global drylands. Nat. Sustain. 2022, 5, 869–878. [Google Scholar] [CrossRef]
- Chakraborty, S.; Maity, I.; Dadashpoor, H.; Novotnẏ, J.; Banerji, S. Building in or out? Examining urban expansion patterns and land use efficiency across the global sample of 466 cities with million+ inhabitants. Habitat Int. 2022, 120, 102503. [Google Scholar] [CrossRef]
- Li, L.; Huang, X.; Yang, H. Scenario-based urban growth simulation by incorporating ecological-agricultural-urban suitability into a Future Land Use Simulation model. Cities 2023, 137, 104334. [Google Scholar] [CrossRef]
- Zhang, S.; Han, R.; Li, X.; Song, M.; Liu, H. New urbanization promoting the construction of water ecological civilization: Mechanism of influence and spatial effects. Prog. Geogr. 2024, 43, 1–16. [Google Scholar] [CrossRef]
- Deng, Z.; Zong, S.; Su, C.; Chen, Z. Research on coupling coordination development between ecological civilization construction and new urbanization and its driving forces in the Yangtze River Economic Zone. Econ. Geogr. 2019, 39, 78–86. [Google Scholar] [CrossRef]
- Chen, W.; Gu, T.; Xiang, J.; Luo, T.; Zeng, J.; Yuan, Y. Ecological restoration zoning of territorial space in China: An ecosystem health perspective. J. Environ. Manag. 2024, 364, 121731. [Google Scholar] [CrossRef]
- Chen, Y.; Cai, H.; Chen, Y. Spatial correlation and interaction effect intensity between territorial spatial ecological quality and new urbanization level in Nanchang metropolitan area, China. Ecol. Indic. 2023, 156, 111163. [Google Scholar] [CrossRef]
- Patel, U.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Burgess, A. Digital Twin Technology for sustainable urban development: A review of its potential impact on SDG 11 in New Zealand. Cities 2024, 155, 105484. [Google Scholar] [CrossRef]
- Pan, H.; Liu, G.; Muller, J.; Sun, Z.; Yao, Y.; Chang, Y.; Xiong, Z.; Zhang, Y. Comprehensive Assessment of Sustainable Development of Terrestrial Ecosystem Based on SDG 15—A Case Study of Guilin City. Remote Sens. 2025, 17, 63. [Google Scholar] [CrossRef]
- Karimi, A.; Brown, G. Assessing multiple approaches for modelling land-use conflict potential from participatory mapping data. Land Use Policy 2017, 67, 253–267. [Google Scholar] [CrossRef]
- Hjalager, A.-M. Land-use conflicts in coastal tourism and the quest for governance innovations. Land Use Policy 2020, 94, 104566. [Google Scholar] [CrossRef]
- Wang, Y.; Li, P.; Li, W.; Zeng, X.; Xue, B. Mitigation mechanism of land use conflicts based on evolutionary game: A case study of Shenfu New Area. China Land Sci. 2021, 35, 87–97. [Google Scholar] [CrossRef]
- Hui, E.C.M.; Bao, H. The logic behind conflicts in land acquisitions in contemporary China: A framework based upon game theory. Land Use Policy 2013, 30, 373–380. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Yang, J.; Fan, H.; Zhang, J.; Zhang, Y. How to resolve the conflicts of urban functional space in planning: A perspective of urban moderate boundary. Ecol. Indic. 2022, 144, 109495. [Google Scholar] [CrossRef]
- Hong, W.; Guo, R.; Wang, W. A diagrammatic method for the identification and resolution of urban spatial conflicts. J. Environ. Manag. 2022, 316, 115297. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Zhang, Y.; Liu, Y.; Wang, H.; Liu, Y. Conflicts between three land management red lines in Wuhan City: Spatial patterns and driving factors. Prog. Geogr. 2018, 37, 1672–1681. [Google Scholar] [CrossRef]
- Yi, D.; Zhao, X.; Guo, X.; Han, Y.; Jiang, Y.; Lai, X.; Huang, X. Study on the spatial characteristics and intensity factors of “three-line conflict” in Jiangxi province. J. Nat. Resour. 2020, 35, 2428–2443. [Google Scholar] [CrossRef]
- Qu, Y.; Wang, S.; Tian, Y.; Jiang, G.; Zhou, T.; Meng, L. Territorial spatial planning for regional high-quality development—An analytical framework for the identification, mediation and transmission of potential land utilization conflicts in the Yellow River Delta. Land Use Policy 2023, 125, 106462. [Google Scholar] [CrossRef]
- Jiang, S.; Meng, J.; Zhu, L. Spatial and temporal analyses of potential land use conflict under the constraints of water resources in the middle reaches of the Heihe River. Land Use Policy 2020, 97, 104773. [Google Scholar] [CrossRef]
- Bao, W.; Yang, Y.; Zou, L. How to reconcile land use conflicts in mega urban agglomeration? A scenario-based study in the Beijing-Tianjin-Hebei region, China. J. Environ. Manag. 2021, 296, 113168. [Google Scholar] [CrossRef]
- Zong, S.; Xu, S.; Huang, J.; Ren, Y.; Song, C. Distribution patterns and driving mechanisms of land use spatial conflicts: Empirical analysis from counties in China. Habitat Int. 2025, 156, 103268. [Google Scholar] [CrossRef]
- Nyuykighanse, N.E.; Yenlajai, B.J.; Fru, C.F.; Kimengsi, J.N. Land use conflicts and planning implications: Insights from Kumbo, Cameroon. J. Geogr. Environ. Earth Sci. Int. 2023, 27, 28–39. [Google Scholar] [CrossRef]
- Jensen, D.; Baird, T.; Blank, G. New landscapes of conflict: Land-use competition at the urban–rural fringe. Landsc. Res. 2018, 44, 418–429. [Google Scholar] [CrossRef]
- Fienitz, M.; Siebert, R. Latent, collaborative, or escalated conflict? Determining causal pathways for land use conflicts. Land Use Policy 2023, 134, 106918. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.; Li, R.; Jiang, X. Reinvestigating the environmental Kuznets curve (EKC) of carbon emissions and ecological footprint in 147 countries: A matter of trade protectionism. Humanit. Soc. Sci. Commun. 2024, 11, 160. [Google Scholar] [CrossRef]
- Hunjra, A.I.; Bouri, E.; Azam, M.; Azam, R.I.; Dai, J. Economic growth and environmental sustainability in developing economies. Res. Int. Bus. Financ. 2024, 70, 102341. [Google Scholar] [CrossRef]
- Zhang, X.; Lau, C.K.M.; Li, R.; Wang, Y.; Wanjiru, R.; Seetaram, N. Determinants of carbon emissions cycles in the G7 countries. Technol. Forecast. Soc. Change 2024, 201, 123261. [Google Scholar] [CrossRef]
- Qu, B.; Jiang, E.; Li, J.; Liu, Y.; Liu, C. Coupling coordination relationship of water resources, eco-environment and socio-economy in the water-receiving area of the Lower Yellow River. Ecol. Indic. 2024, 160, 111766. [Google Scholar] [CrossRef]
- Wang, S.; Cui, Z.; Lin, J.; Xie, J.; Su, K. The coupling relationship between urbanization and ecological resilience in the Pearl River Delta. J. Geogr. Sci. 2022, 32, 44–64. [Google Scholar] [CrossRef]
- Song, Q.; Zhou, N.; Liu, T.; Siehr, S.A.; Qi, Y. Investigation of a “coupling model” of coordination between low-carbon development and urbanization in China. Energy Policy 2018, 121, 346–354. [Google Scholar] [CrossRef]
- Zou, C.; Zhu, J.; Lou, K.; Yang, L. Coupling coordination and spatiotemporal heterogeneity between urbanization and ecological environment in Shaanxi Province, China. Ecol. Indic. 2022, 141, 109152. [Google Scholar] [CrossRef]
- Chen, X.; Di, Q.; Jia, W.; Hou, Z. Spatial correlation network of pollution and carbon emission reductions coupled with high-quality economic development in three Chinese urban agglomerations. Sustain. Cities Soc. 2023, 94, 104552. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, H.; Dong, L.; Zhu, Y.; Wang, Y. Harmonizing new-type urbanization and eco-efficiency: Spatial-temporal coupling coordination in the Yangtze River Economic Belt. Environ. Dev. Sustain. 2025. [Google Scholar] [CrossRef]
- Tan, Y.; Zhou, Y.; Zhou, H.; Gao, L.; Shi, L. Analysis of the coordinated development and influencing factors between urban population and environment: A case study of 35 metropolises in China. Sustain. Cities Soc. 2025, 121, 106160. [Google Scholar] [CrossRef]
- Sun, X.; Peng, B.; Elahi, E.; Wan, A. Examining the evolution and influential factors of regional ecological security patterns: A case study of Jiangsu Province, China. Stoch. Environ. Res. Risk Assess. 2025, 39, 999–1013. [Google Scholar] [CrossRef]
- Sha, A.; Zhang, J.; Pan, Y.; Zhang, S. How to recognize and measure the impact of phasing urbanization on eco-environment quality: An empirical case study of 19 urban agglomerations in China. Technol. Forecast. Soc. Change 2025, 210, 123845. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, Y.; Wang, L. Coupling relationship between regional urban development and eco-environment: Inspiration from the old industrial base in Northeast China. Ecol. Indic. 2022, 142, 109259. [Google Scholar] [CrossRef]
- Zhu, S.; Jiang, J.; Xiang, N.; Xu, F. Exploring the interrelationship and coupling coordination between new urbanization and green development in China. Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
- Wang, J.; Shao, Z.; Zhuang, Q.; Dang, C.; Jing, P.; Cai, B.; Wang, S.; Li, J.; Yang, F.; Wang, W.; et al. Multi-scale coupling quantitative assessment of ecological-urban resilience in the Yangtze River Economic Belt. Geo-Spat. Inf. Sci. 2025, 1–21. [Google Scholar] [CrossRef]
- Wu, H.; Jiang, Z.; Zhu, L.; Lin, A.; Zhou, H.; Cen, L. Analyzing multiscale associations and couplings between integrated development and eco-environmental systems: A case study of the central plains urban agglomeration, China. Appl. Geogr. 2024, 171, 103387. [Google Scholar] [CrossRef]
- Yao, X.; Chen, Y.; Zheng, X.; Li, H.; Chen, Y.; Kong, L.; Ou, C. Spatiotemporal characteristics and influential factors of coupling coordination degree of urbanization and ecological environment in the Huaihe River ecological economic belt. Sci. Rep. 2025, 15, 12287. [Google Scholar] [CrossRef]
- He, J.; Wang, S.; Liu, Y.; Ma, H.; Liu, Q. Examining the relationship between urbanization and the eco-environment using a coupling analysis: Case study of Shanghai, China. Ecol. Indic. 2017, 77, 185–193. [Google Scholar] [CrossRef]
- Chen, P.; Shi, X. Dynamic evaluation of China’s ecological civilization construction based on target correlation degree and coupling coordination degree. Environ. Impact Assess. Rev. 2022, 93, 106734. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Chen, X.; Zhang, Y.; Li, G.; Shen, C. Coupling measurement and spatial conflict diagnosis between urbanization and ecological environment in Jiangsu Province of China. Trans. Chin. Soc. Agric. Eng. 2023, 39, 238–248. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, Z.; Li, T.; Yang, Y.; Jia, Z. Analysis on absolute conflict and relative conflict of land use in Xining metropolitan area under different scenarios in 2030 by PLUS and PFCI. Cities 2023, 137, 104314. [Google Scholar] [CrossRef]
- Li, X.; Zhou, X.; Zhao, Y.; Zhou, S. Exploring coupling coordination of new urbanization, green innovation and low-carbon development systems in China. J. Clean. Prod. 2025, 495, 145022. [Google Scholar] [CrossRef]
- Xiang, X.; Xiao, Y.; Chen, Y.; Huang, H. Assessment of coupling coordinated degree and driving mechanism of population-resource-environment-economy (PREE) system in Yellow River Basin, China. Sci. Rep. 2024, 14, 31135. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Huang, Y.; Zhou, J.; Sun, J. Construction of Evaluation Indicator System and Analysis for Low-Carbon Economy Development in Chengdu City of China. Systems 2025, 13, 573. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, X. Measurement and synergistic evolution analysis of economic resilience and green economic efficiency: Evidence from five major urban agglomerations, China. Appl. Geogr. 2024, 168, 103302. [Google Scholar] [CrossRef]
- Huang, G.; Liu, S.; Cai, B.; Wang, B. The coupling coordination of social and economic upgrading in China: Evolution, regional disparities and influencing factors. J. Geogr. Sci. 2024, 34, 835–854. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, J.; Chen, B.; Yao, Y.; Zhao, M. The Spatiotemporal Characteristics and Spatial Linkages of the Coupling Coordination Between Economic Development and Ecological Resilience in the Guizhou Central Urban Agglomeration. Systems 2025, 13, 776. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, H.; Liu, F.; Lv, T.; Sun, L.; Li, Z.; Shang, W.; Xu, G. Coupling coordination between the ecological environment and urbanization in the middle reaches of the Yangtze River urban agglomeration. Urban Clim. 2023, 52, 101698. [Google Scholar] [CrossRef]
- Zhang, B.; Zhai, J.; Zhai, B.; Qu, Y. Understanding the “conflict-coordination” theoretical model of regional land use transitions: Empirical evidence from the interconversion between cropland and rural settlements in the lower yellow river, China. Habitat Int. 2024, 148, 103072. [Google Scholar] [CrossRef]
- He, S.; Zhang, Z.; Yu, S.; Xia, C.; Tung, C.-L. Investigating the effects of urban morphology on vitality of community life circles using machine learning and geospatial approaches. Appl. Geogr. 2024, 167, 103287. [Google Scholar] [CrossRef]
- Liu, M.; Fang, C.; Bai, Y. Exploring the relationship between water–energy consumption and urbanization in China: A urban-rural transformation perspective. Environ. Impact Assess. Rev. 2025, 112, 107834. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, X.; Wu, Q. Testing the existence of waste Kuznets curve hypothesis in 45 emerging economies: Evidence from an e-waste panel data survey. J. Environ. Manag. 2025, 373, 123812. [Google Scholar] [CrossRef]
- Du, X.; Shen, L.; Wong, S.W.; Meng, C.; Yang, Z. Night-time light data based decoupling relationship analysis between economic growth and carbon emission in 289 Chinese cities. Sustain. Cities Soc. 2021, 73, 103119. [Google Scholar] [CrossRef]
- Cui, J.; Kong, X.; Chen, J.; Sun, J.; Zhu, Y. Spatially explicit evaluation and driving factor identification of land use conflict in Yangtze River Economic Belt. Land 2021, 10, 43. [Google Scholar] [CrossRef]
- Abubakari, M.; Twum, K.; Asokwah, G. From conflict to cooperation: The trajectories of large scale land investments on land conflict reversal in Ghana. Land Use Policy 2020, 94, 104543. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, C.; Zhang, Y.; Hu, M.; Shen, X. Exploring the spatiotemporal changes and driving forces of ecosystem services of Zhejiang Coasts, China, under Sustainable Development Goals. Chin. Geogr. Sci. 2024, 34, 647–661. [Google Scholar] [CrossRef]
- Zhang, S.; Zeng, Z.; Tan, J.; Huang, J.; Zhang, R.; Wang, Y. Spatial-temporal response of the regional ecological quality to urban settlement development. Eur. J. Remote Sens. 2024, 57, 2390995. [Google Scholar] [CrossRef]
- Liao, Z.; Zhang, L. Analyzing and predicting the urbanization and ecological resilience coupling and coordination of Guangdong Province. Humanit. Soc. Sci. Commun. 2024, 11, 1322. [Google Scholar] [CrossRef]
- Deng, Y.; Yang, R. Influence mechanism of production-living-ecological space changes in the urbanization process of Guangdong Province, China. Land 2021, 10, 1357. [Google Scholar] [CrossRef]
- Zhang, X.; Wan, W.; Estoque, R. Impacts of urban and cropland expansions on natural habitats in Southeast Asia. Nat. Commun. 2025, 16, 8479. [Google Scholar] [CrossRef]
- Bonilla-Moheno, M.; Aide, T. Beyond deforestation: Land cover transitions in Mexico. Agric. Syst. 2020, 178, 102734. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, Z.; He, C.; Gou, S.; Bai, Y.; Wang, Y.; Shen, M. The occupation of cropland by global urban expansion from 1992 to 2016 and its implications. Environ. Res. Lett. 2020, 15, 084037. [Google Scholar] [CrossRef]
- Yuan, J.; Yang, D.; Liu, N.; Gao, C. A local-scale participatory zoning approach to conflict resolution in protected areas. Landsc. Urban Plan. 2023, 232, 104677. [Google Scholar] [CrossRef]
- Liang, X.; He, J.; Jin, X.; Zhang, X.; Liu, J.; Zhou, Y. A new framework for optimizing ecological conservation redline of China: A case from an environment-development conflict area. Sustain. Dev. 2024, 32, 1616–1633. [Google Scholar] [CrossRef]










| System | Subsystems | Indicators | Indicator Properties |
|---|---|---|---|
| UL | A1: Population Urbanization | A11: Urbanization rate (%) | positive |
| A12: Proportion of employed population in secondary and tertiary industries (%) | positive | ||
| A13: Urban population density (person/km2) | positive | ||
| A2: Economic Urbanization | A21: Per capita GDP (yuan) | positive | |
| A22: Per capita investment in social fixed assets (yuan) | positive | ||
| A23: Proportion of output value of secondary and tertiary industries (%) | positive | ||
| A24: Per capita disposable income of urban residents (yuan) | positive | ||
| A3: Social Urbanization | A31: Per capita book ownership (volume) | positive | |
| A32: Per capita number of hospitals (number) | positive | ||
| A33: Urban registered unemployment rate (%) | negative | ||
| A4: Land Urbanization | A41: Per capita built-up area (km2) | positive | |
| A42: Per capita road area (km2) | positive | ||
| EL | B1: Eco-environment pressure | B11: Industrial wastewater emissions (10 thousand t) | negative |
| B12: Industrial SO2 emissions (t) | negative | ||
| B13: Industrial smoke (powder) emissions (10 thousand t) | negative | ||
| B14: Per capita domestic electricity consumption (kW·h) | negative | ||
| B15: Per capita water consumption (t) | negative | ||
| B2: Eco-environment Carrying | B21: Per capita green space (m2) | positive | |
| B22: Greening coverage in built-up areas (%) | positive | ||
| B23: Per capita water resources (t) | positive | ||
| B24: Per capita cultivated land (m2) | positive | ||
| B3: Eco-environment protection | B31: Domestic sewage treatment rate (%) | positive | |
| B32: Domestic garbage non-hazardous treatment rate (%) | positive | ||
| B33: General industrial solid waste comprehensive utilization rate (%) | positive |
| Coupling Coordination Types. | D | λ |
|---|---|---|
| High coordination-lagging UL | >0.70 | >1.1 |
| High coordination-balanced development | 0.9~1.1 | |
| High coordination-lagging EL | ≤0.9 | |
| Moderate coordination-lagging UL | 0.60~0.70 | >1.1 |
| Moderate coordination-balanced development | 0.9~1.1 | |
| Moderate coordination-lagging EL | ≤0.9 | |
| Basic coordination-lagging UL | 0.55~0.60 | >1.1 |
| Basic coordination-balanced development | 0.9~1.1 | |
| Basic coordination-lagging EL | ≤0.9 | |
| Mild disorder-hindered UL | 0.50~0.55 | >1.1 |
| Mild disorder-balanced development | 0.9~1.1 | |
| Mild disorder-hindered EL | ≤0.9 | |
| Moderate disorder-hindered UL | ≤0.50 | >1.1 |
| Moderate disorder-balanced development | 0.9~1.1 | |
| Moderate disorder-hindered EL | ≤0.9 |
| City | Coupling Coordination Types | Decoupling Types | ||
|---|---|---|---|---|
| LSC Intensity and UL | LSC Intensity and EL | |||
| Southern Jiangsu | Nanjing | High coordination-lagging EL | Weak decoupling | Strong negative decoupling |
| Wuxi | High coordination-lagging EL | Weak decoupling | Strong negative decoupling | |
| Changzhou | High coordination-lagging EL | Weak decoupling | Strong negative decoupling | |
| Suzhou | High coordination-lagging EL | Weak decoupling | Strong negative decoupling | |
| Zhenjiang | Moderate coordination-lagging EL | Expansive negative decoupling | Strong negative decoupling | |
| Central Jiangsu | Nantong | Moderate coordination-lagging EL | Strong negative decoupling | Strong negative decoupling |
| Yangzhou | Moderate coordination-lagging EL | Strong negative decoupling | Strong negative decoupling | |
| Taizhou | Moderate coordination-lagging EL | Strong negative decoupling | Strong negative decoupling | |
| Northern Jiangsu | Xuzhou | Moderate coordination-lagging UL | Weak decoupling | Strong negative decoupling |
| Lianyungang | Basic coordination-lagging EL | Weak decoupling | Expansive negative decoupling | |
| Huai’an | Basic coordination-lagging EL | Weak decoupling | Strong negative decoupling | |
| Yancheng | Moderate coordination-lagging UL | Weak decoupling | Strong negative decoupling | |
| Suqian | Basic coordination-lagging UL | Strong negative decoupling | Weak decoupling | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Cheng, Y.; Hu, G.; Li, P.; Chen, J.; Li, X. Coupling Coordination and Decoupling Dynamics of Land Space Conflicts with Urbanization and Eco-Environment: A Case Study of Jiangsu Province, China. Systems 2025, 13, 926. https://doi.org/10.3390/systems13100926
Liu X, Cheng Y, Hu G, Li P, Chen J, Li X. Coupling Coordination and Decoupling Dynamics of Land Space Conflicts with Urbanization and Eco-Environment: A Case Study of Jiangsu Province, China. Systems. 2025; 13(10):926. https://doi.org/10.3390/systems13100926
Chicago/Turabian StyleLiu, Xizhao, Yao Cheng, Guoheng Hu, Panpan Li, Jiangquan Chen, and Xiaoshun Li. 2025. "Coupling Coordination and Decoupling Dynamics of Land Space Conflicts with Urbanization and Eco-Environment: A Case Study of Jiangsu Province, China" Systems 13, no. 10: 926. https://doi.org/10.3390/systems13100926
APA StyleLiu, X., Cheng, Y., Hu, G., Li, P., Chen, J., & Li, X. (2025). Coupling Coordination and Decoupling Dynamics of Land Space Conflicts with Urbanization and Eco-Environment: A Case Study of Jiangsu Province, China. Systems, 13(10), 926. https://doi.org/10.3390/systems13100926

