Joint Choice of Fresh Food Purchase Channels and Terminal Delivery Service: A Background on Major Public Health Events
Abstract
:1. Introduction
2. Fresh Food Purchase Channels and Terminal Delivery Service
3. Model Specification
3.1. Model Structure Description
3.2. Utility Function and CHOICE Probability
3.3. Utility Variables
4. Data
5. Results and Analysis
5.1. Results
5.2. Elasticity Analysis
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Das, G.; Jain, S.P.; Maheswaran, D.; Slotegraaf, R.J.; Srinivasan, R. Pandemics and marketing: Insights, impacts, and research opportunities. J. Acad. Mark. Sci. 2021, 49, 835–854. [Google Scholar] [CrossRef]
- Yin, Y.; Zhao, H.; Xu, S. The influence of fear on consumers’ experiential consumption preferences during public health crises: Testing multiple mediation models. Int. J. Tour. Res. 2024, 26, e2706. [Google Scholar] [CrossRef]
- Jung, H.; Park, M.; Hong, K.; Hyun, E. The impact of an epidemic outbreak on consumer expenditures: An empirical assessment for MERS Korea. Sustainability 2016, 8, 454. [Google Scholar] [CrossRef]
- Sadique, M.Z.; Edmunds, W.J.; Smith, R.D.; Meerding, W.J.; De Zwart, O.; Brug, J.; Beutels, P. Precautionary behavior in response to perceived threat of pandemic influenza. Emerg. Infect. Dis. 2007, 13, 1307–1313. [Google Scholar] [CrossRef]
- Yang, Z.; Hu, X.; Sun, J.; Zhang, Y. Public health measures and retailer channel strategy during pandemics. Comput. Ind. Eng. 2024, 196, 110489. [Google Scholar] [CrossRef]
- Ngoh, C.; Groening, C. The effect of COVID-19 on consumers’ channel shopping behaviors: A segmentation study. J. Retail. Consum. Serv. 2022, 68, 103065. [Google Scholar] [CrossRef]
- Suguna, M.; Shah, B.; Raj, S.K.; Suresh, M. A study on the influential factors of the last mile delivery projects during COVID-19 era. Oper. Manag. Res. 2021, 15, 399–412. [Google Scholar] [CrossRef]
- Grashuis, J.; Skevas, T.; Segovia, M.S. Grocery shopping preferences during the COVID-19 pandemic. Sustainability 2020, 12, 5369. [Google Scholar] [CrossRef]
- Kim, N.L.; Im, H. Do liberals want curbside pickup more than conservatives? Contactless shopping as protectionary action against the COVID-19 pandemic. Int. J. Consum. Stud. 2022, 46, 589–600. [Google Scholar] [CrossRef]
- Eger, L.; Komárková, L.; Egerová, D.; Mičík, M. The effect of COVID-19 on consumer shopping behaviour: Generational cohort perspective. J. Retail. Consum. Serv. 2021, 61, 102542. [Google Scholar] [CrossRef]
- Kursan Milaković, I. Purchase experience during the COVID-19 pandemic and social cognitive theory: The relevance of consumer vulnerability, resilience, and adaptability for purchase satisfaction and repurchase. Int. J. Consum. Stud. 2021, 45, 1425–1442. [Google Scholar] [CrossRef]
- Wang, X.; Wong, Y.D.; Qi, G.; Yuen, K.F. Contactless channel for shopping and delivery in the context of social distancing in response to COVID-19 pandemic. Electron. Commer. Res. Appl. 2021, 48, 101075. [Google Scholar] [CrossRef]
- Chinyanga, E.; Britwum, K.; Gustafson, C.R.; Bernard, C. Did COVID-19 influence fruit and vegetable consumption? Explaining and comparing pandemic peak and post-peak periods. Appetite 2024, 201, 107574. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, G.W.; Dong, A.B.S.Q.L.; Chang, D. Factors affecting the consumers online shopping during the COVID-19 pandemic in China. Rev. Argent. Clin. Psic. 2021, 30, 853–864. [Google Scholar]
- Prasad, R.K.; Srivastava, M.K. Switching behavior toward online shopping: Coercion or choice during COVID-19 pandemic. Acad. Mark. Stud. J. 2021, 25, 1–15. [Google Scholar]
- Wu, W.Y.; Lu, H.Y.; Wu, Y.Y.; Fu, C.S. The effects of product scarcity and consumers’ need for uniqueness on purchase intention. Int. J. Consum. Stud. 2012, 36, 263–274. [Google Scholar] [CrossRef]
- Alaimo, L.S.; Fiore, M.; Galati, A. Measuring consumers’ level of satisfaction for online food shopping during COVID-19 in Italy using POSETs. Socio-Econ. Plan. Sci. 2021, 82, 101064. [Google Scholar] [CrossRef]
- Li, S.; Kallas, Z.; Rahmani, D. Did the COVID-19 lockdown affect consumers’ sustainable behaviour in food purchasing and consumption in China? Food Control 2022, 132, 108352. [Google Scholar] [CrossRef]
- Truong, D.; Truong, M.D. How do customers change their purchasing behaviors during the COVID-19 pandemic? J. Retail. Consum. Serv. 2022, 67, 102963. [Google Scholar] [CrossRef]
- Asgari, H.; Azimi, G.; Titiloye, I.; Jin, X. Exploring the influences of personal attitudes on the intention of continuing online grocery shopping after the COVID-19 pandemic. Travel Behav. Soc. 2023, 33, 100622. [Google Scholar] [CrossRef]
- Verhoef, P.C.; Noordhoff, C.S.; Sloot, L. Reflections and predictions on effects of COVID-19 pandemic on retailing. J. Serv. Manag. 2023, 34, 274–293. [Google Scholar] [CrossRef]
- Wang, X.; Wong, Y.D.; Kim, T.Y.; Yuen, K.F. Does consumers’ involvement in e-commerce last-mile delivery change after COVID-19? An investigation on behavioural change, maintenance and habit formation. Electron. Commer. Res. Appl. 2023, 60, 101273. [Google Scholar] [CrossRef]
- Betancourt, R.R.; Chocarro, R.; Cortiñas, M.; Elorz, M.; Mugica, J.M. Channel choice in the 21st century: The hidden role of distribution services. J. Interact. Mark. 2016, 33, 1–12. [Google Scholar] [CrossRef]
- Xiao, Z.; Wang, J.J.; Liu, Q. The impacts of final delivery solutions on e-shopping usage behaviour: The case of Shenzhen, China. Int. J. Retail. Distrib. 2018, 46, 2–20. [Google Scholar] [CrossRef]
- Xi, G.; Cao, X.; Zhen, F. The impacts of same day delivery online shopping on local store shopping in Nanjing, China. Transp. Res. Part A Policy Pract. 2020, 136, 35–47. [Google Scholar] [CrossRef]
- Shen, H.; Namdarpour, F.; Lin, J. Investigation of online grocery shopping and delivery preference before, during, and after COVID-19. Transp. Res. Interdiscip. Perspect. 2022, 14, 100580. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Y.; Zhu, S.; Liu, L. Does COVID-19 affect the behavior of buying fresh food? Evidence from Wuhan, China. Int. J. Environ. Res. Public Health 2021, 18, 4469. [Google Scholar] [CrossRef]
- Lu, M.; Wang, R.; Li, P. Comparative analysis of online fresh food shopping behavior during normal and COVID-19 crisis periods. Brit. Food. J. 2022, 124, 968–986. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y. Comparing influencing factors of online and offline fresh food purchasing: Consumption values perspective. Environ. Dev. Sustain. 2024, 26, 12995–13015. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y.; Yao, Q.; Guan, X. Dual-channel retailing strategy vs. omni-channel buy-online-and-pick-up-in-store behaviors with reference freshness effect. Int. J. Prod. Econ. 2023, 263, 108967. [Google Scholar] [CrossRef]
- Ye, F.; Lord, D. Comparing three commonly used crash severity models on sample size requirements: Multinomial logit, ordered probit and mixed logit models. Anal. Methods Accid. Res. 2014, 1, 72–85. [Google Scholar] [CrossRef]
- Wen, C.H.; Koppelman, F.S. The generalized nested logit model. Transp. Res. Part B Methodol. 2001, 35, 627–641. [Google Scholar] [CrossRef]
- Shahzad, M.A.; Razzaq, A.; Qing, P.; Rizwan, M.; Faisal, M. Food availability and shopping channels during the disasters: Has the COVID-19 pandemic changed peoples’ online food purchasing behavior? Int. J. Dis. Risk Res. 2022, 83, 103443. [Google Scholar] [CrossRef]
- Adibfar, A.; Gulhare, S.; Srinivasan, S.; Costin, A. Analysis and modeling of changes in online shopping behavior due to COVID-19 pandemic: A Florida case study. Transp. Policy 2022, 126, 162–176. [Google Scholar] [CrossRef]
- Tian, X.; Jiang, H.; Zhao, X. Product assortment and online sales in community group-buying channel: Evidence from a convenience store chain. J. Retail. Consum. Serv. 2024, 79, 103838. [Google Scholar] [CrossRef]
- Liang, J.; Ma, J.; Zhu, J.; Jin, X. Online or offline? How smog pollution affects customer channel choice for purchasing fresh food. Front. Psychol. 2021, 12, 682981. [Google Scholar] [CrossRef]
- Zhu, H.; Dou, S.; Qiu, Y. Joint model for last-mile delivery service selection in China: Evidence from a cross-nested logit study. IEEE Access 2019, 7, 137668–137679. [Google Scholar] [CrossRef]
- Ravinovich, E.; Bailey, J.P. Physical distribution service quality in Internet retailing: Service pricing, transaction attributes, and firm attributes. J. Oper. Manag. 2004, 21, 651–672. [Google Scholar] [CrossRef]
- Punakivi, M.; Yrjölä, H.; Holmström, J. Solving the last mile issue: Reception box or delivery box? Int. J. Phys. Distr. Log. 2001, 31, 427–439. [Google Scholar] [CrossRef]
- Weltevreden, J.W.J. B2c e-commerce logistics: The rise of collection-and-delivery points in The Netherlands. Int. J. Retail. Distrib. 2008, 36, 638–660. [Google Scholar] [CrossRef]
- Devari, A.; Nikolaev, A.G.; He, Q. Crowdsourcing the last mile delivery of online orders by exploiting the social networks of retail store customers. Transp. Res. Part E Logist. Transp. Rev. 2017, 105, 105–122. [Google Scholar] [CrossRef]
- Ramadan, Z.B.; Farah, M.F.; Mrad, M. An adapted TPB approach to consumers’ acceptance of service-delivery drones. Technol. Anal. Strateg. 2017, 29, 817–828. [Google Scholar] [CrossRef]
- McFadden, D. Modeling the choice of residential location. Transp. Res. Rec. 1978, 673, 72–77. [Google Scholar]
- Bekhor, S.; Prashker, J.N. GEV-based destination choice models that account for unobserved similarities among alternatives. Transp. Res. Part B Methodol. 2008, 42, 243–262. [Google Scholar] [CrossRef]
- Filimonau, V.; Beer, S.; Ermolaev, V.A. The COVID-19 pandemic and food consumption at home and away: An exploratory study of English households. Socio-Econ. Plan. Sci. 2022, 82, 101125. [Google Scholar] [CrossRef]
- Farag, S.; Schwanen, T.; Dijst, M.; Faber, J. Shopping online and/or in-store? A structural equation model of the relationships between e-shopping and in-store shopping. Transp. Res. Part A Policy Pract. 2007, 41, 125–141. [Google Scholar] [CrossRef]
- Farag, S.; Krizek, K.J.; Dijst, M. E-Shopping and its Relationship with In-store Shopping: Empirical Evidence from the Netherlands and the USA. Transp. Rev. 2006, 26, 43–61. [Google Scholar] [CrossRef]
- Hayel, Y.; Quadri, D.; Jiménez, T.; Brotcorne, L. Decentralized optimization of last-mile delivery services with non-cooperative bounded rational customers. Ann. Oper. Res. 2016, 239, 451–469. [Google Scholar] [CrossRef]
- Gruntkowski, L.M.; Martinez, L.F. Online grocery shopping in Germany: Assessing the impact of COVID-19. J. Theor. Appl. Electron. Commer. Res. 2022, 17, 984–1002. [Google Scholar] [CrossRef]
- Pang, X.; Ren, L.; Wu, S.; Ma, W.; Yang, J.; Di, L.; Li, J.; Xiao, Y.; Kang, L.; Du, S.; et al. COVID-19 Laboratory Testing Group. Cold-chain food contamination as the possible origin of COVID-19 resurgence in Beijing. Natl. Sci. Rev. 2020, 7, 1861–1864. [Google Scholar] [CrossRef]
- Thomas, M.S.; Feng, Y. Consumer risk perception and trusted sources of food safety information during the COVID-19 pandemic. Food Control 2021, 130, 108279. [Google Scholar] [CrossRef]
- Moon, J.; Choe, Y.; Song, H. Determinants of consumers’ online/offline shopping behaviours during the COVID-19 pandemic. Int. J. Environ. Res. Public Health 2021, 18, 1593. [Google Scholar] [CrossRef]
- Vandenhaute, H.; Gellynck, X.; De Steur, H. COVID-19 safety measures in the food service sector: Consumers’ attitudes and transparency perceptions at three different stages of the Pandemic. Foods 2022, 11, 810. [Google Scholar] [CrossRef]
- Hess, S.; Polak, J.W. Exploring the potential for cross-nesting structures in airport-choice analysis: A case-study of the Greater London area. Transp. Res. Part E Logist. Transp. Rev. 2006, 42, 63–81. [Google Scholar] [CrossRef]
- Hess, S. A model for the joint analysis of airport, airline, and access-mode choice for passengers departing from the San Francisco Bay area. In Proceedings of the European Transport Conference, Strasbourg, France, 4–6 October 2004. [Google Scholar]
- Bierlaire, M. PythonBiogeme: A Short Introduction. In Technical Report TRANSPOR 160706; Transport and Mobility Laboratory, ENAC, EPFL: Lausanne, Switzerland, 2016. [Google Scholar]
- Ying, H.; Ji, H.; Shi, X.; Wang, X. A trust model for consumer conversion in community-based group buying: The dual roles of group leaders. Mod. Supply Chain Res. Appl. 2022, 4, 122–140. [Google Scholar] [CrossRef]
- Jiang, H.; Ren, X. Comparative Analysis of Drones and Riders in On-Demand Meal Delivery Based on Prospect Theory. Discret. Dyn. Nat. Soc. 2020, 1, 9237689. [Google Scholar] [CrossRef]
- Pani, A.; Mishra, S.; Golias, M.; Figliozzi, M. Evaluating public acceptance of autonomous delivery robots during COVID-19 pandemic. Transp. Res. Part D Transp. Environ. 2020, 89, 102600. [Google Scholar] [CrossRef]
Fresh Food Purchase Channel | Terminal Delivery Service | Alternative Name |
---|---|---|
Traditional market channel | home delivery by couriers | c1 |
home delivery by unmanned equipment | c2 | |
manned pick-up point | c3 | |
unattended self-pickup cabinet | c4 | |
Community group-buying channel | home delivery by couriers | c5 |
home delivery by unmanned equipment | c6 | |
manned pick-up point | c7 | |
unattended self-pickup cabinet | c8 | |
Fresh food store channel | home delivery by couriers | c9 |
home delivery by unmanned equipment | c10 | |
manned pick-up point | c11 | |
unattended self-pickup cabinet | c12 | |
E-commerce platform channel | home delivery by couriers | c13 |
home delivery by unmanned equipment | c14 | |
manned pick-up point | c15 | |
unattended self-pickup cabinet | c16 |
Utility Variables | Description | |
---|---|---|
Socioeconomic factors | ||
Gender | Dummy variable | 1: male; 2: female. |
Age | Discrete variable | 1: under 18 years old; 2: 18–59 years old; 3: over 59 years old. |
Education | Discrete variable | Education level (1: high school and below; 2: associate’s degree; 3: bachelor’s degree; 4: master’s degree or above). |
Service factors | ||
Price | Discrete variable | Degree of concern about price (1: completely unconcerned; 2: unconcerned; 3: average; 4: concerned; 5: deeply concerned). |
Touch | Discrete variable | Degree of concern about touching (1: completely unconcerned; 2: unconcerned; 3: average; 4: concerned; 5: deeply concerned). |
Convenience_M | Discrete variable | The convenience of shopping at farmers’ markets and supermarkets (1: very inconvenient; 2: inconvenient; 3: average; 4: convenient; 5: very convenient). |
Convenience_G | Discrete variable | The convenience of shopping via community group-buying (1: very inconvenient; 2: inconvenient; 3: average; 4: convenient; 5: very convenient). |
Convenience_S | Discrete variable | The convenience of shopping at a fresh food store (1: very inconvenient; 2: inconvenient; 3: average; 4: convenient; 5: very convenient). |
Convenience_E | Discrete variable | The convenience of shopping on an e-commerce platform (1: very inconvenient; 2: inconvenient; 3: average; 4: convenient; 5: very convenient). |
Satisfaction_M | Discrete variable | Satisfaction with delivery service of supermarkets and farmers’ markets (1: completely dissatisfied; 2: dissatisfied; 3: average; 4: satisfied; 5: greatly satisfied). |
Satisfaction_G | Discrete variable | Satisfaction with delivery service of community group-buying (1: completely dissatisfied; 2: dissatisfied; 3: average; 4: satisfied; 5: greatly satisfied). |
Satisfaction_S | Discrete variable | Satisfaction with delivery service of fresh food store (1: completely dissatisfied; 2: dissatisfied; 3: average; 4: satisfied; 5: greatly satisfied). |
Satisfaction_E | Discrete variable | Satisfaction with delivery service of e-commerce platform (1: completely dissatisfied; 2: dissatisfied; 3: average; 4: satisfied; 5: greatly satisfied). |
Tm_d2dwaiting | Discrete variable | Waiting time for home delivery (1: very troubled; 2: troubled; 3: average; 4: untroubled; 5: completely untroubled). |
Tm_pkupwaiting | Discrete variable | Waiting time for self-pickup (1: very troubled; 2: troubled; 3: average; 4: untroubled; 5: completely untroubled). |
Risk perception factors | ||
Rickscene | Discrete variable | The infection risk of on-site purchases (1: very low; 2: low; 3: average; 4: high; 5: very high). |
Rickpackage | Discrete variable | The infection risk of touching packages (1: very low; 2: low; 3: average; 4: high; 5: very high). |
Rickdevice | Discrete variable | The infection risk of touching delivery devices (1: very low; 2: low; 3: average; 4: high; 5: very high). |
Rickworker | Discrete variable | The infection risk of contact with delivery staff (1: very low; 2: low; 3: average; 4: high; 5: very high). |
Trust perception factors | ||
Cont_temp | Discrete variable | Effectiveness of temperature detection in public places (1: completely ineffective; 2: ineffective; 3: neutral; 4: effective; 5: very effective) |
Cont_report | Discrete variable | Effectiveness of detection report (1: completely ineffective; 2: ineffective; 3: neutral; 4: effective; 5: very effective) |
Cont_safeguard | Discrete variable | Effectiveness of protective measures for delivery staff (1: completely ineffective; 2: ineffective; 3: neutral; 4: effective; 5: very effective) |
Cont_degassing | Discrete variable | Effectiveness of regular disinfection of equipment (1: completely ineffective; 2: ineffective; 3: neutral; 4: effective; 5: very effective) |
Tr_pdegassing | Discrete variable | Trust in package disinfection and sterilization (1: very untrusted; 2: untrusted; 3: neutral; 4: trusted; 5: very trusted) |
Tr_health | Discrete variable | Trust in the health of delivery staff (1: very untrusted; 2: untrusted; 3: neutral; 4: trusted; 5: very trusted) |
Tr_ddegassing | Discrete variable | Trust in device disinfection and sterilization (1: very untrusted; 2: untrusted; 3: neutral; 4: trusted; 5: very trusted) |
No. | Alternatives | Quantity | Proportion | Subtotal | No. | Alternatives | Quantity | Proportion | Subtotal | ||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Traditional market channel | home delivery by couriers | 30 | 2.48% | 23.83% | 9 | Fresh food store channel | home delivery by couriers | 80 | 6.62% | 16.06% |
2 | home delivery by unmanned equipment | 15 | 1.24% | 10 | home delivery by unmanned equipment | 21 | 1.74% | ||||
3 | manned pick-up point | 224 | 18.54% | 11 | manned pick-up point | 79 | 6.54% | ||||
4 | unattended self-pickup cabinet | 19 | 1.57% | 12 | unattended self-pickup cabinet | 14 | 1.16% | ||||
5 | Community group-buying channel | home delivery by couriers | 104 | 8.61% | 39.15% | 13 | E-commerce platform channel | home delivery by couriers | 153 | 12.75% | 20.95% |
6 | home delivery by unmanned equipment | 52 | 4.30% | 14 | home delivery by unmanned equipment | 18 | 1.49% | ||||
7 | manned pick-up point | 257 | 21.27% | 15 | manned pick-up point | 60 | 4.97% | ||||
8 | unattended self-pickup cabinet | 60 | 4.97% | 16 | unattended self-pickup cabinet | 21 | 1.74% |
Category | Parameter | Value | t-Stat |
---|---|---|---|
Socioeconomic attributes | B_Gender | 0.337 | 1.24 |
B_Age | −0.107 | −0.18 | |
B_Education | 0.544 | 2.30 ** | |
Service attributes | B_Price | −0.0553 | −0.30 |
B_Touch | 0.650 | 3.45 *** | |
B_Convenience_M | 1.15 | 4.39 *** | |
B_Convenience_G | 1.18 | 4.31 *** | |
B_Convenience_S | 0.654 | 2.87 *** | |
B_Convenience_E | 1.47 | 4.50 *** | |
B_Satisfaction_M | 1.16 | 4.18 *** | |
B_Satisfaction_G | 1.31 | 4.95 *** | |
B_Satisfaction_S | 1.17 | 3.91 *** | |
B_Satisfaction_E | 1.44 | 4.35 *** | |
B_Tm_d2dwaiting | 0.338 | 2.70 *** | |
B_Tm_pkupwaiting | −0.182 | −1.43 | |
Risk perception attributes | B_Rickscene | −0.0461 | −0.44 |
B_Rickpackage | −0.406 | −2.76 *** | |
B_Rickdevice | −0.0803 | −0.88 | |
B_Rickworker | −0.434 | −7.04 *** | |
Trust perception attributes | B_Cont_temp | 0.214 | 1.79 ** |
B_Cont_report | −0.0820 | −0.64 | |
B_Cont_safeguard | 0.543 | 4.96 *** | |
B_Cont_degassing | 0.00583 | 0.06 | |
B_Tr_pdegassing | −0.224 | −1.14 | |
B_Tr_health | 0.272 | 2.08 ** | |
B_Tr_ddegassing | 0.195 | 1.54 | |
Dissimilarity parameter | MU_δ1 | 1.00 | 0.00 |
MU_δ2 | 0.373 | 6.38 *** | |
MU_δ3 | 0.372 | 4.92 *** | |
MU_δ4 | 0.634 | 2.72 *** | |
MU_γ1 | 0.389 | 5.37 *** | |
MU_γ2 | 0.297 | 5.39 *** | |
MU_γ3 | 0.400 | 5.17 *** | |
MU_γ4 | 0.303 | 2.34 *** | |
Final log likelihood | −2455.690 | ||
Rho-square-bar for the init. model | 0.267 | ||
Sample size | 1208 |
Home Delivery by Couriers | Home Delivery by Unmanned Equipment | Manned Pick-Up Point | Unattended Self-Pickup Cabinet | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DE | 90%CI | CE | 90%CI | DE | 90%CI | CE | 90%CI | DE | 90%CI | CE | 90%CI | DE | 90%CI | CE | 90%CI | ||
Traditional market channel | Education | -- | 1.298 | (0.26, 2.51) | -- | 1.502 | (0.28, 3.25) | -- | 1.01 | (0.22, 1.87) | -- | 1.504 | (0.28, 3.27) | ||||
Touch | 2.195 | (1.01, 3.77) | -- | 2.39 | (0.89, 4.73) | -- | 1.681 | (0.76, 2.80) | -- | 2.395 | (0.90, 4.76) | -- | |||||
Convenience_M | 3.948 | (1.99, 6.49) | -- | 4.277 | (1.84, 8.30) | -- | 3.029 | (1.59, 4.83) | -- | 4.293 | (1.85, 8.36) | -- | |||||
Convenience_G | -- | 3.865 | (1.83, 6.87) | -- | 4.246 | (1.80, 8.52) | -- | 2.953 | (1.45, 5.12) | -- | 4.247 | (1.79, 8.58) | |||||
Convenience_S | -- | 2.254 | (0.72, 1.14) | -- | 2.472 | (0.76, 4.93) | -- | 1.738 | (0.60, 2.98) | -- | 2.478 | (0.76, 4.97) | |||||
Convenience_E | -- | 5.11 | (2.89, 8.45) | -- | 5.652 | (2.30, 11.4) | -- | 3.905 | (2.17, 6.30) | -- | 5.652 | (2.31, 11.44) | |||||
Satisfaction_M | 3.114 | (1.26, 5.51) | -- | 3.263 | (1.19, 6.57) | -- | 2.377 | (1.03, 3.86) | -- | 3.291 | (1.20, 6.68) | -- | |||||
Satisfaction_G | -- | 2.508 | (1.23, 3.90) | -- | 2.778 | (1.12, 5.11) | -- | 1.892 | (0.93, 2.89) | -- | 2.771 | (1.11, 5.12) | |||||
Satisfaction_S | -- | 2.576 | (1.23, 4.36) | -- | 2.942 | (1.09, 5.81) | -- | 2.035 | (0.99, 3.32) | -- | 2.946 | (1.09, 5.84) | |||||
Satisfaction_E | -- | 2.701 | (1.23, 4.28) | -- | 3.263 | (1.28, 6.03) | -- | 2.088 | (0.96, 3.29) | -- | 3.253 | (1.27, 6.03) | |||||
Tm_d2dwaiting | 1.034 | (0.31, 1.96) | -- | -- | 1.039 | (0.30, 2.12) | 0.788 | (0.21, 1.59) | -- | -- | 1.04 | (0.30, 2.12) | |||||
Rickpackage | -- | −1.345 | (−2.43, 0.45) | -- | −1.548 | (−3.42, −0.44) | -- | −1.054 | (−1.80, −0.35) | -- | −1.551 | (−3.44, −0.44) | |||||
Rickworker | −0.894 | (−1.13, −0.54) | -- | -- | −1.227 | (−2.18, −0.57) | −0.791 | (−1.29, −0.44) | -- | -- | −1.229 | (−2.18, −0.57) | |||||
Cont_temp | 0.464 | (0.03, 1.05) | -- | 0.503 | (0.04, 1.43) | -- | 0.344 | (0.03, 0.78) | -- | 0.506 | (0.04, 1.44) | -- | |||||
Cont_safeguard | 1.178 | (0.59, 1.86) | -- | -- | 1.149 | (0.49, 2.05) | 0.911 | (0.44, 1.47) | -- | -- | 1.15 | (0.49, 2.05) | |||||
Tr_health | 0.906 | (0.36, 1.87) | -- | -- | 0.963 | (0.27, 2.32) | 0.692 | (0.26, 1.46) | -- | -- | 0.964 | (0.28, 2.33) | |||||
Community group-buying channel | Education | 1.215 | (0.21, 2.36) | -- | 1.46 | (0.24, 3.06) | -- | 1.205 | (0.21, 2.31) | -- | 1.462 | (0.24, 3.08) | -- | ||||
Touch | -- | 1.798 | (0.79, 3.02) | -- | 2.137 | (0.82, 3.83) | -- | 1.793 | (0.79, 2.96) | -- | 2.138 | (0.82, 3.84) | |||||
Convenience_M | -- | 2.866 | (1.41, 4.54) | -- | 3.364 | (1.56, 5.76) | -- | 2.873 | (1.45, 4.49) | -- | 3.363 | (1.55, 5.77) | |||||
Convenience_G | 3.945 | (1.73, 6.84) | -- | 4.726 | (1.98, 8.86) | -- | 3.901 | (1.77, 6.65) | -- | 4.738 | (1.97, 8.91) | -- | |||||
Convenience_S | -- | 1.806 | (0.53, 3.29) | -- | 2.138 | (0.59, 4.18) | -- | 1.806 | (0.56, 3.22) | -- | 2.138 | (0.59, 4.20) | |||||
Convenience_E | -- | 4.61 | (2.60, 7.28) | -- | 5.422 | (2.66, 9.49) | -- | 4.564 | (2.62, 7.10) | -- | 5.424 | (2.66, 9.52) | |||||
Satisfaction_M | -- | 1.544 | (0.65, 2.57) | -- | 1.792 | (0.67, 3.38) | -- | 1.578 | (0.69, 2.57) | -- | 1.788 | (0.66, 3.38) | |||||
Satisfaction_G | 3.46 | (1.54, 5.32) | -- | 4.19 | (1.62, 7.01) | -- | 3.387 | (1.56, 5.13) | -- | 4.21 | (1.62, 7.07) | -- | |||||
Satisfaction_S | -- | 2.117 | (0.98, 3.50) | -- | 2.53 | (1.01, 4.59) | -- | 2.127 | (1.02, 3.46) | -- | 2.529 | (1.00, 4.60) | |||||
Satisfaction_E | -- | 2.67 | (1.15, 4.11) | -- | 3.168 | (1.17, 5.44) | -- | 2.625 | (1.16, 3.99) | -- | 3.164 | (1.16, 5.45) | |||||
Tm_d2dwaiting | 0.918 | (0.28, 1.57) | -- | -- | 1.037 | (0.32, 1.78) | 0.911 | (0.27, 1.56) | -- | -- | 1.039 | (0.33, 1.78) | |||||
Rickpackage | -- | −1.229 | (−2.14, −0.40) | -- | −1.471 | (−2.95, −0.44) | -- | −1.222 | (−2.09, −0.40) | -- | −1.472 | (−2.96, −0.44) | |||||
Rickworker | −0.85 | (−1.15, −0.53) | -- | -- | −1.108 | (−1.59, −0.63) | −0.858 | (−1.17, −0.54) | -- | -- | −1.108 | (−1.59, −0.63) | |||||
Cont_temp | -- | 0.321 | (0.02, 0.67) | -- | 0.382 | (0.03, 0.89) | -- | 0.321 | (0.02, 0.66) | -- | 0.382 | (0.03, 0.89) | |||||
Cont_safeguard | 1.076 | (0.54, 1.56) | -- | -- | 1.193 | (0.58, 1.82) | 1.068 | (0.54, 1.55) | -- | -- | 1.196 | (0.58, 1.82) | |||||
Tr_health | 0.796 | (0.33, 1.49) | -- | -- | 0.93 | (0.33, 1.87) | 0.791 | (0.33, 1.48) | -- | -- | 0.931 | (0.33, 1.87) | |||||
Fresh food store channel | Education | -- | 1.404 | (0.30, 2.67) | -- | 1.494 | (0.27, 3.16) | -- | 1.281 | (0.29, 2.40) | -- | 1.494 | (0.27, 3.13) | ||||
Touch | 2.28 | (0.95, 4.14) | -- | 2.398 | (0.81, 4.90) | -- | 2.08 | (0.89, 3.57) | -- | 2.402 | (0.81, 4.93) | -- | |||||
Convenience_M | -- | 3.704 | (1.83, 6.50) | -- | 3.865 | (1.59, 7.70) | -- | 3.416 | (1.75, 5.63) | -- | 3.868 | (1.58, 7.75) | |||||
Convenience_G | -- | 4.073 | (1.92, 7.61) | -- | 4.241 | (1.68, 8.74) | -- | 3.7 | (1.84, 6.60) | -- | 4.242 | (1.67, 8.80) | |||||
Convenience_S | 2.432 | (0.67, 4.56) | -- | 2.561 | (0.65, 5.38) | -- | 2.214 | (0.68, 3.95) | -- | 2.569 | (0.65, 5.43) | -- | |||||
Convenience_E | -- | 5.341 | (2.73, 9.55) | -- | 5.58 | (2.19, 11.52) | -- | 4.855 | (2.55, 8.25) | -- | 5.575 | (2.18, 11.57) | |||||
Satisfaction_M | -- | 2.311 | (1.05, 3.91) | -- | 2.422 | (0.85, 4.68) | -- | 2.188 | (1.04, 3.43) | -- | 2.425 | (0.84, 4.71) | |||||
Satisfaction_G | -- | 2.773 | (1.35, 4.50) | -- | 2.896 | (1.14, 5.42) | -- | 2.496 | (1.26, 3.86) | -- | 2.891 | (1.12, 5.44) | |||||
Satisfaction_S | 3.372 | (1.42, 6.51) | -- | 3.626 | (1.20, 7.88) | -- | 3.056 | (1.37, 5.39) | -- | 3.648 | (1.20, 7.98) | -- | |||||
Satisfaction_E | -- | 3.02 | (1.35, 4.92) | -- | 3.205 | (1.23, 6.03) | -- | 2.736 | (1.27, 4.29) | -- | 3.191 | (1.22, 6.04) | |||||
Tm_d2dwaiting | 1.068 | (0.31, 2.24) | -- | -- | 1.05 | (0.30, 2.22) | 0.971 | (0.26, 2.06) | -- | -- | 1.051 | (0.30, 2.23) | |||||
Rickpackage | -- | −1.47 | (−2.81, −0.49) | -- | −1.58 | (−3.49, −0.44) | -- | −1.348 | (−2.38, −0.45) | -- | −1.583 | (−3.51, −0.44) | |||||
Rickworker | −1.004 | (−1.58, −0.56) | -- | -- | −1.217 | (−2.13, −0.56) | −1.015 | (−1.66, −0.55) | -- | -- | −1.217 | (−2.13, −0.56) | |||||
Cont_temp | 0.429 | (0.03, 1.00) | -- | 0.458 | (0.03, 1.22) | -- | 0.388 | (0.03, 0.89) | -- | 0.459 | (0.03, 1.22) | -- | |||||
Cont_safeguard | 1.266 | (0.60, 2.11) | -- | -- | 1.214 | (0.50, 2.19) | 1.16 | (0.56, 1.91) | -- | -- | 1.217 | (0.50, 2.20) | |||||
Tr_health | 0.943 | (0.33, 2.01) | -- | -- | 0.963 | (0.27, 2.29) | 0.858 | (0.31, 1.89) | -- | -- | 0.964 | (0.27, 2.29) | |||||
E-commerce platform channel | Education | 1.309 | (0.22, 2.65) | -- | 1.54 | (0.24, 3.68) | -- | 1.286 | (0.23, 2.57) | -- | 1.544 | (0.23, 3.72) | -- | ||||
Touch | -- | 1.849 | (0.73, 3.17) | -- | 2.163 | (0.70, 4.43) | -- | 1.833 | (0.75, 3.08) | -- | 2.164 | (0.69, 4.45) | |||||
Convenience_M | -- | 3.027 | (1.34, 5.33) | -- | 3.492 | (1.38, 7.41) | -- | 3.02 | (1.40, 5.20) | -- | 3.492 | (1.37, 7.46) | |||||
Convenience_G | -- | 3.504 | (1.54, 6.21) | -- | 4.032 | (1.26, 8.37) | -- | 3.443 | (1.59, 6.03) | -- | 4.032 | (1.55, 8.44) | |||||
Convenience_S | -- | 1.888 | (0.51, 3.40) | -- | 2.184 | (0.54, 4.55) | -- | 1.876 | (0.54, 3.31) | -- | 2.184 | (0.54, 4.58) | |||||
Convenience_E | 5.481 | (2.47, 9.86) | -- | 6.368 | (2.29, 14.11) | -- | 5.379 | (2.54, 9.49) | -- | 6.39 | (2.28, 14.25) | -- | |||||
Satisfaction_M | -- | 1.638 | (0.60, 2.93) | -- | 1.938 | (0.63, 3.95) | -- | 1.673 | (0.64, 2.90) | -- | 1.935 | (0.62, 3.97) | |||||
Satisfaction_G | -- | 2.478 | (1.08, 4.00) | -- | 2.826 | (1.04, 5.51) | -- | 2.4 | (1.08, 3.79) | -- | 2.825 | (1.03, 5.55) | |||||
Satisfaction_S | -- | 2.205 | (0.89, 4.22) | -- | 2.627 | (0.86, 5.74) | -- | 2.199 | (0.92, 4.08) | -- | 2.629 | (0.86, 5.79) | |||||
Satisfaction_E | 4.165 | (1.57, 7.16) | -- | 4.85 | (1.65, 9.87) | -- | 4.054 | (1.61, 6.78) | -- | 4.88 | (1.64, 10.00) | -- | |||||
Tm_d2dwaiting | 0.966 | (0.25, 1.84) | -- | -- | 1.03 | (0.25, 2.19) | 0.952 | (0.24, 1.82) | -- | -- | 1.032 | (0.25, 2.20) | |||||
Rickpackage | −1.242 | (−2.41, 0.41) | -- | −1.443 | (−3.31, −0.40) | -- | −1.226 | (−2.32, −0.41) | -- | −1.444 | (−3.32, −0.40) | -- | |||||
Rickworker | −0.932 | (−1.48, −0.47) | -- | -- | −1.235 | (−2.36, −0.52) | 0.94 | (−1.49, −0.49) | -- | -- | −1.238 | (−2.37, −0.51) | |||||
Cont_temp | -- | 0.315 | (0.02, 0.73) | -- | 0.378 | (0.03, 1.08) | -- | 0.313 | (0.03, 0.72) | -- | 0.377 | (0.03, 1.08) | |||||
Cont_safeguard | 1.159 | (0.54, 1.87) | -- | -- | 1.207 | (0.49, 2.26) | 1.142 | (0.54, 1.84) | -- | -- | 1.211 | (0.49, 2.27) | |||||
Tr_health | 0.827 | (0.28, 1.81) | -- | -- | 0.934 | (0.24, 2.49) | 0.815 | (0.28, 1.78) | -- | -- | 0.935 | (0.24, 2.50) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Jiang, T. Joint Choice of Fresh Food Purchase Channels and Terminal Delivery Service: A Background on Major Public Health Events. Systems 2024, 12, 439. https://doi.org/10.3390/systems12100439
Zhu H, Jiang T. Joint Choice of Fresh Food Purchase Channels and Terminal Delivery Service: A Background on Major Public Health Events. Systems. 2024; 12(10):439. https://doi.org/10.3390/systems12100439
Chicago/Turabian StyleZhu, Huiqi, and Tianhua Jiang. 2024. "Joint Choice of Fresh Food Purchase Channels and Terminal Delivery Service: A Background on Major Public Health Events" Systems 12, no. 10: 439. https://doi.org/10.3390/systems12100439
APA StyleZhu, H., & Jiang, T. (2024). Joint Choice of Fresh Food Purchase Channels and Terminal Delivery Service: A Background on Major Public Health Events. Systems, 12(10), 439. https://doi.org/10.3390/systems12100439