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Abstract: From the first to the fourth industrial revolutions (4IR) or Industry 4.0 (i4.0), the manufactur-
ing sector has always been at the forefront of innovation and digital technology adoption. However,
4IR or i4.0 comes with diverse and integrated technologies that tend to sweep off all the old orders.
This study undertakes a science mapping of research on the role of virtual reality simulation (VRSIM)
in manufacturing in the 4IR, which reveals several roles and benefits. The analysis of the conceptual
structure of relevant literature highlights the contexts, applications, and relevance of VRSIM in the
i4.0 era, including its potent role in predictive modeling and simulation, digital twin and predictive
maintenance, additive manufacturing and 3D printing, and virtual manufacturing and immersive
virtual digital factory simulation. VRSIM also offers a realistic virtual environment for mapping
human–robot collaboration in different manufacturing environments, such as aircraft and automotive
assembly lines, evaluating processes, training factory workers on safety, and assessing workers’
ergonomics in digital production and operations. VRSIM in manufacturing offers active research
activities, with increasing literature publications and impacts attracting core sources in industrial
engineering, manufacturing systems, production and operations, and information technology.

Keywords: fourth industrial revolution; Industry 4.0; digital technology; virtual reality simulation;
digital twin; predictive maintenance; human–robot collaboration; predictive modeling

1. Introduction

Digitization of manufacturing operations and processes is not new. From the first
industrial revolution to the present Industry 4.0 (i4.0), the manufacturing sector continues to
be at the forefront of innovation and digital technology adoption. However, the dimension
of the fourth industrial revolution (4IR or i4.0) comes with several integrated technologies
that attempt to sweep off the old orders [1]. The advent of the 4IR brought a set of integrated
digital technologies capable of transforming traditional manufacturing operations and
processes and introducing smart manufacturing [1–3]. Among the core digital technologies
of the 4IR or i4.0 are virtual reality (VR) and simulation [1,4–7], which are the focus of
this study.

The evolution of i4.0 introduces a set of integrated technologies capable of revolution-
izing the manufacturing industry. Some of the allied technologies in 4IR include computer
technology, telecommunications, and security architecture, such as the Internet of things
(IoT), digital twin (DT), cloud computing, and virtual reality simulation (VRSIM) [1–4,6–10].
Its key features include the widespread use of the Internet, popularly called the IoT, which
connects mobile devices for seamless communication and data exchange, the integration
of sensors and intelligent devices into various objects and machines to collect, share, and
analyze data to enable automation, pattern recognition, and prediction capabilities [2,3].
Other characteristics of the 4IR include advanced robotics and automation technologies
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that are transforming industries by enhancing productivity and efficiency and 3D printing
technology that enables the creation of complex and customized objects [3,4,6]. Embracing
and harnessing its potential while addressing its challenges is essential for ensuring a
sustainable and inclusive future. The heightened cybersecurity focus in i4.0 is to ensure
robust security measures to protect interconnected systems and sensitive data in smart
manufacturing environments [2,3]. Also, cloud computing constitutes a fundamental en-
abler for i4.0 implementation, mainly by providing limitless, accessible, and scalable virtual
storage capacity, enabling industries to store vast amounts of data generated by sensors, IoT
devices, and manufacturing processes. Users can access their secure data from anywhere,
facilitating real-time monitoring and analysis regardless of geographical location [2–4].

While the hype about i4.0 continues, significant improvements are proposed toward
advancing the 4IR, leading to the recent conception of Industry 5.0 (i5.0). The emerging
i5.0 concept aims to redefine integrated technology to promote human and machine col-
laboration within the manufacturing landscape (e.g., robots) [3,4]. While i4.0 focuses on
integrating advanced technologies and automation, i5.0 emphasizes the cooperation and
synergy between humans and machines [3].

VR and simulation existed several decades before i4.0 and traveled separate routes
before forming a symbiotic relationship that came to be known as virtual reality simulation
(VRSIM), a term coined by Akpan [7] in the early 2000s. Since then, several VRSIM
applications have been implemented in healthcare and industrial organizations, e.g., [5,6].
However, other terms, such as “VR Simulation”, “Immersive VR Simulation”, “desktop
VR”, and “3D simulation/visualization”, are terms also used by experts to denote the
VRSIM concept [7–9]. In other instances, VR and simulation can be implemented in
collaboration with other related visualization techniques, including augmented reality
(AR) as mixed reality [10]. The proliferation of three-dimensional (3D) animation and the
increased use of animated graphics on the Internet meant that 3D visualization had become
commonplace, causing simulation practitioners to look closer at the benefits of adopting
3D displays in discrete-event simulation (DES) [8–10].

In the mid-2000s, Akpan and Brooks [11,12] implemented a VRSIM perspective model
of an auto assembly simulation system and evaluated the costs and benefits of VRSIM
applications in DES [13]. The clear benefits of VRSIM include advanced visualization
capabilities, better clarity, and insight into simulated manufacturing systems, especially for
non-technical stakeholders, top management buy-in, and increased acceptance of simula-
tion project outcomes [8,11,12]. These benefits outweighed any associated implementation
costs, meaning that it was a matter of time before all simulation practitioners and users
accepted this reality [8,9]. A decade later, Turner et al. [13], while examining the trends in
manufacturing simulation, assert that the initial limitations of 3D/VR due to the long learn-
ing curve and increased model development time identified by Akpan and Brooks [11,12]
have been overtaken by improved technology and advanced DES modeling tools with
simple drag-and-drop functionalities [13,14]. VRSIM helped in solving a long-standing
problem in simulation projects where top management doubted the authenticity of sim-
ulation results because it was difficult to relate to the mysterious simulation black box,
churning out results that managers did not understand or could not relate to [15,16].

As the global manufacturing landscape continues to experience profound transforma-
tion in the 4IR, VRSIM plays significant roles in virtual product design, digital twin and
predictive maintenance, and efficient and adaptive manufacturing ecosystem [1,5,17,18].
This study examines the role of virtual reality simulation in manufacturing in Industry 4.0
utilizing based on the science mapping/bibliometric analysis methodology. The research
objectives are as follows:

• RO1: analyze the bibliometrics performance of research, including the scientific litera-
ture production (SCP) on the role of virtual reality simulation in manufacturing in the
4IR or i4.0.

• RO2: evaluate the intellectual structure of manufacturing VRSIM publications.
• RO3: assess the conceptual structure of research on the subject matter.



Systems 2024, 12, 26 3 of 22

• RO4: evaluate the social structures of manufacturing VRSIM SCP to identify authors’
and countries’ collaborations (RO4).

The rest of this paper is organized as follows: Section 2 analyzes this study’s theoretical
background and analytical literature review. Section 3 presents the materials and method,
including the science mapping and bibliometric analysis framework, data collection pro-
cesses and procedures, and analysis techniques. Section 4 analyzes the results. Section 5
presents a detailed discussion on the role of VRSIM in manufacturing in Industry 4.0 based
on the outcomes of the science mapping study. Finally, Section 6 concludes this paper,
highlights the implications of the main findings, and identifies areas for future work.

2. Developments in Data Visualization and VRSIM Applications in Manufacturing

Visualization has remained a crucial aspect of DES since its introduction more than
four decades ago. As a decision support system, visualizing the interactions among the
various components and elements in a computer-animated simulation model can make a
remarkable difference in generating insight and understanding of the simulated manufac-
turing system. The visual display alters the perception of DES as a black box that appears
slightly mysterious to the non-technical client or decision maker [12]. Further, animation
is one aspect that differentiates DES from other operations research techniques, such as
mathematical or linear programming [12,19,20]. Thus, in DES, solutions are typically ob-
tained by experimentation, and it is often difficult to understand or anticipate precisely
how changing the different components of the system will affect the overall system per-
formance [12]. Viewing the modeled operation visually at runtime helps significantly in
understanding the model’s behavior and processes [8,10,21]. The DES model’s clarity and
proper understanding of the system behavior can lead to new insights regarding improving
the system during experiments [10,11,22].

Further, a typical simulation study often involves diverse stakeholders, including the
model developer, simulation analyst, project manager, decision maker, project owner, or top
management. The visualization capabilities of the VRSIM provide a common ground where
these different user roles can understand the simulation manufacturing processes and the
solutions for decision making [15]. Presently, there is a consensus about the usefulness of
VRSIM in enhancing insight and understanding into the simulation processes, activities,
and tasks and improving the overall success of DES projects [15,21].

The literature identifies four types of visual displays in DES, including 2D, 2.5D,
3D, and VR, offering different levels of realism, visualization capability, and systems’
complexities [7–9,12]. That is, the higher the dimension of the visual display, the more
the clarity and ease of understanding of the information conveyed [8,12]. The 2D display
uses icons and visualization techniques that confine its scope to a primarily flat 2D sur-
face [7]. All the display types offer some common characteristics, including some levels of
animated graphics, interactivity, and realism. Also, in DES, all the display types can utilize
numbers, charts, and texts to show some key statistics on the interface to complement
the graphics [7,8,13].

The 2D display possesses lower capabilities than 3D visualization and VR [14–16,21].
The 3D visualization contains real binocular stereographic depth effects [9,12,21,22]. Next
to the 2D display is the quasi-3D perspective visualization (also called 2.5D), which offers
a higher level of realism than the 2D but lower than the complete 3D visualization repre-
sentation [8]. Thus, most users can relate more easily to the 3D compared to the 2.5D and
2D versions in that order [9,12]. Strictly speaking, the difference between 3D display and
VR is that VR often refers to visualization and equipment providing a sense of immersion
(e.g., using a head-mounted display to interact with the virtual environment) [13,23–26].
However, the 3D display and VR are sometimes used interchangeably in DES, especially
by simulation software agents and model users [8,27,28]. Although most simulation and
modeling software currently provides 3D visualization rather than immersive VR, full
VR implementation is becoming popular in DES in the 4IR, especially as VR hardware
becomes more affordable [4,5,13]. Thus, the latest form of visual display in DES is the im-
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mersive VRSIM, which entails creating highly realistic and interactive virtual environments
where users can interact with the virtual world, often with the head-mounted display
and similar hardware devices [24,25]. Usually, it helps users to have a sense of real-life
presence in a real-life scenario, although it is indeed a computer-generated environment.
The immersive VRSIM scenario leverages advanced VR technologies to provide a deeply
immersive experience [29,30].

In manufacturing, VRSIM involves creating virtual environments that replicate and
simulate manufacturing scenarios, systems, and processes [24,31,32]. The DES-based
VRSIM scenarios often include factory layout and planning, digital assembly modeling and
simulation, and developing and testing virtual product prototypes [8,31–34]. Further, the
VR-based simulation technique is a potent tool for verifying the design of manufacturing
systems [13,35]. It allows the designer to examine the system design in detail, including
movements of material handlers, relative positions of machine tools, setups of an individual
machine tool, and machining operations on a machine tool. When integrated with design,
VR visualization can significantly improve the system’s efficiency and enhance operations
and process optimization [4,34]. Finally, VRSIM is a crucial technology in the predictive
digital twin for operations maintenance in the 4IR or i4.0 era [24,25,36,37].

3. Methodology
3.1. Data Collection

This study surveyed the Web of Science (WoS) bibliographic database to retrieve the
scientific publications records focusing on the role of VRSIM in manufacturing operations
activities and processes since the evolution of 4IR, starting from 2010 according to the
research, e.g., [2]. The initial data retrieval occurred in March 2023, with the final database
survey in October 2023. The rationale for basing our literature survey on the WoS database
is that it indexes high-quality scientific literature compared to others, such as SCOPUS
and other bibliographic databases [38]. The WoS platform offers the option to retrieve
the data as text (.txt), comma-separated values (.csv), and other file formats. This study
extracted complete records from 823 published documents as metadata in the text (.txt)
format, which were exported into Excel for data cleaning. The cleaned data were subjected
to further screening and selection processes, during which non-peer-reviewed documents
such as meeting abstracts and editorials were removed. Irrelevant records that did not
address virtual reality simulation applications in manufacturing in the context of 4IR/i4.0
were also discarded, leaving 776 relevant publications of interest. Table 1 presents the
search terms and the query strings for data collection and the screening process based on
standard procedures [39].

Table 1. Data collection process includes search and retrieval, filtering, screening, and selection
criteria of the published documents.

Activities/Focus Criteria
Data Source Web of Science (WoS)

Search Query TOPICS: (((“virtual reality” OR “visual display” OR “visualization”) AND (“*simulation*” OR
“discrete-event model*”) AND (“manufactur*”))); period covered: 2010 to 2023 October = 823.

Documents Filtering, Screening, and Selection
Filtering/Screen Removed non-research documents: editorials (4), meeting abstracts (1); 823 − 5 = 818.
Screening 818 − 42 irrelevant publications/topics, leaving 776 published documents used in the analysis.
Data Extraction Documents retrieved in text formats (.txt and .csv files) for analysis.

3.2. Data Analysis Techniques and Tools
3.2.1. Bibliometrics Analysis and Science Mapping of Research

Bibliometric analysis is a literature evaluation technique used to study scientific publi-
cations based on a topic or research field [40]. It involves using quantitative and descriptive
methods to analyze bibliographic data to uncover patterns, trends, relationships, and other
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valuable insights on a topic of interest. While the quantitative analysis produces empirical
results, the descriptive component offers a qualitative assessment of the contents [39–41].
This study evaluates the literature on manufacturing VRSIM in the 4IR era.

The science mapping of the literature involves the analyses of the conceptual, intel-
lectual, and social structures of research [39]. The co-occurrence of words identifies the
themes and research streams, which form the conceptual design of publications using
author keywords as the unit of analysis [41,42]. The co-citation identifies the intellectual
structure, while co-authorship evaluates the relationships and social interactions among
publications, authors, affiliations, and countries [41].

Bibliometric performance analysis and science mapping methods provide a deep
and comprehensive analysis of the research trends and impacts and reveal the research
landscape of a field. It also highlights the priorities in a field of study and identifies the
areas requiring future studies.

3.2.2. The Choice of Bibliometric Software

This study employed two complementary bibliometrics analysis open-source software
(R-Bibliometrix and VOSviewer (version 1.6.20)) for data analysis [40,42]. The final screened
metadata in text (.txt) file format was exported to the two applications. Both applications
can handle big bibliographic data, analyze the results, and produce visualization. We also
employed Microsoft Excel 2021, productivity software in the Microsoft Office 2021 suite, to
create charts and graphs.

4. Results and Analysis
4.1. Sample Description and Preliminary Results

Table 2 highlights the summary of results and sample description produced from the R-
Bibliometrix software embedded in the R-Studio environment. The results summary shows
58% (450), 41.36% (321), and less than 1% (5) of the total 776 publications on manufacturing
VRSIM, being journal articles, conference proceedings, and book chapters, respectively.
The results also highlight 17.5% international cooperation among co-authors across several
world regions, indicating that the topic is attracting a growing global interest. Also, the
published documents appeared in 572 sources authored/co-authored by 2953 researchers,
with 17.53% collaborating from several countries (Table 2). The analysis of results in
Sections 4.2–4.5 helps address the research objectives in Section 1.

Table 2. Descriptive statistics of the sample and preliminary results.

Variable Description Results

Years of Publications (Annual Growth Rate: 5.23%) 2010–2023
Sources (Journals, Proceedings, and Book Chapters) 572
Documents Information: 776
Articles (Original Articles: 410; Reviews: 40) 450 (58%)
Book Chapters 5 (0.64%)
Conference Papers 321 (41.36%)
Average Citations per Doc 13.26
Documents Contents:
Keywords Plus (ID) 1290
Author’s Keywords (DE) 2437
Authors and Collaboration:
Authors 2953
Authors of Single-Authored Docs 36
Single-Authored Docs 38
Co-Authors per Doc 4.31
International Co-Authorships 17.53%
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4.2. Bibliometrics Performance Analyses of Research on VRSIM Application in Manufacturing in
the 4IR Era

This section evaluates the bibliometrics performance of publications, including SCP
trend on manufacturing VRSIM in i4.0, active usage analysis, and citation impact, which
help to address the first research objective (RO1).

4.2.1. Scientific Literature Production Trend

It is important to note that VRSIM in manufacturing existed before the advent of the
4IR. However, its roles in predictive analytics and its functionality as a decision support
system [12] play critical parts in 4IR and have become adapted as a part of the integrated
technologies in the i4.0, alongside IoT, digital twin, among others [24,25,43]. Figure 1 shows
the publication trend on the role of VRSIM in manufacturing since the start of 4IR, which
occurred around 2010 [2].
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Figure 1. Publications on VRSIM in manufacturing in the era of Industry 4.0. (The 2023 data are as of
31 October 2023).

The results show a strong research productivity of manufacturing VRSIM, although
the first five years (2010 to 2014) remained flat, with SCP per year ranging between 33
and 36, an average of 34 per year). As the popularity of 4IR gained momentum, the SCP
recorded further increases from 49 in 2017 to 70 in 2018 and peaked in 2022 at 98, an
increase which in part can be attributed to increased research productivity, especially in
the period of COVID-19 [18,44]. Figure 1 shows that the SCP produced in the four years
of the COVID-19 outbreak (2020–2023) makes up over 40% (316 out of 776) of the total
SCP. This trend has been observed in several studies across many disciplines, confirming
increased SCP and adoption of digital technologies, including virtual reality and simulation
platforms [3,18,34]. The results also show that, as the COVID-19 pandemic ceded, the SCP
started to decline (e.g., 2023: Figure 1), indicating the possible impact of COVID-19 on
increased adoption of VRSIM technology in manufacturing.

4.2.2. Citation Analysis of Publications

The results summary (Table 2) shows an average of 13.26 citations per document (with
a total of 10,291) for the period (2010–2023), which covers the 4IR era [2]. The result was
generated using the R-based Bibliometrix (explained in the earlier section). Further analysis
identifies VRSIM in manufacturing as a highly cited research field, with 74% of the SCP
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earning at least one or more citations. The citation impact analysis structure shows that
about 42.9% of publications earned between 1 and 9 citations; 21% received more than 10
but less than 30 (10 ≥ TC ≤ 30), while 10% earned 30 or more citations. Further, over 70%
of the documents published in 2022 received at least one and up to thirty citations within
one year. Also, 33% of publications in 2023 (less than one citable year: CY < 1) received
between one and ten citations, indicating a highly cited and active research field. Table 3
presents the complete citation structure of the publications. However, a few documents
(15 or 1.80%) earned one hundred citations or more (Table 3).

Table 3. Citation structure of publications on VRSIM in manufacturing in the 4IR era.

Year ≥400 ≥300 ≥200 ≥100 ≥50 ≥30 ≥10 ≥1 NC SCP TC % Cited

2010 0 0 0 0 0 1 4 19 9 33 166 73%
2011 1 0 0 0 2 3 6 16 8 36 912 78%
2012 1 0 0 3 0 0 6 12 11 33 947 67%
2013 0 1 0 0 3 2 12 10 6 34 912 82%
2014 0 0 0 1 1 4 6 12 9 33 571 73%
2015 0 0 0 1 2 3 18 13 8 45 767 82%
2016 0 0 0 3 1 3 13 15 11 46 839 76%
2017 0 0 0 0 1 2 12 23 11 49 430 78%
2018 0 0 0 0 6 6 19 29 10 70 1151 86%
2019 0 0 0 1 5 5 17 39 13 80 1033 84%
2020 0 0 1 1 6 5 18 38 10 79 1454 87%
2021 0 0 0 0 0 4 20 31 21 76 610 72%
2022 0 0 0 0 0 3 10 57 28 98 425 71%
2023 0 0 0 0 0 0 2 19 43 64 74 33%
Total 2 1 1 10 27 41 163 333 198 776 10,291

% 0.26 0.13 0.13 1.29 3.48 5.28 21.01 42.91 25.52 100% AV Cited = 74%

NC and TC denote no citations (SCPs with no citations as of 31 October 2023) and total citations based on
WoS data.

The number of citations reported above is based on WoS bibliographic data. The
Google Scholar (scholar.google.com) citation count can be more than the records on WoS.
For example, Chandrasegaran et al. [35] earned 394 citations based on WoS data, but over
801 on Google Scholar (accessed on 31 December 2023).

4.2.3. Most-Cited Documents

Table 4 presents the top ten most-cited publications and research themes based on the
global citation per the WoS bibliographic data. The results show the total, average (ACY),
and normalized (NC) citations per year. All the top ten cited publications had long citable
years (nine years or more), except one article [36] that made the list but had shorter citable
years (less than four). The most-cited research themes include “Simulation, visualization,
and results validation in manufacturing”, “manufacturing simulation applications”, and
“VR systems and modeling to simulate scenarios in manufacturing and assembly”. Table 4
presents the complete list of titles and themes and the citations earned. As expected, the
most highly cited topics also had the most extended citable years. For example, the three
most-cited articles were published in the last 7–10 years.

4.2.4. Usage Analysis of Publications

Usage information on VRSIM in manufacturing SCP helps establish whether the
research field is active. The WoS classifies the literature usage into two categories, namely
U1 and U2. U1: the frequency of SCP uses within the past 180 days (last six months:
April to October 2023); U2: the same information that occurred within the past ten years
(2013–2023). The results in Figure 2 indicate high usage of the publications. The results do
not show the purpose of use, although the potential users can include researchers, industry
practitioners, and others.
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Table 4. Ten most-cited documents on the use of VR simulation in Industry 4.0.

Rank Paper Focus Journal TC ACY NC1

1 [45] Simulation, visualization, and results
validation in manufacturing.

IEEE Computer
Architecture Letters 491 37.77 19.38

2 [46] Manufacturing simulation applications. CIRP Annals 400 33.33 13.94

3 [35] VR systems and modeling to simulate
scenarios in manufacturing and assembly. Computer-Aided Design 394 35.82 14.69

4 [36] Simulating the design and operation of
manufacturing systems in 4IR.

Intl. Journal of
Production Research 263 65.75 14.29

5 [31]
Simulation as an indispensable tool for the

successful implementation of
digital manufacturing.

Procedia CIRP 169 16.9 9.77

6 [37] Simulation, digital assembly modeling,
assembly sequence planning.

IEEE Transactions on
Industrial Informatics 164 13.67 5.71

7 [33] Virtual reality applications in
manufacturing industries. Concurrent Engineering 142 15.78 8.33

8 [34]
The development of virtual reality within
an automotive manufacturer reduces time,

costs, and quality.
Applied Ergonomics 117 14.63 6.41

9 [13] Discrete event simulation and virtual reality
use in industry.

IEEE Trans. on
Human-Machine Systems 103 12.88 5.65

10 [47] A virtual reality interactive training
environment prototype.

Advanced Engineering
Informatics 100 8.33 3.48

TC: total citations based on WoS data; ACY: average citation per year; NC1: normalized citation.
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Overall, there was high and frequent use of SCPs on VRSIM in manufacturing, indi-
cating an active research area. The 766 publications were used frequently (U1 = 2391 times;
U2 = 19,343 times, respectively). The trend analysis for U1 shows a consistent increase
in SCP use across all years, with recent publications used more often, meaning that re-
cently published articles received higher usage counts than the older ones. For example,
the 33 articles published in 2010 have been used just 8 times in the last six months and
160 times in the previous ten years (2013 to 2023). Comparatively, the publications in 2021
recorded an access count of 333 times, while the SCP in 2022 recorded a usage count of
735 times for U1, more than twice the number accessed in 2021. U2 also followed a similar
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trend (Figure 2), although the trend for U2 highlights more variation in use yearly, with
more up/down movement, the most yearly variation occurring between 2013 and 2017.

Furthermore, the increased SCP in recent years (2017 to 2022) also mirrors the usage
trends, indicating VRSIM in manufacturing as an active research discipline (Figures 1 and 2).
The data for 2023 is less than the full year (collected as of 31 October 2023). Therefore, the
complete year’s trend is unknown at the time of this analysis.

Generally, 58.2% and 94.1% of the 776 SCPs recorded at least one usage count in the
past six months (U1) and ten years (U2), respectively, indicating VRSIM in manufacturing
as an active research field. However, the impact of COVID-19, which had ignited digital
technology adoption across different sectors [44,48], potentially contributed to the increase
in those years (2020–2022), especially for U1.

4.3. Co-Citation Analysis

Co-citation analysis measures the frequency with which pairs of published documents
(e.g., articles, authors, or sources) are cited in a particular field of study. The analysis tracks
the instances where the pairs (a and b) are co-cited [49]. The implication is that the co-cited
papers/articles, authors, or journals share some common research theme. As co-citations
occur frequently, research clusters form, and the co-cited document or journal becomes
more relevant and influential in a research field network [49,50].

The co-citation analysis also reveals the intellectual structure of research and can be
based on articles, authors, or sources. In this study, we employ the sources co-citation
analysis as the unit of analysis [39]. The result addresses the second research objective
(RO2), which examines the intellectual structure of VRSIM in manufacturing in the 4IR or
i4.0, as stated earlier in Section 1.

Table 2 shows that out of the 776 publications published in 572 sources, 450 were
journal articles (58%), 321 (41.36%) conference proceedings, and 5 (0.64%) as book chapters.
Utilizing the VOSviewer bibliographic analysis and visualization software [40], the results
identify the eminent co-cited sources classified into five (5) color-coded clusters (red, yellow,
blue, light blue, purple, and green) on a co-citation network (Figure 3). Figure 4 presents
the sources’ co-citation network analysis, highlighting relationships and connections. The
result shows the interconnectedness among 195 that earned at least 20 citations during the
period covered in this study.
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The result shows that the publications on manufacturing VRSIM appeared in sources
across multidisciplinary but related disciplines, including manufacturing, operations and
production, industrial engineering, operations research, computer science, and informa-
tion systems, corroborating the nature of manufacturing problems and the integrated
technologies in the 4IR [18].

Table 5 presents the top ten prominent sources from each of the six clusters classified
as explained above. The table also shows citations earned and the corresponding network
strengths of journal articles and proceedings papers on manufacturing VRSIM based on
the clusters.

4.4. The Conceptual Structure of Publications on VRSIM in Manufacturing

This section evaluates the conceptual structure of publications on VRSIM in man-
ufacturing, which addresses the third research objective (RO3). This study utilizes R-
Bibliometrix and VOSviewer to identify the research areas, topics, and themes based on
author keywords as the unit of analysis.

4.4.1. Keywords and Themes Analytics

Several studies show that author keywords are pointers to the article’s focus and can
help map the conceptual or thematic structure and research themes/streams for any field of
study [51,52]. Also, keyword analytics is one of the most popular methods in bibliometric
mapping and analysis of the thematic structure of a research field [39,51,53].

The text mining using R-Bibliometrix identified 2437 unstemmed author keywords
from the 776 publications (Table 2) with a total word frequency (f) of 3547. The word
frequency explains the number of times each keyword re-occurs in the dataset. The sample
is stratified into two categories to ensure an in-depth analysis based on the keyword
frequency or co-word analysis as follows:

• Prominent keywords: The words are unique and unstemmed, occurring ten times or
more (f ≥ 10) in the dataset. In this study, nineteen (19) keywords fall in this category
with total word frequency (f) = 553. It implies that less than a percentage point (0.8%)
of the keywords re-occurred 15.6% of the time.
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• Emerging terms: The remainder of the unique and unstemmed keywords (2418 or
99.2%) were less prominent. We define the emerging terms as the ones with a fre-
quency of occurrence less than ten (f < 10). Most of the terms fall in this category
(2994 emerging terms compared to 553 prominent keywords), constituting 84.4% of
the total word frequency).

Table 5. The prominent sources identified in co-citation network analysis classified into six clusters.

Source Citation % TC TNL Source Citation % TC TNL

Cluster #1 (Red *): 50 ** Cluster #3 (Green *): 52 **
Int. J. Adv. Manuf. Tech. 516 5.0 17,951 Int. J. Heat Mass Tran. 140 1.4 9145

CIRP Ann.-Manuf. Techn. 280 2.7 12,885 J. Power Sources 114 1.1 2056
Comput. Ind. 257 2.5 11,934 J. Electrochem. Soc. 94 0.9 1811

Comput. Aided Design 224 2.2 8891 Appl. Therm. Eng. 72 0.7 3301
Automat. Constr. 137 1.3 3159 Compos. Part A-Appl. S. 71 0.7 1226

Lect. Notes Comput. Sc. 122 1.2 3588 Polym. Eng. Sci. 65 0.6 2357
Virtual Real.-London 86 0.8 3409 Phys. Rev. E 54 0.5 3856

IEEE T. Vis. Comput. Gr. 85 0.8 3383 J. Comput. Phys. 47 0.5 1476
Appl. Ergon. 81 0.8 2242 J. Micromech. Microeng. 43 0.4 2922

Int. J. Interact. Des. M. 77 0.7 3951 J. Cryst. Growth 42 0.4 1237
Cluster #2 (Yellow *): 43 ** Cluster #4 (Blue *): 45 **

Proc. CIRP 372 3.6 15,215 J. Mater. Process. Tech. 147 1.4 4784
Robot Cim.-Int. Manuf. 231 2.2 10,276 ACM T. Graphics 98 1.0 2104

Int. J. Prod. Res. 261 2.5 9883 Mater. Design 66 0.6 1929
J. Manuf. Syst. 199 1.9 8634 Addit. Manuf. 61 0.6 1381

Procedia Manuf. 196 1.9 8476 Science 56 0.5 1562
Int. J. Comput. Integ. M. 188 1.8 7232 Sci. Rep.-UK 51 0.5 2142

J. Clean Prod. 146 1.4 5454 Acta Mater. 49 0.5 1139
IEEE Access 141 1.4 5408 Proc. SPIE 43 0.4 1247

Comput. Ind. Eng. 128 1.2 5113 IEEE T. Biomed. Eng. 32 0.3 392
IFAC PapersOnLine 122 1.2 4833 Phys. Med. Biol. 31 0.3 422
Cluster #5 (Light Blue *): 3 ** Cluster #6 (Purple *): 4 **
J. Mech. Design 62 0.6 2183 IOP Conf. Ser.-Mat. Sci. 34 0.3 894

Mech. Mach. Theory 27 0.3 767 Microelectron. Reliab. 31 0.3 867
Mech. Syst. Signal Pr. 31 0.3 1021 J. Electron. Packaging 21 0.2 1359

Solder. Surf. Mt. Tech. 21 0.2 734

TNL = total network link strength; %TC = percentage of total citation; * cluster colors in Figure 3; ** number of
sources in each cluster (1–6).

4.4.2. Analysis of Prominent and Eminent Research Themes

The prominent themes classification can be defined as the ones with frequency (f)
of occurrences equal to or greater than 10 (f ≥ 10). The eminent themes depict the fre-
quently researched topics on VRSIM in manufacturing in 4IR (or i4.0). The text mining
generated using the R-Bibliometrix identifies 15 stemmed unique terms in this category
(f ≥ 10), re-occurring 553 times (15.6%) of the total 3547 frequencies. Some of the rele-
vant, prominent themes manufacturing VRSIM other than VR and simulation include
“virtual manufacturing”, “additive manufacturing”, and “digital manufacturing”. Other
VRSIM in manufacturing research themes relate to “digital twin” and “industry 4.0”, with
a word frequency of 42 and 61 times and making 1.2% and 1.7% of the total word fre-
quency, respectively. Figure 4 presents a complete list of eminent research themes and
their frequencies.

The benefits of mapping the relevant themes to scientific studies highlight the contexts,
applications, and relevance of VRSIM in manufacturing in the i4.0 era. For example,
it reveals its potent roles in simulating digital factories [12,13,54,55], product design and
smart manufacturing [56], digital twin modeling [25,43], and predictive maintenance [57,58].
Also, VRSIM helps to design, map, and evaluate robot workspace and human-robot co-
existence in the manufacturing environment, such as aircraft and automotive assembly
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lines, evaluate processes, and train factory workers on safety and ergonomics in digital
production and operations [17,59–63].

Other areas where manufacturing VRSIM plays essential roles include innovative
and efficient product design that shortens the time to market [35,64,65]. Other studies
examine VRSIM in virtual manufacturing systems, process engineering, and optimization of
operations activities to enhance efficiency and improve manufacturing decisions [18,66,67].
Section 4.4 offers further analysis and identifies such keywords.

4.4.3. Thematic Evolution of VRSIM Application in Manufacturing

This section analyzes the evolution of the research themes on VRSIM in manufacturing
in the 4IR era. The purpose is to identify the transformation in the research focus during
the period. Undertaking text analytics of author keywords and science mapping using the
R-Bibliometrix application highlights the trending themes. The results based on the default
output strategies divide the period into three segments, namely 2010–2016, 2017–2020, and
2021–2023, covering the 4IR era (Figure 5). The focus is to evaluate the conceptual structure
of the publications, which addresses the third research objective (RO3).
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The first segment (2010–2016) showed most VRSIM in manufacturing research address-
ing largely pre-4IR technologies relating to manufacturing (Figure 5), such as “digital factory”,
“flow visualization”, “computer aided design”, “visualization”, and “human-computer inter-
action” [8,10–12,54], among others. The second and third segments (2017–2020 and 2021–2023)
capture a broader spectrum of research themes, including both the ones in the first segment.
The new themes that appear in the second and third segments are “internet of things”,
“deep learning”, and “industry 4.0”. The similarity of the research themes across the three
segments and the addition of 4IR terminologies confirms that VRSIM in manufacturing
had existed prior to the i4.0 era but was integrated among the i4.0 technologies.

4.4.4. Co-Occurrence of Words Analysis

Co-occurrence of words analysis is a bibliometric evaluation technique that measures
relationships between pairs of words in a body of literature. It examines the relationship
and interconnectedness among research themes presented in a network map comprising
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nodes and edges [41,52]. The keywords or themes represent the nodes interconnected
by edges (lines) and nodes. The nodes and labels’ sizes depend on the word frequency
(the number of occurrences of specific keywords). Thus, the bigger the node, the more
frequently the word occurs [41]. The edges serve as the lines that connect two or more
nodes; the more connected a node is, the greater the network link strength of that node [41].

The metadata analyzed in this study contains 2437 author keywords (Table 2). Text
analytics and visualization results utilizing the VOSViewer application show a co-word
network map. For reproducibility, we set the co-word frequency (f) at 3: (f ≥ 3) produced
138 terms less 29 nugatory terminology or words that do not convey contextual meanings,
such as country names and similar terms. Also, removing one disconnected theme leaves
108 co-occurrence terms. The text mining algorithm stratifies the themes into twelve (12)
color-coded clusters. When using VOSViewer, the cluster categorization contains some
random elements, and the group in which the terms appear should be interpreted loosely.
Removing one or more keywords can lead to cluster reclassification in the network map.
Therefore, the keywords and the network link strength are more crucial than the cluster in
which the words appear. The network visualization (Figure 6) highlights the twelve (12)
clusters with the prominent themes in each classification listed below.
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The associated values in each theme in the network map represent the word frequency
and network link strength, respectively, as follows:

Cluster #1: (digital manufacturing: 11, 24; smart manufacturing: 9, 14; modeling and
simulation: 6, 8; artificial intelligence: 5, 13; sustainable manufacturing: 4, 7; intelligent
manufacturing: 4, 3, and more).

Cluster #2: (visualization: 32, 40; additive manufacturing: 30, 35; 3D printing: 20, 30;
flow visualization: 7, 5; computer simulation: 7, 4, and others).
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Cluster #3: (digital twin: 31, 56; manufacturing: 22, 47; numerical simulation: 9, 3;
process planning: 4, 9; process design: 3, 6, and more).

Cluster #4 (virtual manufacturing: 26, 57; virtual factory: 6, 10; digital factory: 5, 5;
virtual prototyping: 4, 11; virtual reality simulation: 5, 4, and others).

Cluster #5 (industry 4.0: 24, 41; Internet of things: 9, 18; automation: 6, 13; robotics: 6,
13; human–robot collaboration: 4, 12; cyber–physical systems: 3, 4, and others).

Cluster #6 (simulation: 80, 140; optimization: 10, 18; 3D visualization: 7, 9; discrete
event simulation: 5, 6; lean manufacturing: 4, 5; logistics: 3, 8, and more).

Cluster #7 (virtual reality: 149, 227; training: 17, 33; virtual assembly: 7, 15; haptics: 7,
13; virtual environment: 5, 11).

Cluster #8 (ergonomics: 8, 19; human factors: 7, 12; manufacturing systems: 5,5;
product design: 4, 10; maintenance: 3, 7).

Cluster #9 (collision detection: 5, 5; collaborative manufacturing: 4, 4; virtual engineer-
ing: 3, 7; systems engineering: 3, 6).

Cluster #10 (Computer vision: 4, 4; user experience: 3, 9; gamification: 3, 7).
Cluster #11 (rapid prototyping: 8, 20; reverse engineering: 3, 5; virtual design: 3, 2).
Cluster #12 (virtual machining: 4, 12; machining simulation: 3, 3; digital simulation:

3, 4).

4.5. Social Structure

The social structure of a research field analyzes the collaborations among authors,
institutions, and countries that contribute to the SCPs. The results address the fourth
research objective (RO4), including co-authorship collaboration and countries of affiliation
as the units of analysis.

4.5.1. Authors’ Productivity Index Using Lotka’s Law

Lotka’s law in bibliometric analysis is an empirical framework that provides insight
into the frequency distribution of scientific literature productivity among authors in an
area of study or discipline [18,42]. It shows the dynamics of scholarly research output in
different fields and reveals eminent authors who contribute repeatedly on a specific topic
versus occasional contributors in a research field [39–42]. Generally, few prolific authors
tend to contribute a disproportionately large amount of the SCP in a discipline, while a
vast number (occasional contributors) contribute few articles.

The preliminary results (Table 2) identified 2953 authors/co-authors or contributors
of the 776 publications surveyed in this study. We also produce authors’ productivity
distribution using the R-Bibliometrix application (described earlier). The results (Figure 7)
show the number of authors on the y-axis, the number of publications (x-axis), and the
corresponding cumulative proportion (percentage). A high proportion of the authors
(90%: 2661/2953) published just one article each, while 8% (236/2953) published two each.
Cumulatively, 90% of the authors contributed only one article each, 98% contributed one
or two publications, and so on (Figure 7). Also, a negligible proportion (2% or 59/2953)
contributed three or more documents. No author contributed nine or more publications.

In summary, only 10% of the authors published two or more articles on the subject,
which matches Lotka’s law expectations (as explained above). Also, this trend can be
expected considering the relatively short period of VRSIM application in manufacturing in
i4.0, which covers 2010–2023 [2].

4.5.2. Co-Author Analysis

This section analyzes the co-authorship network to identify patterns of scientific
collaborations among those who have contributed to the publications on VRSIM in manu-
facturing problems. In co-author analysis, two authors are in a collaborative relationship if
co-authoring any published document in a particular domain or multiple research domains,
interdisciplinary research areas, whether locally or internationally [39,52].
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In this study, we employ the VOSViewer application to produce the co-authorship
social network map, showing co-authors’ collaboration. The result shows low but in-
creasing partnerships among co-authors. The analysis set the minimum criteria to at least
one co-authored publication that received ten (10) citations during the period. Figure 8
shows the connected co-authorships in the i4.0 years of VRSIM roles in manufacturing,
addressing many scenarios, such as enhancing decision making to shorten the time to
market Chandrasegaran et al. [35]. However, more collaborations tend to occur in recent
years (2017–2023). For example, Ref. [55] examined environmental sustainability in the
manufacturing industry as a product of collaboration among Brundage, Bernstein, Chang,
Klinks, Nishi, and Morris (Figure 8).
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4.5.3. Institutions and Countries Collaboration and Impact

The analysis of the social structure of a research field also applies to collaborations
among research institutions and countries of authors [41,42]. The bibliographic data ana-
lyzed in this study contains 1012 institutions from 63 countries where authors/co-authors
and institutions are domiciled. The results summary (Table 2) shows an international
collaboration index of 17.53%, indicating low international collaborations among insti-
tutions. Figure 9 also shows low connections among these institutions. However, there
appears to be a stronger connection among institutions within countries and regions,
e.g., “Oklahoma State University” has a stronger tie with the “University of Wisconsin” in
the USA. Similarly, there is good collaboration between “Tongji University” and “Zhejiang
University” in China. Figure 9 shows the complete details of the collaborations among the
research institutions.
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Further analysis of the authors’ countries’ collaborations using R-Bibliometrix iden-
tifies China, the USA, Germany, the UK, and Italy as the 5 most dominant countries in
literature publications on VRSIM in manufacturing in the 4IR, while collaboration indices
among the remaining 14 other nations (e.g., frequency of research/article’s collaboration
is negligible (Table 6). The analysis also highlights the countries with the most publica-
tions on the subject and where the corresponding authors are domiciled (MCP), including
China, USA, and Germany, as being the top three. Table 6 shows a complete list of the top
twenty (20) countries.

Table 6. Countries’ international collaborations in publications in two categories, SCP and MCP,
and impact.

Country Articles SCP MCP Freq of
Articles MCP Ratio TC AVTC Per

Article

China 162 142 20 0.209 0.123 1415 8.73
USA 130 115 15 0.168 0.115 1936 14.89

Germany 64 58 6 0.082 0.094 537 8.39
UK 41 29 12 0.053 0.293 903 22.02

Italy 32 28 4 0.041 0.125 557 17.41
Korea 25 25 0 0.032 0 316 12.64
India 22 17 5 0.028 0.227 231 10.5

Poland 21 19 2 0.027 0.095 108 5.14
France 18 9 9 0.023 0.5 292 16.22
Spain 18 14 4 0.023 0.222 284 15.78
Japan 17 15 2 0.022 0.118 47 2.76

Malaysia 14 11 3 0.018 0.214 141 10.07
Sweden 14 13 1 0.018 0.071 161 11.5
Canada 13 7 6 0.017 0.462 400 30.77
Mexico 13 9 4 0.017 0.308 144 11.08
Greece 12 10 2 0.015 0.167 581 48.42
Brazil 11 8 3 0.014 0.273 90 8.18

Slovakia 11 11 0 0.014 0 56 5.09
Romania 10 9 1 0.013 0.1 14 1.4
Australia 8 6 2 0.01 0.25 308 38.5

MCP: country publication with corresponding author; MCP ratio: proportion of SCP with corresponding author;
TC: total citations; AVTC: average TC per article.
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5. Discussion: The Role of VRSIM in Manufacturing in Industry 4.0

The science mapping and analysis of the conceptual structure of the literature on
VRSIM in manufacturing (Section 4.4.4) highlights several roles that this transformative
technology plays in Industry 4.0. Although VR and computer simulation existed before the
advent of i4.0, VRSIM has been adopted among the core integrated physical and digital
technologies towards enhancing automation, connectivity, and intelligent and data-driven
decision making in manufacturing. Below are the critical roles of VRSIM in manufacturing
in the 4IR based on the results of the conceptual structure analysis of the literature.

The first cluster identifies terms including “smart manufacturing”, “intelligent man-
ufacturing”, and “artificial intelligence”. These terms point to intelligent systems and
smart manufacturing in i4.0, a key component of Industry 4.0, which involves using
intelligent systems, data-driven decision making, and the Internet of things (IoT) in man-
ufacturing [59,68,69]. VRSIM offers an opportunity to simulate and optimize produc-
tion processes, monitor equipment in real-time, and improve the overall efficiency of
production processes [70].

Another important aspect where VRSIM plays a key role is the digital twin (DT) and
predictive maintenance. DT technology in i4.0 enables the creation of virtual replicas of
physical systems and processes. VRSIM plays a significant role in simulating and analyzing
the behavior of real-world scenarios, allowing for better design, monitoring, and predictive
maintenance [25,57,58]. Integrating VRSIM in the digital twin of manufacturing systems
provides an in-depth interactive experience, enabling users to visualize, interact, and
explore with the digital twin in a highly realistic and intuitive manner, which generates
better insights into the manufacturing systems and processes [25,43,71].

Modeling and simulation are critical in predictive maintenance. As one of the inte-
grated technologies in i4.0, VRSIM facilitates a deeper understanding of the functioning
and behavior of manufacturing equipment and machines and optimizes maintenance
strategies [36]. In the 4IR, predictive maintenance becomes even more crucial with the
integration of digital technologies, including the Internet of things (IoT), digital twins,
and data-driven processes [24,25]. VRSIM helps to create and simulate a digital replica or
digital twin of the manufacturing equipment and other physical assets based on real-time
data, capturing the actual equipment’s behavior (e.g., machines) based on real-time data
and operational characteristics [24,25,36]. The strategy allows for continuous monitor-
ing and analysis without disrupting physical operations, thus minimizing or eradicating
manufacturing downtime [57,58]. The potential machine failure scenarios are modeled
and simulated based on what-if conditions and stress factors using historical data and
real-time information. The predictive simulation strategy can help to identify the po-
tential impact on equipment performance or machine failure points before any actual
occurrence manifests [16,24].

Additive manufacturing and 3D printing are other aspects identified in the conceptual
structure (cluster #2) where VRSIM plays a crucial role. Additive manufacturing technolo-
gies, e.g., 3D printing, are often part of intelligent manufacturing [72–74]. It involves the
layer-by-layer construction of objects based on digital 3D models [75]. These technologies
enable more flexible and customizable production processes. VRSIM offers several benefits
in the additive manufacturing processes by allowing designers and engineers to visualize
3D models realistically, which is valuable in assessing the design of complex structures and
prototypes before production [73]. Thus, VRSIM enables virtual prototyping, testing, and
simulating the printing process, making it possible to identify potential issues before print-
ing [59]. It also offers the opportunity to optimize parameters such as layer thickness and
infill patterns for better performance [76]. VRSIM also offers realistic printing monitoring
where virtual printing simulation enables practical evaluation of the additive manufactur-
ing process. VRSIM allows virtual observation of the printing process in real-time to assess
potential issues such as layer adhesion, warping, or defects [59,76].

Human–robot collaboration is another area where VRSIM plays a significant role, as
pointed out by the conceptual analysis results in the fifth cluster (automation, robotics,



Systems 2024, 12, 26 18 of 22

human–robot collaboration, and more). VRSIM contributes to testing and optimizing
human–robot collaboration and interactions within the manufacturing environment, in-
cluding assessing how operators interact with machinery and robotic systems and ensuring
ergonomic designs, efficient processes, and workflows [17,59–63].

The themes mentioned in the fourth cluster of the conceptual structure analysis identify
themes such as “virtual manufacturing”, “virtual factory”, “digital factory”, and “digital
prototyping”, which relate to virtual manufacturing (VM) technology, where VRSIM also
plays a significant role. VM uses computer-based models and simulations to design,
simulate, and optimize the entire manufacturing system, often in a digital or virtual
environment [18,77]. It entails the creation of digital models, including product design,
production planning, scheduling, and optimization of manufacturing processes [78].

6. Conclusions

This study examined the role of VRSIM in manufacturing in the Industry 4.0 era. The
results of the science mapping conducted in this study reveal that VRSIM plays a crucial role
in the 4IR in multidimensional pathways. Although VR and computer simulation existed
before the advent of i4.0, this transformative technology has been adopted among integrated
physical and digital technologies to enhance significant advancements in automation,
connectivity, and data-driven decision making in manufacturing.

The first research objective (RO1) examines the performance analysis aspect of biblio-
metric evaluation, including publication trends, citation analysis of publications, most-cited
documents, and usage analysis (U1 and U2), representing the usage of the publications
in the last six months and last ten years, respectively. The results identify VRSIM in
manufacturing in 4IR as a significantly active and growing research field.

The second research objective (RO2) examines the intellectual structure of the publica-
tions on the subject based on source co-citation analysis. The results highlight prominent
manufacturing, operations, industrial engineering, and information systems journals that
publish articles on the subject. There is also high co-citation among the sources, as shown
in Figure 3.

The third research objective (RO3) examines the conceptual structure of SCPs in
this study. The analyses cut across keywords analytics, identifying and evaluating the
prominent themes that reveal a broad range of research areas about the roles of VRSIM in
manufacturing in 4IR. This includes its potent role in predictive modeling and simulation,
digital twin and predictive maintenance, additive manufacturing and 3D printing, and
virtual manufacturing and immersive virtual digital factory simulation. VRSIM also offers
a realistic virtual environment for mapping human–robot collaboration in manufacturing,
such as aircraft and automotive assembly lines, evaluating processes, training factory
workers on safety, and assessing workers’ ergonomics in digital production and operations.
The significance of text analytics based on author keywords highlights the prominent vs.
new/emerging themes. The prominent themes highlight the research areas on VRSIM ap-
plications in manufacturing in i4.0, where significant scientific studies have been conducted.
On the other hand, the less popular keywords represent new and emerging research areas
that attract less scientific inquiry and require future studies. In some circumstances, the less
prominent terms can also represent a field of study that researchers have abandoned due to
lack of interest or importance. However, considering the recent hype surrounding i4.0, VR,
and computer simulation, and the short period of 4IR since its inception, the less prominent
themes represent new fields of study that require more studies, such as simulation of
“virtual commissioning”, “intelligent manufacturing”, and “cloud manufacturing”.

Finally, the fourth research objective (RO4) addressed the social structure of the pub-
lished documents on VRSIM in manufacturing in i4.0. The results of co-author analysis,
institutions, and countries’ collaboration indicate an emerging and developing collabo-
ration network, which points to an evolving research field that can benefit from more
network formation among authors, institutions, and countries. Increased partnerships
can help explore further research areas on VRSIM in manufacturing towards accomplish-
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ing the automation and intelligence manufacturing goals in the 4IR. Further, the results
(e.g., Figure 9) indicate that the network relationship among institutions within countries
is stronger than collaborations between countries. Future work can form stronger research
partnerships among authors, not only within but also across countries.
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