Optimal Scheduling of PV Panel Cleaning and Policy Implications Considering Uncertain Dusty Weather Conditions in the Middle East
Abstract
:1. Introduction
2. Methods
2.1. Data Collection
2.2. Metric Modeling
2.2.1. Daily Dust Deposition
2.2.2. Dust Accumulation
2.2.3. PV Panel Information and Efficiency
2.2.4. Energy Loss
2.3. Simulation-Based Optimization
2.3.1. Simulation Model
2.3.2. Optimization Model
2.4. Weather Data and Distribution Fitting
3. Results
3.1. Design of Experiment
3.2. Simulation Results
3.2.1. Validation
3.2.2. Simulation Results
4. Discussion
4.1. Linear Regression Analysis
4.2. Policy Implications for a Subsidy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Renewable Capacity Statistics 2023 [WWW Document]. IRENA. 2023. Available online: https://www.irena.org/Publications/2023/Mar/Renewable-capacity-statistics-2023 (accessed on 29 August 2023).
- Most Efficient Solar Panels 2023 [WWW Document]. Clean Energy Reviews. 2023. Available online: https://www.cleanenergyreviews.info/blog/most-efficient-solar-panels (accessed on 30 August 2023).
- Ilse, K.; Micheli, L.; Figgis, B.W.; Lange, K.; Daßler, D.; Hanifi, H.; Wolfertstetter, F.; Naumann, V.; Hagendorf, C.; Gottschalg, R.; et al. Techno-Economic Assessment of Soiling Losses and Mitigation Strategies for Solar Power Generation. Joule 2019, 3, 2303–2321. [Google Scholar] [CrossRef]
- Adinoyi, M.J.; Said, S.A.M. Effect of dust accumulation on the power outputs of solar photovoltaic modules. Renew Energy 2013, 60, 633–636. [Google Scholar] [CrossRef]
- Ramli, M.A.M.; Prasetyono, E.; Wicaksana, R.W.; Windarko, N.A.; Sedraoui, K.; Al-Turki, Y.A. On the investigation of photovoltaic output power reduction due to dust accumulation and weather conditions. Renew Energy 2016, 99, 836–844. [Google Scholar] [CrossRef]
- Thangaraj, S.; Velury, M. Soiling Losses for Different Solar PV technologies in a Rooftop of a Metropolitan City. Int. J. Sci. Res. Dev. 2016, 4, 156–159. [Google Scholar]
- Menoufi, K.; Mohamed, H.F.M.; Farghali, A.A.; Khedr, M.H. Dust accumulation on photovoltaic panels: A case study at the East Bank of the Nile (Beni-Suef, Egypt). Energy Procedia 2017, 128, 24–31. [Google Scholar] [CrossRef]
- Tamizhmani, G.; King, B.; Venkatesan, A.; Deline, C.; Pavgi, A.; Tatapudi, S.; Kuitche, J.; Chokor, A.; El Asmar, M. Regional soiling stations for PV: Soling loss analysis. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016; pp. 1741–1746. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, W. Effects of particle sizes and tilt angles on dust deposition characteristics of a ground-mounted solar photovoltaic system. Appl. Energy 2018, 220, 514–526. [Google Scholar] [CrossRef]
- Kazem, H.A.; Chaichan, M.T. The effect of dust accumulation and cleaning methods on PV panels’ outcomes based on an experimental study of six locations in Northern Oman. Sol. Energy 2019, 187, 30–38. [Google Scholar] [CrossRef]
- Abdelsalam, M.A.M.; Ahmad, F.F.; Hamid, A.K.; Ghenai, C.; Rejeb, O.; Alchadirchy, M.; Obaid, W.; El Haj Assad, M. Experimental study of the impact of dust on azimuth tracking solar PV in Sharjah. Int. J. Electr. Comput. Eng. (IJECE) 2021, 11, 3671–3681. [Google Scholar] [CrossRef]
- Shah, A.H.; Hassan, A.; Laghari, M.S.; Alraeesi, A. The Influence of Cleaning Frequency of Photovoltaic Modules on Power Losses in the Desert Climate. Sustainability 2020, 12, 9750. [Google Scholar] [CrossRef]
- Hachicha, A.A.; Al-Sawafta, I.; Said, Z. Impact of dust on the performance of solar photovoltaic (PV) systems under United Arab Emirates weather conditions. Renew Energy 2019, 141, 287–297. [Google Scholar] [CrossRef]
- Mokri, A.; Aal Ali, M.; Emziane, M. Solar energy in the United Arab Emirates: A review. Renew. Sustain. Energy Rev. 2013, 28, 340–375. [Google Scholar] [CrossRef]
- Zeedan, A.; Barakeh, A.; Al-Fakhroo, K.; Touati, F.; Gonzales, A.S.P. Quantification of PV Power and Economic Losses Due to Soiling in Qatar. Sustainability 2021, 13, 3364. [Google Scholar] [CrossRef]
- You, S.; Lim, Y.J.; Dai, Y.; Wang, C.H. On the temporal modelling of solar photovoltaic soiling: Energy and economic impacts in seven cities. Appl. Energy 2018, 228, 1136–1146. [Google Scholar] [CrossRef]
- Martinez-Plaza, D.; Abdallah, A.; Figgis, B.W.; Mirza, T. Performance improvement techniques for photovoltaic systems in Qatar: Results of first year of outdoor exposure. Energy Procedia 2016, 77, 386–396. [Google Scholar] [CrossRef]
- Touati, F.; Al-Hitmi, M.; Bouchech, H. Towards understanding the effects of climatic and environmental factors on solar PV performance in arid desert regions (Qatar) for various PV technologies. In Proceedings of the 2012 1st International Conference on Renewable Energies and Vehicular Technology, Nabeul, Tunisia, 26–28 March 2012; pp. 78–83. [Google Scholar] [CrossRef]
- Walwil, H.M.; Mukhaimer, A.; Al-Sulaiman, F.A.; Said, S.A.M. Comparative studies of encapsulation and glass surface modification impacts on PV performance in a desert climate. Sol. Energy 2017, 142, 288–298. [Google Scholar] [CrossRef]
- Said, S.A.M.; Al-Aqeeli, N.; Walwil, H.M. The potential of using textured and anti-reflective coated glasses in minimizing dust fouling. Sol. Energy 2015, 113, 295–302. [Google Scholar] [CrossRef]
- Said, S.A.M.; Walwil, H.M. Fundamental studies on dust fouling effects on PV module performance. Sol. Energy 2014, 107, 328–337. [Google Scholar] [CrossRef]
- Hadwan, M.; Alkholidi, A. Assessment of factors influencing the sustainable performance of photovoltaic water pumping systems. Renew. Sustain. Energy Rev. 2018, 92, 307–318. [Google Scholar] [CrossRef]
- Boyle, L.; Flinchpaugh, H.; Hannigan, M.P. Natural soiling of photovoltaic cover plates and the impact on transmission. Renew Energy 2015, 77, 166–173. [Google Scholar] [CrossRef]
- Benatiallah, A.; Ali, A.M.; Abidi, F.; Benatiallah, D.; Harrouz, A.; Mansouri, I. Experimental Study of Dust Effect in Mult-Crystal PV Solar Module. Int. J. Eng. Innov. Technol. 2012, 10, 16–20. [Google Scholar] [CrossRef]
- Rao, A.; Pillai, R.; Mani, M.; Ramamurthy, P. Influence of Dust Deposition on Photovoltaic Panel Performance. Energy Procedia 2014, 54, 690–700. [Google Scholar] [CrossRef]
- Zaihidee, F.M.; Mekhilef, S.; Seyedmahmoudian, M.; Horan, B. Dust as an unalterable deteriorative factor affecting PV panel’s efficiency: Why and how. Renew. Sustain. Energy Rev. 2016, 65, 1267–1278. [Google Scholar] [CrossRef]
- Wang, J.; Gong, H.; Zou, Z. Modeling of Dust Deposition Affecting Transmittance of PV Modules. J. Clean Energy Technol. 2017, 5, 217–221. [Google Scholar] [CrossRef]
- Bergin, M.H.; Ghoroi, C.; Dixit, D.; Schauer, J.J.; Shindell, D.T. Large Reductions in Solar Energy Production Due to Dust and Particulate Air Pollution. Environ. Sci. Technol. Lett. 2017, 4, 339–344. [Google Scholar] [CrossRef]
- Darwish, Z.A.; Kazem, H.A.; Sopian, K.; Alghoul, M.A.; Alawadhi, H. Experimental investigation of dust pollutants and the impact of environmental parameters on PV performance: An experimental study. Environ. Dev. Sustain. 2018, 20, 155–174. [Google Scholar] [CrossRef]
- Figgis, B.; Guo, B.; Javed, W.; Ahzi, S.; Rémond, Y. Dominant environmental parameters for dust deposition and resuspension in desert climates. Aerosol Sci. Technol. 2018, 52, 788–798. [Google Scholar] [CrossRef]
- Shaaban, M.F.; Alarif, A.; Mokhtar, M.; Tariq, U.; Osman, A.H.; Al-Ali, A.R. A New Data-Based Dust Estimation Unit for PV Panels. Energies 2020, 13, 3601. [Google Scholar] [CrossRef]
- Said, S.A.M.; Hassan, G.; Walwil, H.M.; Al-Aqeeli, N. The effect of environmental factors and dust accumulation on photovoltaic modules and dust-accumulation mitigation strategies. Renew. Sustain. Energy Rev. 2018, 82, 743–760. [Google Scholar] [CrossRef]
- Gholami, A.; Ameri, M.; Zandi, M.; Ghoachani, R.G. Dust accumulation on photovoltaic modules: A review on the effective parameters. Sigma J. Eng. Nat. Sci. 2021, 39, 45–57. [Google Scholar]
- Lamont, L.A.; El Chaar, L. Automatic Versus Manual Solar Panel Cleaning for Remote Locations. J. Technol. Innov. Renew. Energy 2013, 2, 98–105. [Google Scholar] [CrossRef]
- Tanesab, J.; Parlevliet, D.; Whale, J.; Urmee, T. Dust Effect and its Economic Analysis on PV Modules Deployed in a Temperate Climate Zone. Energy Procedia 2016, 100, 65–68. [Google Scholar] [CrossRef]
- Jones, R.K.; Baras, A.; Al Saeeri, A.; Al Qahtani, A.; Al Amoudi, A.O.; Al Shaya, Y.; Alodan, M.; Al-Hsaien, S.A. Optimized Cleaning Cost and Schedule Based on Observed Soiling Conditions for Photovoltaic Plants in Central Saudi Arabia. IEEE J. Photovolt. 2016, 6, 730–738. [Google Scholar] [CrossRef]
- Bunyan, H.; Ali, W.; Alnaser, M.; Bunyan, H.; Ali, W.; Alnaser, M. Enhancing the Performance of Photovoltaic Panel by Proper Washing Periods in Kuwait. Smart Grid Renew. Energy 2016, 7, 190–196. [Google Scholar] [CrossRef]
- Abu-Naser, M. Solar Panels Cleaning Frequency for Maximum Financial Profit. Open J. Energy Effic. 2017, 6, 80–86. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, S.; Cao, S.; Zhao, Q. Cleaning cycle optimization and cost evaluation of module dust for photovoltaic power plants in China. Clean Technol. Environ. Policy 2019, 21, 1645–1654. [Google Scholar] [CrossRef]
- Installation of Solar PV Systems [WWW Document]. Regulation and Supervision Bureau. 2017. Available online: https://doe.gov.ae/-/media/project/doe/department-of-energy/media-center-publications/english-files/solar_pv_installation_guidance_document.pdf (accessed on 31 August 2023).
- Diouf, M.C.; Faye, M.; Thiam, A.; Sambou, V. A framework of optimum cleaning schedule and its financial impact in a large-scale PV solar plant: A case study in Senegal. EPJ Photovolt. 2022, 13, 21. [Google Scholar] [CrossRef]
- González-Castillo, M.; Navarrete, P.; Tapia, T.; Lorca, Á.; Olivares, D.; Negrete-Pincetic, M. Cleaning scheduling in photovoltaic solar farms with deterministic and stochastic optimization. Sustain. Energy Grids Netw. 2023, 36, 101147. [Google Scholar] [CrossRef]
- Zhang, C.; Ma, Y.; Mi, Z.; Yang, F.; Zhang, L. A rolling-horizon cleaning recommendation system for dust removal of industrial PV panels. Appl. Energy 2024, 353, 122168. [Google Scholar] [CrossRef]
- National Centre of Meteorology [WWW Document]. National Center of Meteorology. 2023. Available online: https://www.ncm.ae/maps-radars/radar-merge-sat?lang=en (accessed on 31 August 2024).
- Northern Africa-Middle East-Europe Regional Center, Sand and Dust Storm Warning Advisory and Assessment System [WWW Document]. World Meteorological Organization. 2023. Available online: https://sds-was.aemet.es/ (accessed on 31 August 2024).
- The Weather’s Record Keeper [WWW Document]. Meteostat. 2023. Available online: https://meteostat.net/ (accessed on 31 August 2024).
- National Centers for Environmental Information [WWW Document]. National Oceanic and Atmospheric Administration. 2023. Available online: https://toolkit.climate.gov/tool/noaas-weather-and-climate-toolkit (accessed on 7 October 2024).
- Rates and Tariffs 2020 [WWW Document]. Abu Dhabi Distribution Company. 2023. Available online: https://www.addc.ae/en-US/residential/Pages/RatesAndTariffs2020.aspx (accessed on 31 August 2023).
- Alhammami, H.; An, H. Techno-economic analysis and policy implications for promoting residential rooftop solar photovoltaics in Abu Dhabi, UAE. Renew. Energy 2021, 167, 359–368. [Google Scholar] [CrossRef]
- Dubey, S.; Sarvaiya, J.N.; Seshadri, B. Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World A Review. Energy Procedia 2013, 33, 311–321. [Google Scholar] [CrossRef]
- Simio Software [WWW Document]. Simio. 2023. Available online: https://www.simio.com/ (accessed on 31 August 2023).
- Vining, G.; Kowalski, S. Statistical Methods for Engineers, 3rd ed.; Cengage Learning: Boston, MA, USA, 2010; ISBN 1111810206. [Google Scholar]
- Kim, S.; Nelson, B.L. A Fully Sequential Procedure for Indifference-Zone Selection in Simulation. ACM Trans. Model. Comput. Simul. 2001, 11, 251–273. [Google Scholar] [CrossRef]
PV Performance Reduction (%) | Duration | Location | Environment Type | Reference |
---|---|---|---|---|
8.5 | 41 days | UAE (Sharjah) | Desert | [11] |
13 | 3 months | UAE (Al Ain) | Desert | [12] |
12.7 | 5 months | UAE (Sharjah) | Desert | [13] |
20, 30, 40 | 1, 2, 3 months | UAE (Abu Dhabi) | Desert | [14] |
43 | 6 months | Qatar | Desert | [15] |
80 | 140 days | Qatar | Desert | [16] |
1 | 1 day | Qatar | Desert | [17] |
10 | 100 days | Qatar | Desert | [18] |
40 | 10 months | KSA | Desert | [19] |
10.8 | 2 weeks | KSA | Desert | [5] |
17 | 6 weeks | KSA | Desert | [20] |
20 | 45 days | KSA | Desert | [21] |
50 | 6 months | KSA | Desert | [4] |
16.8 | 5 days | Yemen | Semi-desert | [22] |
22 | 1 month | India (Gurgaon) | Metropolitan | [6] |
11 | 5 weeks | USA (Colorado) | Valley with vegetation | [23] |
Data Item | Data Source | Reference |
---|---|---|
Temperature | Meteostat website | [46] |
Wind speed | Meteostat website | [46] |
Particulate matter | Sand and Dust Storm Warning Advisory and Assessment System | [45] |
Irradiance | National Center of Meteorology | [44] |
Type | Cell Type | Polycrystalline Silicon |
---|---|---|
Size | Unit cell | 156 × 156 mm |
Electrical Properties | Unit solar panel system (landscape) | 1960 (L) × 992 (W) × 40 mm |
No. of cells in a unit | 72 | |
Maximum power at STC | 330 W | |
Optimum operating voltage | 37.5 V | |
Optimum operating current | 8.81 A | |
Open circuit voltage | 46.2 V | |
Short circuit current | 9.38 A | |
Module efficiency | 19.2% | |
Operating module temperature | −40 to 85 °C | |
Maximum system voltage | 1500 V DC | |
Maximum series fuse | 20 A | |
Lifespan | 20 years |
Month | Temperature | Wind Speed | Particulate Matter | Irradiance |
---|---|---|---|---|
1 | Lognormal (17.0, 1.16, 0.559) | Lognormal (3.77, 1.82, 0.672) | Lognormal (1.56 × 10−2, −2.78, 1.08) | Lognormal (−1.07 × 103, 9.62, 4.48 × 10−2) |
2 | Lognormal (16.0, 1.57, 0.546) | Lognormal (4.05, 1.82, 0.657) | Lognormal (−1.05 × 10−2, −2.0, 0.796) | Lognormal (−1.12 × 104, 9.69, 6.09 × 10−2) |
3 | Triangular (18.0, 31.6, 22.2) | Lognormal (2.92, 2.24, 0.467) | Lognormal (−2.04 × 10−2, −1.86, 0.684) | Lognormal (−1.92 × 104, 10.1, 5.4 × 10−2) |
4 | Lognormal (13.2, 2.74, 0.178) | Lognormal (2.44, 2.2, 0.351) | Lognormal (−5.17 × 10−2, −1.56, 0.568) | Lognormal (−1.86 × 104, 10.1, 5.47 × 10−2) |
5 | Lognormal (−14.1, 3.84, 3.86 × 10−2) | Lognormal (6.49, 1.47, 0.555) | Lognormal (−1.28 × 10−3, −1.78, 0.648) | Normal (7.45 × 103, 651) |
6 | Normal (34.9, 1.64) | Lognormal (7.21, 1.25, 0.708) | Lognormal (9.11 × 10−3, −1.64, 0.629) | Normal (7.72 × 103, 377) |
7 | Normal (36.1, 2.11) | Lognormal (4.9, 1.87, 0.309) | Lognormal (7.43 × 10−2, −1.94, 0.811) | Normal (7.19 × 103, 614) |
8 | Lognormal (29.2, 1.92, 0.125) | Lognormal (−461, 6.16, 3.51 × 10−3) | Lognormal (2.37 × 10−2, −1.89, 0.946) | Normal (6.92 × 103, 520) |
9 | Normal (34.2, 1.72) | Lognormal (2.56, 2.12, 0.165) | Lognormal (7.96 × 10−3, −1.97, 0.735) | Normal (6.64 × 103, 356) |
10 | Normal (30.8, 1.59) | Lognormal (6.25, 1.37, 0.374) | Lognormal (2.9 × 10−2, −2.76, 0.718) | Normal (5.72 × 103, 471) |
11 | Triangular (21.3, 29.8, 27.9) | Lognormal (4.88, 1.58, 0.5) | Lognormal (−3.75 × 10−3, −2.39, 0.694) | Lognormal (−1.85 × 104, 10.0, 2.92 × 10−2) |
12 | Normal (22.8, 1.6) | Lognormal (4.89, 1.31, 0.695) | Lognormal (1.11 × 10−2, −3.03, 0.581) | Lognormal (−1.02 × 104, 9.58, 2.91 × 10−2) |
Policy | Electricity Tariff | Case | Tariff (USD/kWh) | Unit Cleaning Cost (USD/Panel/Cycle) |
---|---|---|---|---|
Basic | Expat | S1exp | 0.073 | 0.0183 |
S2exp | 0.073 | 0.0383 | ||
S3exp * | 0.073 | 0.0583 | ||
S4exp | 0.073 | 0.0783 | ||
S5exp | 0.073 | 0.0983 | ||
UAE National | S1uae | 0.018 | 0.0183 | |
S2uae | 0.018 | 0.0383 | ||
S3uae * | 0.018 | 0.0583 | ||
S4uae | 0.018 | 0.0783 | ||
S5uae | 0.018 | 0.0983 |
1 Case | 2 Optimal Interval (day) | 3 Cleaning Cost (USD) | 4 Total Energy Loss (kWh) | 5 Energy Loss Cost (USD) | 6 Total Cost (USD) | 7 Minimum Efficiency (%) | 8 Energy Loss Percentage Due to Dust (%) |
---|---|---|---|---|---|---|---|
S1exp | 20 | 6.68 | 103.35 | 7.54 | 14.22 | 71.92 | 4.82 |
S2exp | 29 | 9.61 | 143.61 | 10.48 | 20.10 | 67.57 | 6.94 |
S3exp * | 34 | 12.48 | 165.37 | 12.07 | 24.55 | 64.63 | 8.21 |
S4exp | 41 | 13.94 | 195.65 | 14.28 | 28.22 | 61.99 | 9.85 |
S5exp | 47 | 15.24 | 221.39 | 16.16 | 31.40 | 59.21 | 11.30 |
S1uae | 41 | 3.26 | 194.06 | 3.49 | 6.75 | 62.48 | 9.92 |
S2uae | 59 | 4.71 | 271.13 | 4.88 | 9.59 | 54.98 | 14.34 |
S3uae * | 72 | 5.89 | 320.16 | 5.76 | 11.65 | 51.13 | 17.47 |
S4uae | 95 | 5.95 | 414.85 | 7.47 | 13.42 | 45.91 | 21.16 |
S5uae | 99 | 7.18 | 431.35 | 7.76 | 14.94 | 44.48 | 24.88 |
Electricity Tariff | Energy Recovery Rate (kWh/▽) | Total Cost-Saving Rate (USD/▽) | Subsidy/Energy (USD/kWh) |
---|---|---|---|
Expatriate | 14.44 | 2.12 | 0.18 |
UAE national | 30.91 | 0.56 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matar, A.G.S.; An, H. Optimal Scheduling of PV Panel Cleaning and Policy Implications Considering Uncertain Dusty Weather Conditions in the Middle East. Systems 2024, 12, 418. https://doi.org/10.3390/systems12100418
Matar AGS, An H. Optimal Scheduling of PV Panel Cleaning and Policy Implications Considering Uncertain Dusty Weather Conditions in the Middle East. Systems. 2024; 12(10):418. https://doi.org/10.3390/systems12100418
Chicago/Turabian StyleMatar, Abubaker Gebreil Siddig, and Heungjo An. 2024. "Optimal Scheduling of PV Panel Cleaning and Policy Implications Considering Uncertain Dusty Weather Conditions in the Middle East" Systems 12, no. 10: 418. https://doi.org/10.3390/systems12100418
APA StyleMatar, A. G. S., & An, H. (2024). Optimal Scheduling of PV Panel Cleaning and Policy Implications Considering Uncertain Dusty Weather Conditions in the Middle East. Systems, 12(10), 418. https://doi.org/10.3390/systems12100418