The Role of Virtual Reality Simulation in Manufacturing in Industry 4.0
Abstract
:1. Introduction
- RO1: analyze the bibliometrics performance of research, including the scientific literature production (SCP) on the role of virtual reality simulation in manufacturing in the 4IR or i4.0.
- RO2: evaluate the intellectual structure of manufacturing VRSIM publications.
- RO3: assess the conceptual structure of research on the subject matter.
- RO4: evaluate the social structures of manufacturing VRSIM SCP to identify authors’ and countries’ collaborations (RO4).
2. Developments in Data Visualization and VRSIM Applications in Manufacturing
3. Methodology
3.1. Data Collection
3.2. Data Analysis Techniques and Tools
3.2.1. Bibliometrics Analysis and Science Mapping of Research
3.2.2. The Choice of Bibliometric Software
4. Results and Analysis
4.1. Sample Description and Preliminary Results
4.2. Bibliometrics Performance Analyses of Research on VRSIM Application in Manufacturing in the 4IR Era
4.2.1. Scientific Literature Production Trend
4.2.2. Citation Analysis of Publications
4.2.3. Most-Cited Documents
4.2.4. Usage Analysis of Publications
4.3. Co-Citation Analysis
4.4. The Conceptual Structure of Publications on VRSIM in Manufacturing
4.4.1. Keywords and Themes Analytics
- Prominent keywords: The words are unique and unstemmed, occurring ten times or more (f ≥ 10) in the dataset. In this study, nineteen (19) keywords fall in this category with total word frequency (f) = 553. It implies that less than a percentage point (0.8%) of the keywords re-occurred 15.6% of the time.
- Emerging terms: The remainder of the unique and unstemmed keywords (2418 or 99.2%) were less prominent. We define the emerging terms as the ones with a frequency of occurrence less than ten (f < 10). Most of the terms fall in this category (2994 emerging terms compared to 553 prominent keywords), constituting 84.4% of the total word frequency).
4.4.2. Analysis of Prominent and Eminent Research Themes
4.4.3. Thematic Evolution of VRSIM Application in Manufacturing
4.4.4. Co-Occurrence of Words Analysis
4.5. Social Structure
4.5.1. Authors’ Productivity Index Using Lotka’s Law
4.5.2. Co-Author Analysis
4.5.3. Institutions and Countries Collaboration and Impact
5. Discussion: The Role of VRSIM in Manufacturing in Industry 4.0
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barton, M.; Budjac, R.; Tanuska, P.; Gaspar, G.; Schreiber, P. Identification overview of Industry 4.0 essential attributes and resource-limited embedded artificial-intelligence-of-things devices for small and medium-sized enterprises. Appl. Sci. 2022, 12, 5672. [Google Scholar] [CrossRef]
- Datta, P.M. The Road to 4IR (4th Industrial Revolution). In Global Technology Management 4.0; Palgrave Macmillan: Cham, Switzerland, 2022. [Google Scholar]
- Maddikunta, P.K.R.; Pham, Q.V.; Prabadevi, B.; Deepa, N.; Dev, K.; Gadekallu, T.R.; Ruby, R.; Liyanage, M. Industry 5.0: A survey on enabling technologies and potential applications. J. Ind. Inf. Integr. 2022, 26, 100257. [Google Scholar] [CrossRef]
- Liagkou, V.; Salmas, D.; Stylios, C. Realizing virtual reality learning environment for industry 4.0. Procedia CIRP 2019, 79, 712–717. [Google Scholar] [CrossRef]
- Seymour, N.E. VR to OR: A review of the evidence that virtual reality simulation improves operating room performance. World J. Surg. 2018, 32, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Salah, B.; Abidi, M.H.; Mian, S.H.; Krid, M.; Alkhalefah, H.; Abdo, A. Virtual reality-based engineering education to enhance manufacturing sustainability in industry 4.0. Sustainability 2019, 11, 1477. [Google Scholar] [CrossRef]
- Akpan, I.J. An Empirical Study of the Impacts of Virtual Reality on Discrete-Event Simulation. Ph.D. Thesis, University of Lancaster, Lancaster, UK, 2006. Available online: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.440409 (accessed on 1 September 2023).
- Waller, A.P.; Ladbrook, J. Virtual worlds: Experiencing virtual factories of the future. In Proceedings of the 34th Winter Simulation Conference: Exploring New Frontiers, San Diego, CA, USA, 8–11 December 2002; ACM: New York, NY, USA, 2002; pp. 513–517. [Google Scholar]
- Barnes, M. Virtual reality & simulation. In Proceedings of the 1996 Winter Simulation Conference, Coronado, CA, USA, 8–11 December 1996; Charnes, J.M., Morrice, D.J., Brunner, D.T., Swain, J.J., Eds.; Association for Computing Machinery: New York, NY, USA, 1996; pp. 101–110. [Google Scholar]
- Lungu, A.J.; Swinkels, W.; Claesen, L.; Tu, P.; Egger, J.; Chen, X. A review on the applications of virtual reality, augmented reality and mixed reality in surgical simulation: An extension to different kinds of surgery. Expert Rev. Med. Devices 2021, 18, 47–62. [Google Scholar] [CrossRef]
- Akpan, J.I.; Brooks, R.J. Practitioners’ perception of the impacts of virtual reality on discrete-event simulation. In Proceedings of the Winter 2005 Simulation Conference, Orlando, FL, USA, 4–7 December 2005; IEEE: Piscataway, NJ, USA, 2005; p. 9. [Google Scholar]
- Akpan, I.J.; Brooks, R.J. Experimental evaluation of user performance on two-dimensional and three-dimensional perspective displays in discrete-event simulation. Decis. Support Syst. 2014, 64, 14–30. [Google Scholar] [CrossRef]
- Turner, C.J.; Hutabarat, W.; Oyekan, J.; Tiwari, A. Discrete event simulation and virtual reality use in industry: New opportunities and future trends. IEEE Trans. Hum.-Mach. Syst. 2016, 46, 882–894. [Google Scholar] [CrossRef]
- van der Zee, D.J. Model simplification in manufacturing simulation–Review and framework. Comput. Ind. Eng. 2019, 127, 1056–1067. [Google Scholar] [CrossRef]
- Akpan, I.J.; Shanker, M.; Razavi, R. Improving the success of simulation projects using 3D visualization and virtual reality. J. Oper. Res. Soc. 2020, 71, 1900–1926. [Google Scholar] [CrossRef]
- Akpan, I.J.; Shanker, M. A comparative evaluation of the effectiveness of virtual reality, 3D visualization and 2D visual interactive simulation: An exploratory meta-analysis. Simulation 2019, 95, 145–170. [Google Scholar] [CrossRef]
- Kuts, V.; Modoni, G.E.; Terkaj, W.; Tähemaa, T.; Sacco, M.; Otto, T. Exploiting Factory Telemetry to Support Virtual Reality Simulation in Robotics Cell. In Augmented Reality, Virtual Reality, and Computer Graphics; AVR 2017, Lecture Notes in Computer Science; De Paolis, L., Bourdot, P., Mongelli, A., Eds.; Springer: Cham, Switzerland, 2017; Volume 10324. [Google Scholar] [CrossRef]
- Kobara, Y.M.; Akpan, I.J. Bibliometric Performance and Future Relevance of Virtual Manufacturing Technology in the Fourth Industrial Revolution. Systems 2023, 11, 524. [Google Scholar] [CrossRef]
- Sinuany-Stern, Z. Foundations of operations research: From linear programming to data envelopment analysis. Eur. J. Oper. Res. 2023, 306, 1069–1080. [Google Scholar] [CrossRef]
- Van Wassenhove, L.N.; Pedraza-Martinez, A. Using OR to adapt supply chain management best practices to humanitarian logistics. Int. Transport. Oper. Res. 2012, 19, 307–322. [Google Scholar] [CrossRef]
- Akpan, I.J.; Shanker, M. The confirmed realities and myths about the benefits and costs of 3D visualization and virtual reality in discrete event modeling and simulation: A descriptive meta-analysis of evidence from research and practice. Comput. Ind. Eng. 2017, 112, 197–211. [Google Scholar] [CrossRef]
- van Manen, M.; olde Scholtenhuis, L.; Voordijk, H. Empirically validating five propositions regarding 3D visualizations for subsurface utility projects. Eng. Constr. Archit. Manag. 2022, 29, 2535–2553. [Google Scholar] [CrossRef]
- Wu, B.; Yu, X.; Gu, X. Effectiveness of immersive virtual reality using head-mounted displays on learning performance: A meta-analysis. Br. J. Educ. Technol. 2020, 51, 1991–2005. [Google Scholar] [CrossRef]
- Goodwin, T.; Xu, J.; Celik, N.; Chen, C.H. Real-time digital twin-based optimization with predictive simulation learning. J. Simul. 2022, 1–18. [Google Scholar] [CrossRef]
- Havard, V.; Jeanne, B.; Lacomblez, M.; Baudry, D. Digital twin and virtual reality: A co-simulation environment for design and assessment of industrial workstations. Prod. Manuf. Res. 2019, 7, 472–489. [Google Scholar] [CrossRef]
- Pastel, S.; Chen, C.H.; Petri, K.; Witte, K. Effects of body visualization on performance in head-mounted display virtual reality. PLoS ONE 2020, 15, e0239226. [Google Scholar] [CrossRef]
- Robinson, S.; Lee, E.P.; Edwards, J.S. Simulation based knowledge elicitation: Effect of visual representation and model parameters. Expert Syst. Appl. 2012, 39, 8479–8489. [Google Scholar] [CrossRef]
- Akpan, I.J.; Brooks, R.J. Users’ perceptions of the relative costs and benefits of 2D and 3D visual displays in discrete-event simulation. Simulation 2012, 88, 464–480. [Google Scholar] [CrossRef]
- Qiao, J.; Xu, J.; Li, L.; Ouyang, Y.Q. The integration of immersive virtual reality simulation in interprofessional education: A scoping review. Nurse Educ. Today 2021, 98, 104773. [Google Scholar] [CrossRef] [PubMed]
- Frederiksen, J.G.; Sorensen, S.M.D.; Konge, L.; Svendsen, M.B.S.; Nobel-Jorgensen, M.; Bjerrum, F.; Andersen, S.A.W. Cognitive load and performance in immersive virtual reality versus conventional virtual reality simulation training of laparoscopic surgery: A randomized trial. Surg. Endosc. 2020, 34, 1244–1252. [Google Scholar] [CrossRef]
- Mourtzis, D.; Doukas, M.; Bernidaki, D. Simulation in manufacturing: Review and challenges. Procedia CIRP 2014, 25, 213–229. [Google Scholar] [CrossRef]
- Abidi, M.A.; Lyonnet, B.; Chevaillier, P.; Toscano, R.; Baert, P. Simulation of manufacturing processes via virtual reality. In Robotics, Automation, and Control in Industrial and Service Settings; IGI Global: Shenzhen, China, 2015; pp. 142–178. [Google Scholar]
- Choi, S.; Jung, K.; Noh, S.D. Virtual reality applications in manufacturing industries: Past research, present findings, and future directions. Concurr. Eng. 2015, 23, 40–63. [Google Scholar] [CrossRef]
- Lawson, G.; Salanitri, D.; Waterfield, B. Future directions for the development of virtual reality within an automotive manufacturer. Appl. Ergon. 2016, 53, 323–330. [Google Scholar] [CrossRef]
- Chandrasegaran, S.K.; Ramani, K.; Sriram, R.D.; Horváth, I.; Bernard, A.; Harik, R.F.; Gao, W. The evolution, challenges, and future of knowledge representation in product design systems. Comput.-Aided Des. 2013, 45, 204–228. [Google Scholar] [CrossRef]
- Mourtzis, D. Simulation in the design and operation of manufacturing systems: State of the art and new trends. Int. J. Prod. Res. 2020, 58, 1927–1949. [Google Scholar] [CrossRef]
- Da Xu, L.; Wang, C.; Bi, Z.; Yu, J. AutoAssem: An automated assembly planning system for complex products. IEEE Trans. Ind. Inform. 2012, 8, 669–678. [Google Scholar]
- Jacso, P. As We May Search—Comparison of Major Features of the Web of Science, Scopus, and Google Scholar Citation-Based and Citation-Enhanced Databases. Curr. Sci. 2005, 89, 1537–1547. [Google Scholar]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Kosacka-Olejnik, M.; Kostrzewski, M.; Marczewska, M.; Mrówczyńska, B.; Pawlewski, P. How digital twin concept supports internal transport systems? Literature review. Energies 2021, 14, 4919. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Zhu, C.; Liu, Z. Framework for manufacturing-tasks semantic modelling and manufacturing-resource recommendation for digital twin shop-floor. J. Manuf. Syst. 2021, 58, 281–292. [Google Scholar] [CrossRef]
- Akpan, I.J.; McEnroe-Petitte, D.M.; Aguolu, O.G.; Kobara, Y.; Ezeume, I.C. Using visualization technique to communicate the conceptual structure of SARS-CoV-2 to multidisciplinary audience and lessons from the pandemic for future preparedness. Int. J. Healthc. Manag. 2023, 1–13. [Google Scholar] [CrossRef]
- Rosenfeld, P.; Cooper-Balis, E.; Jacob, B. DRAMSim2: A cycle accurate memory system simulator. IEEE Comput. Archit. Lett. 2011, 10, 16–19. [Google Scholar] [CrossRef]
- Nee, A.Y.; Ong, S.K.; Chryssolouris, G.; Mourtzis, D. Augmented reality applications in design and manufacturing. CIRP Ann. 2012, 61, 657–679. [Google Scholar] [CrossRef]
- Goulding, J.; Nadim, W.; Petridis, P.; Alshawi, M. Construction industry offsite production: A virtual reality interactive training environment prototype. Adv. Eng. Inform. 2012, 26, 103–116. [Google Scholar] [CrossRef]
- Raynaud, M.; Goutaudier, V.; Louis, K.; Al-Awadhi, S.; Dubourg, Q.; Truchot, A.; Brousse, R.; Saleh, N.; Giarraputo, A.; Debiais, C.; et al. Impact of the COVID-19 pandemic on publication dynamics and non-COVID-19 research production. BMC Med. Res. Methodol. 2021, 21, 1. [Google Scholar] [CrossRef]
- Egghe, L.; Rousseau, R. Co-citation, bibliographic coupling and a characterization of lattice citation networks. Scientometrics 2002, 55, 349–361. [Google Scholar] [CrossRef]
- Boyack, K.W.; Klavans, R. Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately? J. Am. Soc. Inf. Sci. Technol. 2010, 61, 2389–2404. [Google Scholar] [CrossRef]
- Laengle, S.; Merigó, J.M.; Miranda, J.; Słowińsk, R.; Bomze, I.; Borgonovo, E.; Dyson, R.G.; Oliveira, J.F.; Teunter, R. Forty years of the European Journal of Operational Research: A bibliometric overview. Eur. J. Oper. Res. 2017, 262, 803–816. [Google Scholar] [CrossRef]
- Yan, E.; Ding, Y. Scholarly network similarities: How bibliographic coupling networks, citation networks, co-citation networks, topical networks, co-authorship networks, and co-word networks relate to each other. J. Am. Soc. Inf. Sci. Technol. 2012, 63, 1313–1326. [Google Scholar] [CrossRef]
- Akpan, I.J.; Shanker, M.; Offodile, O.F. Discrete-event simulation is still alive and strong: Evidence from bibliometric performance evaluation of research during COVID-19 global health pandemic. Int. Trans. Oper. Res. 2023. Online version of record before inclusion in an issue. [Google Scholar] [CrossRef]
- da Silva, G.C.; Kaminski, P.C. Application of digital factory concepts to optimise and integrate inventories in automotive pre-assembly areas. Int. J. Comput. Integr. Manuf. 2015, 28, 607–615. [Google Scholar] [CrossRef]
- Chandra Sekaran, S.; Yap, H.J.; Musa, S.N.; Liew, K.E.; Tan, C.H.; Aman, A. The implementation of virtual reality in digital factory—A comprehensive review. Int. J. Adv. Manuf. Technol. 2021, 115, 1349–1366. [Google Scholar] [CrossRef]
- Brundage, M.P.; Bernstein, W.Z.; Hoffenson, S.; Chang, Q.; Nishi, H.; Kliks, T.; Morris, K.C. Analyzing environmental sustainability methods for use earlier in the product lifecycle. J. Clean. Prod. 2018, 187, 877–892. [Google Scholar] [CrossRef]
- Guo, Z.; Zhou, D.; Zhou, Q.; Zhang, X.; Geng, J.; Zeng, S.; Hao, A. Applications of virtual reality in maintenance during the industrial product lifecycle: A systematic review. J. Manuf. Syst. 2020, 56, 525–538. [Google Scholar] [CrossRef]
- Hassan, S.; Yoon, J. Virtual maintenance system with a two-staged ant colony optimization algorithm. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 931–936. [Google Scholar]
- Malik, A.A.; Masood, T.; Bilberg, A. Virtual reality in manufacturing: Immersive and collaborative artificial-reality in design of human-robot workspace. Int. J. Comput. Integr. Manuf. 2020, 33, 22–37. [Google Scholar] [CrossRef]
- Ottogalli, K.; Rosquete, D.; Rojo, J.; Amundarain, A.; Maria Rodriguez, J.; Borro, D. Virtual reality simulation of human-robot coexistence for an aircraft final assembly line: Process evaluation and ergonomics assessment. Int. J. Comput. Integr. Manuf. 2021, 34, 975–995. [Google Scholar] [CrossRef]
- Gammieri, L.; Schumann, M.; Pelliccia, L.; Di Gironimo, G.; Klimant, P. Coupling of a redundant manipulator with a virtual reality environment to enhance human-robot cooperation. Procedia CIRP 2017, 62, 618–623. [Google Scholar] [CrossRef]
- Agethen, P.; Sekar, V.S.; Gaisbauer, F.; Pfeiffer, T.; Otto, M.; Rukzio, E. Behavior analysis of human locomotion in the real world and virtual reality for the manufacturing industry. ACM Trans. Appl. Percept. (TAP) 2018, 15, 1–19. [Google Scholar] [CrossRef]
- Alasti, H.; Elahi, B.; Mohammadpour, A. Interactive Virtual Reality-Based Simulation Model Equipped with Collision-Preventive Feature in Automated Robotic Sites. In Simulation for Industry 4.0: Past, Present, and Future; Springer International Publishing: Cham, Switzerland, 2019; pp. 111–128. [Google Scholar]
- Peng, G.; Hou, X.; Gao, J.; Cheng, D. A visualization system for integrating maintainability design and evaluation at product design stage. Int. J. Adv. Manuf. Technol. 2012, 61, 269–284. [Google Scholar] [CrossRef]
- Yap, H.J.; Tan, C.H.; Phoon, S.Y.; Liew, K.E.; Chandra Sekaran, S. Process planning and scheduling for loop layout robotic workcell using virtual reality technology. Adv. Mech. Eng. 2019, 11, 1687814019878326. [Google Scholar] [CrossRef]
- Robert, O.; Iztok, P.; Borut, B. Real-Time manufacturing optimization with a simulation model and virtual reality. Procedia Manuf. 2019, 38, 1103–1110. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, J.; Tang, G.; Moreland, J.; Fu, D.; Wu, B. Integration of advanced simulation and visualization for manufacturing process optimization. JOM 2016, 68, 1363–1369. [Google Scholar] [CrossRef]
- Munirathinam, S. Industry 4.0: Industrial internet of things (IIOT). Adv. Comput. 2020, 117, 129–164. [Google Scholar]
- Cecil, J.; Albuhamood, S.; Gupta, A. A virtual reality-based internet-of-things (iot) framework for micro devices assembly. In Proceedings of the 23rd ACM Symposium on Virtual Reality Software and Technology, Gothenburg, Sweden, 8–10 November 2017; pp. 1–2. [Google Scholar]
- Zhang, Q.; Xiao, R.; Liu, Z.; Duan, J.; Qin, J. Process simulation and optimization of arc welding robot workstation based on digital twin. Machines 2023, 11, 53. [Google Scholar] [CrossRef]
- Wei, X.; Wu, H.; Yang, Z.; Han, C.; Xu, B. Simulation of manufacturing scenarios’ ambidexterity green technological innovation driven by inter-firm social networks: Based on a multi-objective model. Systems 2023, 11, 39. [Google Scholar] [CrossRef]
- Paul, R.; Anand, S.; Gerner, F. Effect of thermal deformation on part errors in metal powder based additive manufacturing processes. J. Manuf. Sci. Eng. 2014, 136, 031009. [Google Scholar] [CrossRef]
- Bun, P.; Gorski, F.; Wichniarek, R.; Kuczko, W.; Zukowska, M. Low-Cost 3D Printing in Innovative VR Training and Prototyping Solutions. In Intelligent Systems in Production Engineering and Maintenance; Springer: Wrocławska, Poland, 2019; pp. 553–562. [Google Scholar]
- Ostrander, J.K.; Ryan, L.; Dhengre, S.; McComb, C.; Simpson, T.W.; Meisel, N.A. A comparative study of virtual reality and computer-aided design to evaluate parts for additive manufacturing. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Anaheim, CA, USA, 18–21 August 2019; American Society of Mechanical Engineers: New York, NY, USA, 2019; Volume 59186, p. V02AT03A029. [Google Scholar]
- Angjellari, M.; Tamburri, E.; Montaina, L.; Natali, M.; Passeri, D.; Rossi, M.; Terranova, M.L. Beyond the concepts of nanocomposite and 3D printing: PVA and nanodiamonds for layer-by-layer additive manufacturing. Mater. Des. 2017, 119, 12–21. [Google Scholar] [CrossRef]
- Mangla, S.K.; Kazancoglu, Y.; Sezer, M.D.; Top, N.; Sahin, I. Optimizing fused deposition modelling parameters based on the design for additive manufacturing to enhance product sustainability. Comput. Ind. 2023, 145, 103833. [Google Scholar] [CrossRef]
- Yuan, Q.K.; Luo, S.M.; Tang, W.Y. A collaborative design frame based on virtual prototypes and virtual manufacturing. In Proceedings of the 11th IEEE International Conference on Computer-Aided Design and Computer Graphics, Huangshan, China, 19–21 August 2009; pp. 568–571. [Google Scholar] [CrossRef]
- Al-Ahmari, A.M.; Abidi, M.H.; Ahmad, A.; Darmoul, S. Development of a virtual manufacturing assembly simulation system. Adv. Mech. Eng. 2016, 8, 1687814016639824. [Google Scholar] [CrossRef]
Activities/Focus | Criteria |
---|---|
Data Source | Web of Science (WoS) |
Search Query | TOPICS: (((“virtual reality” OR “visual display” OR “visualization”) AND (“*simulation*” OR “discrete-event model*”) AND (“manufactur*”))); period covered: 2010 to 2023 October = 823. |
Documents Filtering, Screening, and Selection | |
Filtering/Screen | Removed non-research documents: editorials (4), meeting abstracts (1); 823 − 5 = 818. |
Screening | 818 − 42 irrelevant publications/topics, leaving 776 published documents used in the analysis. |
Data Extraction | Documents retrieved in text formats (.txt and .csv files) for analysis. |
Variable Description | Results |
---|---|
Years of Publications (Annual Growth Rate: 5.23%) | 2010–2023 |
Sources (Journals, Proceedings, and Book Chapters) | 572 |
Documents Information: | 776 |
Articles (Original Articles: 410; Reviews: 40) | 450 (58%) |
Book Chapters | 5 (0.64%) |
Conference Papers | 321 (41.36%) |
Average Citations per Doc | 13.26 |
Documents Contents: | |
Keywords Plus (ID) | 1290 |
Author’s Keywords (DE) | 2437 |
Authors and Collaboration: | |
Authors | 2953 |
Authors of Single-Authored Docs | 36 |
Single-Authored Docs | 38 |
Co-Authors per Doc | 4.31 |
International Co-Authorships | 17.53% |
Year | ≥400 | ≥300 | ≥200 | ≥100 | ≥50 | ≥30 | ≥10 | ≥1 | NC | SCP | TC | % Cited |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2010 | 0 | 0 | 0 | 0 | 0 | 1 | 4 | 19 | 9 | 33 | 166 | 73% |
2011 | 1 | 0 | 0 | 0 | 2 | 3 | 6 | 16 | 8 | 36 | 912 | 78% |
2012 | 1 | 0 | 0 | 3 | 0 | 0 | 6 | 12 | 11 | 33 | 947 | 67% |
2013 | 0 | 1 | 0 | 0 | 3 | 2 | 12 | 10 | 6 | 34 | 912 | 82% |
2014 | 0 | 0 | 0 | 1 | 1 | 4 | 6 | 12 | 9 | 33 | 571 | 73% |
2015 | 0 | 0 | 0 | 1 | 2 | 3 | 18 | 13 | 8 | 45 | 767 | 82% |
2016 | 0 | 0 | 0 | 3 | 1 | 3 | 13 | 15 | 11 | 46 | 839 | 76% |
2017 | 0 | 0 | 0 | 0 | 1 | 2 | 12 | 23 | 11 | 49 | 430 | 78% |
2018 | 0 | 0 | 0 | 0 | 6 | 6 | 19 | 29 | 10 | 70 | 1151 | 86% |
2019 | 0 | 0 | 0 | 1 | 5 | 5 | 17 | 39 | 13 | 80 | 1033 | 84% |
2020 | 0 | 0 | 1 | 1 | 6 | 5 | 18 | 38 | 10 | 79 | 1454 | 87% |
2021 | 0 | 0 | 0 | 0 | 0 | 4 | 20 | 31 | 21 | 76 | 610 | 72% |
2022 | 0 | 0 | 0 | 0 | 0 | 3 | 10 | 57 | 28 | 98 | 425 | 71% |
2023 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 19 | 43 | 64 | 74 | 33% |
Total | 2 | 1 | 1 | 10 | 27 | 41 | 163 | 333 | 198 | 776 | 10,291 | |
% | 0.26 | 0.13 | 0.13 | 1.29 | 3.48 | 5.28 | 21.01 | 42.91 | 25.52 | 100% | AV Cited = 74% |
Rank | Paper | Focus | Journal | TC | ACY | NC1 |
---|---|---|---|---|---|---|
1 | [45] | Simulation, visualization, and results validation in manufacturing. | IEEE Computer Architecture Letters | 491 | 37.77 | 19.38 |
2 | [46] | Manufacturing simulation applications. | CIRP Annals | 400 | 33.33 | 13.94 |
3 | [35] | VR systems and modeling to simulate scenarios in manufacturing and assembly. | Computer-Aided Design | 394 | 35.82 | 14.69 |
4 | [36] | Simulating the design and operation of manufacturing systems in 4IR. | Intl. Journal of Production Research | 263 | 65.75 | 14.29 |
5 | [31] | Simulation as an indispensable tool for the successful implementation of digital manufacturing. | Procedia CIRP | 169 | 16.9 | 9.77 |
6 | [37] | Simulation, digital assembly modeling, assembly sequence planning. | IEEE Transactions on Industrial Informatics | 164 | 13.67 | 5.71 |
7 | [33] | Virtual reality applications in manufacturing industries. | Concurrent Engineering | 142 | 15.78 | 8.33 |
8 | [34] | The development of virtual reality within an automotive manufacturer reduces time, costs, and quality. | Applied Ergonomics | 117 | 14.63 | 6.41 |
9 | [13] | Discrete event simulation and virtual reality use in industry. | IEEE Trans. on Human-Machine Systems | 103 | 12.88 | 5.65 |
10 | [47] | A virtual reality interactive training environment prototype. | Advanced Engineering Informatics | 100 | 8.33 | 3.48 |
Source | Citation | % TC | TNL | Source | Citation | % TC | TNL |
---|---|---|---|---|---|---|---|
Cluster #1 (Red *): 50 ** | Cluster #3 (Green *): 52 ** | ||||||
Int. J. Adv. Manuf. Tech. | 516 | 5.0 | 17,951 | Int. J. Heat Mass Tran. | 140 | 1.4 | 9145 |
CIRP Ann.-Manuf. Techn. | 280 | 2.7 | 12,885 | J. Power Sources | 114 | 1.1 | 2056 |
Comput. Ind. | 257 | 2.5 | 11,934 | J. Electrochem. Soc. | 94 | 0.9 | 1811 |
Comput. Aided Design | 224 | 2.2 | 8891 | Appl. Therm. Eng. | 72 | 0.7 | 3301 |
Automat. Constr. | 137 | 1.3 | 3159 | Compos. Part A-Appl. S. | 71 | 0.7 | 1226 |
Lect. Notes Comput. Sc. | 122 | 1.2 | 3588 | Polym. Eng. Sci. | 65 | 0.6 | 2357 |
Virtual Real.-London | 86 | 0.8 | 3409 | Phys. Rev. E | 54 | 0.5 | 3856 |
IEEE T. Vis. Comput. Gr. | 85 | 0.8 | 3383 | J. Comput. Phys. | 47 | 0.5 | 1476 |
Appl. Ergon. | 81 | 0.8 | 2242 | J. Micromech. Microeng. | 43 | 0.4 | 2922 |
Int. J. Interact. Des. M. | 77 | 0.7 | 3951 | J. Cryst. Growth | 42 | 0.4 | 1237 |
Cluster #2 (Yellow *): 43 ** | Cluster #4 (Blue *): 45 ** | ||||||
Proc. CIRP | 372 | 3.6 | 15,215 | J. Mater. Process. Tech. | 147 | 1.4 | 4784 |
Robot Cim.-Int. Manuf. | 231 | 2.2 | 10,276 | ACM T. Graphics | 98 | 1.0 | 2104 |
Int. J. Prod. Res. | 261 | 2.5 | 9883 | Mater. Design | 66 | 0.6 | 1929 |
J. Manuf. Syst. | 199 | 1.9 | 8634 | Addit. Manuf. | 61 | 0.6 | 1381 |
Procedia Manuf. | 196 | 1.9 | 8476 | Science | 56 | 0.5 | 1562 |
Int. J. Comput. Integ. M. | 188 | 1.8 | 7232 | Sci. Rep.-UK | 51 | 0.5 | 2142 |
J. Clean Prod. | 146 | 1.4 | 5454 | Acta Mater. | 49 | 0.5 | 1139 |
IEEE Access | 141 | 1.4 | 5408 | Proc. SPIE | 43 | 0.4 | 1247 |
Comput. Ind. Eng. | 128 | 1.2 | 5113 | IEEE T. Biomed. Eng. | 32 | 0.3 | 392 |
IFAC PapersOnLine | 122 | 1.2 | 4833 | Phys. Med. Biol. | 31 | 0.3 | 422 |
Cluster #5 (Light Blue *): 3 ** | Cluster #6 (Purple *): 4 ** | ||||||
J. Mech. Design | 62 | 0.6 | 2183 | IOP Conf. Ser.-Mat. Sci. | 34 | 0.3 | 894 |
Mech. Mach. Theory | 27 | 0.3 | 767 | Microelectron. Reliab. | 31 | 0.3 | 867 |
Mech. Syst. Signal Pr. | 31 | 0.3 | 1021 | J. Electron. Packaging | 21 | 0.2 | 1359 |
Solder. Surf. Mt. Tech. | 21 | 0.2 | 734 |
Country | Articles | SCP | MCP | Freq of Articles | MCP Ratio | TC | AVTC Per Article |
---|---|---|---|---|---|---|---|
China | 162 | 142 | 20 | 0.209 | 0.123 | 1415 | 8.73 |
USA | 130 | 115 | 15 | 0.168 | 0.115 | 1936 | 14.89 |
Germany | 64 | 58 | 6 | 0.082 | 0.094 | 537 | 8.39 |
UK | 41 | 29 | 12 | 0.053 | 0.293 | 903 | 22.02 |
Italy | 32 | 28 | 4 | 0.041 | 0.125 | 557 | 17.41 |
Korea | 25 | 25 | 0 | 0.032 | 0 | 316 | 12.64 |
India | 22 | 17 | 5 | 0.028 | 0.227 | 231 | 10.5 |
Poland | 21 | 19 | 2 | 0.027 | 0.095 | 108 | 5.14 |
France | 18 | 9 | 9 | 0.023 | 0.5 | 292 | 16.22 |
Spain | 18 | 14 | 4 | 0.023 | 0.222 | 284 | 15.78 |
Japan | 17 | 15 | 2 | 0.022 | 0.118 | 47 | 2.76 |
Malaysia | 14 | 11 | 3 | 0.018 | 0.214 | 141 | 10.07 |
Sweden | 14 | 13 | 1 | 0.018 | 0.071 | 161 | 11.5 |
Canada | 13 | 7 | 6 | 0.017 | 0.462 | 400 | 30.77 |
Mexico | 13 | 9 | 4 | 0.017 | 0.308 | 144 | 11.08 |
Greece | 12 | 10 | 2 | 0.015 | 0.167 | 581 | 48.42 |
Brazil | 11 | 8 | 3 | 0.014 | 0.273 | 90 | 8.18 |
Slovakia | 11 | 11 | 0 | 0.014 | 0 | 56 | 5.09 |
Romania | 10 | 9 | 1 | 0.013 | 0.1 | 14 | 1.4 |
Australia | 8 | 6 | 2 | 0.01 | 0.25 | 308 | 38.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akpan, I.J.; Offodile, O.F. The Role of Virtual Reality Simulation in Manufacturing in Industry 4.0. Systems 2024, 12, 26. https://doi.org/10.3390/systems12010026
Akpan IJ, Offodile OF. The Role of Virtual Reality Simulation in Manufacturing in Industry 4.0. Systems. 2024; 12(1):26. https://doi.org/10.3390/systems12010026
Chicago/Turabian StyleAkpan, Ikpe Justice, and Onyebuchi Felix Offodile. 2024. "The Role of Virtual Reality Simulation in Manufacturing in Industry 4.0" Systems 12, no. 1: 26. https://doi.org/10.3390/systems12010026
APA StyleAkpan, I. J., & Offodile, O. F. (2024). The Role of Virtual Reality Simulation in Manufacturing in Industry 4.0. Systems, 12(1), 26. https://doi.org/10.3390/systems12010026