Design Model for the Digital Shadow of a Value Stream
Abstract
:1. Introduction
- Creating transparency through data across all processes, leading to improved visibility of processes.
- Increasing responsiveness to react to changes and disruptions by providing decision makers with timely and relevant information.
- Using the knowledge gained for continuous improvement of production processes, reducing waste and increasing overall efficiency.
- Integrating different data sources and systems into a consistent representation of the value stream.
- Providing data-driven decision support for strategic and operational decisions [21].
2. Theoretical Background
2.1. Value Stream Management
- Long-term planning to design a value stream;
- Medium-term planning for balancing the production;
- Short-term planning for production control.
2.2. Digital Shadow
- the object of observation is a physical object in real space;
- the above is represented by a virtual object in virtual space;
- both objects are connected directly by a bidirectional data and information flow [29].
3. Methodological Approach
4. Design Model and Dimensions
4.1. Expert Survey Findings
4.2. Development of the Design Model
5. Refinement of the Design Elements
5.1. Physical Layer
5.1.1. Value Stream
5.1.2. Use Case Value Stream Management
5.1.3. Data Acquisition
5.2. Virtual Layer
5.2.1. Data Historization
5.2.2. Data Modeling
Conceptual Data Model
Logical Data Model
Physical Data Model
- establish a connection to the IT system,
- select and retrieve data points,
- establish connection to the database of the physical data model,
- insert data into the database.
5.2.3. Data Processing
- Accuracy evaluates the extent to which data are reliable and proven to be without errors [64].
- Completeness considers whether a data set contains all necessary data to reflect the state of the object under consideration [65].
- Consistency refers to the injury of semantic rules, which are defined for a set of data elements [66].
- Relevance evaluates whether the available data types meet the requirements of the intended use [65].
- Temporary changes, e.g., due to the implementation of a new technology, which results in a reduction in the cycle time or causes a short-term loss of quality.
- Seasonal changes, e.g., due to seasonal fluctuations in customer demand, which require an adjustment of production capacities.
- Cyclical patterns, e.g., due to personnel-related fluctuations in processing times within a process step.
5.3. Connection Layer
5.3.1. Connection: Physical/Virtual
- A communication protocol ensures interoperability between devices, machines and systems.
- Security is an important decision criterion for Industry 4.0 technologies. Therefore, the selected communication standard must support established security mechanisms such as encryption, authentication and access protocols to ensure data integrity.
- In addition, scalability is elementary to handle the growing number of devices and data traffic.
- Depending on the application area, different requirements are placed on the speed and latency of data transmission. Real-time requirements might be a factor influencing the choice of communication protocol.
- To guarantee smooth data transmission, integration with existing IT systems should be possible without any problems.
- Finally, the costs for implementing and operating the communication standard must be considered regarding an economically viable solution.
5.3.2. Connection: Virtual/Physical
- Processes and their connections;
- Process performance, such as individual process parameters like cycle times, lead time or capacity utilization;
- Inventory, by visualizing the inventory levels in the different process connections;
- Production dynamics, by highlighting the current bottleneck or disruptions occurring in production.
6. Application of Design Guidelines at Different Learning Factories
6.1. Physical Layer
6.2. Virtual Layer
6.3. Connection Layer
7. Discussion of Results
8. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adolph, S.; Tisch, M.; Metternich, J. Challenges and Approaches to Competency Development for Future Production. J. Int. Sci. Publ. 2014, 12, 1001–1010. [Google Scholar]
- Lugert, A.; Völker, K.; Winkler, H. Dynamization of Value Stream Management by technical and managerial approach. Procedia CIRP 2018, 72, 701–706. [Google Scholar] [CrossRef]
- Frick, N.; Urnauer, C.; Metternich, J. Echtzeitdaten für das Wertstrommanagement. Z. Für Wirtsch. Fabr. 2020, 115, 220–224. [Google Scholar] [CrossRef]
- Hämmerle, M. Wertschöpfung steigern: Ergebnisse der Datenerhebung Über die Verbreitung und Ausgestaltung von Methoden zur Prozessoptimierung in der Produktion mit besonderem Fokus auf die Wertstrommethode; Fraunhofer Verl.: Stuttgart, Germany, 2010; ISBN 9783839601198. [Google Scholar]
- DIN ISO 22468; Wertstrommethode (VSM). DIN Deutsches Institut für Normung e.V.: Berlin, Germany; Beuth-Verlag: Berlin, Germany, 2020.
- Erlach, K. Wertstromdesign: Der Weg zur Schlanken Fabrik, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2020; ISBN 978-3-662-58906-9. [Google Scholar]
- Forno, A.J.D.; Pereira, F.A.; Forcellini, F.A.; Kipper, L.M. Value Stream Mapping: A study about the problems and challenges found in the literature from the past 15 years about application of Lean tools. Int. J. Adv. Manuf. Technol. 2014, 72, 779–790. [Google Scholar] [CrossRef]
- Winkler, H.; Lugert, A. Die Wertstrommethode im Zeitalter von Industrie 4.0: Studienreport; BTU Brandenburgische Technische Universität Cottbus-Senftenberg: Cottbus, Germany, 2017. [Google Scholar]
- Lödding, H.; Mundt, C.; Winter, M.; Heuer, T.; Hübner, M.; Seitz, M.; Schmidhuber, M.; Maibaum, J.; Bank, L.; Roth, S.; et al. PPS-Report 2019: Studienergebnisse, 1st ed.; TEWISS: Garbsen, Germany, 2020; ISBN 978-3-95900-402-2. [Google Scholar]
- Urnauer, C.; Metternich, J. Die digitale Wertstrommethode. Z. Für Wirtsch. Fabr. 2019, 114, 855–858. [Google Scholar] [CrossRef]
- Ciano, M.P.; Dallasega, P.; Orzes, G.; Rossi, T. One-to-one relationships between Industry 4.0 technologies and Lean Production techniques: A multiple case study. Int. J. Prod. Res. 2021, 59, 1386–1410. [Google Scholar] [CrossRef]
- Dillinger, F.; Tropschuh, B.; Dervis, M.Y.; Reinhart, G. A Systematic Approach to Identify the Interdependencies of Lean Production and Industry 4.0 Elements. Procedia CIRP 2022, 112, 85–90. [Google Scholar] [CrossRef]
- Erlach, K.; Böhm, M.; Gessert, S.; Hartleif, S.; Teriete, T.; Ungern-Sternberg, R. Die zwei Wege der Wertstrommethode zur Digitalisierung: Datenwertstrom und WertstromDigital als Stoßrichtungen der Forschung für die digitalisierte Produktion. Z. Für Wirtsch. Fabr. 2021, 116, 940–944. [Google Scholar] [CrossRef]
- Langlotz, P.; Aurich, J.C. Causal and temporal relationships within the combination of Lean Production Systems and Industry 4.0. Procedia CIRP 2021, 96, 236–241. [Google Scholar] [CrossRef]
- Mayr, A.; Weigelt, M.; Kühl, A.; Grimm, S.; Erll, A.; Potzel, M.; Franke, J. Lean 4.0—A conceptual conjunction of lean management and Industry 4.0. Procedia CIRP 2018, 72, 622–628. [Google Scholar] [CrossRef]
- Dillinger, F.; Bergermeier, J.; Reinhart, G. Implications of Lean 4.0 Methods on Relevant Target Dimensions: Time, Cost, Quality, Employee Involvement, and Flexibility. Procedia CIRP 2022, 107, 202–208. [Google Scholar] [CrossRef]
- Florescu, A.; Barabas, S. Development Trends of Production Systems through the Integration of Lean Management and Industry 4.0. Appl. Sci. 2022, 12, 4885. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Y. Advances and hotspots analysis of value stream mapping using bibliometrics. Int. J. Lean Six Sigma 2023, 14, 190–208. [Google Scholar] [CrossRef]
- Ortega, I.U.; Amrani, A.Z.; Vallespir, B. Modeling: Integration of Lean and Technologies of Industry 4.0 for Enterprise Performance. IFAC-PapersOnLine 2022, 55, 2067–2072. [Google Scholar] [CrossRef]
- Pereira, A.; Dinis-Carvalho, J.; Alves, A.; Arezes, P. How Industry 4.0 can enhance Lean practices. FME Trans. 2019, 47, 810–822. [Google Scholar] [CrossRef]
- Frick, N.; Metternich, J. The Digital Value Stream Twin. Systems 2022, 10, 102. [Google Scholar] [CrossRef]
- Benfer, M.; Peukert, S.; Lanza, G. A Framework for Digital Twins for Production Network Management. Procedia CIRP 2021, 104, 1269–1274. [Google Scholar] [CrossRef]
- D’Amico, D.; Ekoyuncu, J.; Addepalli, S.; Smith, C.; Keedwell, E.; Sibson, J.; Penver, S. Conceptual framework of a digital twin to evaluate the degradation status of complex engineering systems. Procedia CIRP 2019, 86, 61–67. [Google Scholar] [CrossRef]
- Scheer, A.-W. Prozessorientierte Unternehmensmodellierung: Grundlagen—Werkzeuge—Anwendungen; Betriebswirtschaftlicher Verlag Dr. Th. Gabler GmbH: Wiesbaden, Germany, 1994; ISBN 978-3-409-17925-6. [Google Scholar]
- Patzak, G. Systemtechnik—Planung Komplexer Innovativer Systeme: Grundlagen, Methoden, Techniken, 1st ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1982; ISBN 3-540-11783-0. [Google Scholar]
- Lugert, A. Dynamisches Wertstrommanagement im Kontext von Industrie 4.0; Logos Berlin: Berlin, Germany, 2019; ISBN 3832548491. [Google Scholar]
- Negri, E.; Fumagalli, L.; Macchi, M. A Review of the Roles of Digital Twin in CPS-based Production Systems. Procedia Manuf. 2017, 11, 939–948. [Google Scholar] [CrossRef]
- Stark, R.; Damerau, T. Digital Twin. In CIRP Encyclopedia of Production Engineering; Chatti, S., Tolio, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–8. ISBN 978-3-642-35950-7. [Google Scholar]
- Kritzinger, W.; Karner, M.; Traar, G.; Henjes, J.; Sihn, W. Digital Twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine 2018, 51, 1016–1022. [Google Scholar] [CrossRef]
- Bauernhansl, T.; Hartleif, S.; Felix, T. The Digital Shadow of production—A concept for the effective and efficient information supply in dynamic industrial environments. Procedia CIRP 2018, 72, 69–74. [Google Scholar] [CrossRef]
- Schuh, G.; Walendzik, P.; Luckert, M.; Birkmeier, M.; Weber, A.; Blum, M. Keine Industrie 4.0 ohne den Digitalen Schatten: Wie Unternehmen die notwendige Datenbasis schaffen. Z. Wirtsch. Fabr. 2016, 111, 745–748. [Google Scholar] [CrossRef]
- Coronado, P.D.U.; Lynn, R.; Louhichi, W.; Parto, M.; Wescoat, E.; Kurfess, T. Part data integration in the Shop Floor Digital Twin: Mobile and cloud technologies to enable a manufacturing execution system. J. Manuf. Syst. 2018, 48, 25–33. [Google Scholar] [CrossRef]
- ISO 23247-1:2021; Automation Systems and Integration—Digital Twin Framework for Manufacturing: Part 1: Overview and General Principles. International Organization for Standardization: Geneva, Switzerland, 2021.
- Kunath, M.; Winkler, H. Integrating the Digital Twin of the manufacturing system into a decision support system for improving the order management process. Procedia CIRP 2018, 72, 225–231. [Google Scholar] [CrossRef]
- Onaji, I.; Tiwari, D.; Soulatiantork, P.; Song, B.; Tiwari, A. Digital twin in manufacturing: Conceptual framework and case studies. Int. J. Comput. Integr. Manuf. 2022, 35, 831–858. [Google Scholar] [CrossRef]
- Pause, D.; Blum, M. Conceptual Design of a Digital Shadow for the Procurement of Stocked Products. In Advances in Production Management Systems. Smart Manufacturing for Industry 4.0; Moon, I., Lee, G.M., Park, J., Kiritsis, D., von Cieminski, G., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 288–295. ISBN 978-3-319-99706-3. [Google Scholar]
- Ricondo, I.; Porto, A.; Ugarte, M. A digital twin framework for the simulation and optimization of production systems. Procedia CIRP 2021, 104, 762–767. [Google Scholar] [CrossRef]
- Uhlemann, T.H.-J.; Lehmann, C.; Steinhilper, R. The Digital Twin: Realizing the Cyber-Physical Production System for Industry 4.0. Procedia CIRP 2017, 61, 335–340. [Google Scholar] [CrossRef]
- Guo, H.; Chen, M.; Mohamed, K.; Qu, T.; Wang, S.; Li, J. A digital twin-based flexible cellular manufacturing for optimization of air conditioner line. J. Manuf. Syst. 2021, 58, 65–78. [Google Scholar] [CrossRef]
- Magnanini, M.C.; Melnychuk, O.; Yemane, A.; Strandberg, H.; Ricondo, I.; Borzi, G.; Colledani, M. A Digital Twin-based approach for multi-objective optimization of short-term production planning. IFAC-PapersOnLine 2021, 54, 140–145. [Google Scholar] [CrossRef]
- Schuh, G.; Kelzenberg, C.; Wiese, J.; Kessler, N. Creation of digital production twins for the optimization of value creation in single and small batch production. Procedia CIRP 2020, 93, 222–227. [Google Scholar] [CrossRef]
- Jeon, S.M.; Schuesslbauer, S. Digital Twin Application for Production Optimization. In Proceedings of the 2020 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, 14–17 December 2020; IEEE: New York, NY, USA, 2020; pp. 542–545, ISBN 978-1-5386-7220-4. [Google Scholar]
- Lu, Y.; Liu, Z.; Min, Q. A digital twin-enabled value stream mapping approach for production process reengineering in SMEs. Int. J. Comput. Integr. Manuf. 2021, 34, 764–782. [Google Scholar] [CrossRef]
- Eurostat. Kleine und Mittlere Unternehmen (KMU). Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Enterprise_size/de (accessed on 19 September 2023).
- Rother, M.; Shook, J. Learning to See: Value Stream Mapping to Add Value and Eliminate Muda; Lean Enterprise Institute: Brookline, MA, USA, 1999. [Google Scholar]
- Urnauer, C. Data Analytics in der Analyse und Gestaltung von Wertströmen; Shaker Verlag: Düren, Germany, 2023. [Google Scholar]
- Urnauer, C.; Rudolph, L.; Metternich, J. Evaluation of Clustering Approaches and Proximity Measures for Product Familiy Identification. Procedia CIRP 2023, in press. [Google Scholar]
- Frick, N.; Reintke, M.; Metternich, J. Wertstrommanagement im Zeitalter dynamischer Produktionssysteme: Aufgaben und Herausforderungen—Ein Blick aus der Praxis. Z. Für Wirtsch. Fabr. 2023, 118, 400–405. [Google Scholar] [CrossRef]
- ISO 8000-2:2022; ISO 8000-2 Data Quality—Part. 2: Vocabulary. 5th ed. International Organization for Standardization: Geneva, Switzerland, 2022.
- Felderer, M.; Russo, B.; Auer, F. On Testing Data-Intensive Software Systems. In Security and Quality in Cyber-Physical Systems Engineering; Biffl, S., Eckhart, M., Lüder, A., Weippl, E., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 129–148. ISBN 978-3-030-25311-0. [Google Scholar]
- Metternich, J.; Meudt, T.; Hartmann, L. Wertstrom 4.0: Wertstromanalyse und Wertstromdesign für eine Schlanke, Digitale Auftragsabwicklung; Hanser: München, Germany, 2022; ISBN 978-3-446-47229-7. [Google Scholar]
- Uhlemann, T.H.-J.; Schock, C.; Lehmann, C.; Freiberger, S.; Steinhilper, R. The Digital Twin: Demonstrating the Potential of Real Time Data Acquisition in Production Systems. Procedia Manuf. 2017, 9, 113–120. [Google Scholar] [CrossRef]
- Stanula, P.; Ziegenbein, A.; Metternich, J. Machine learning algorithms in production: A guideline for efficient data source selection. Procedia CIRP 2018, 78, 261–266. [Google Scholar] [CrossRef]
- Herstätter, P.; Wildbolz, T.; Hulla, M.; Ramsauer, C. Data acquisition to enable Research, Education and Training in Learning Factories and Makerspaces. Procedia Manuf. 2020, 45, 289–294. [Google Scholar] [CrossRef]
- Heuer, A.; Saake, G.; Sattler, K.-U. Datenbanken Kompakt: Entwurf von Datenbanken; Einführung in SQL; Anwendungsentwicklung und Internet-Anbindung; Online-Shop als durchgängige, praxisnahe Beispielanwendung, korr. Nachdruck; mitp-Verl.: Bonn, Germany, 2002; ISBN 3826607155. [Google Scholar]
- Geisler, F. Datenbanken—Grundlagen und Design; Verlagsgruppe Hüthig Jehle Rehm: Berlin, Germany, 2011; ISBN 9783826684821. [Google Scholar]
- Becker, J.; Probandt, W.; Vering, O. Grundsätze Ordnungsmäßiger Modellierung: Konzeption und Praxisbeispiel für ein Effizientes Prozessmanagement; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 978-3-642-30411-8. [Google Scholar]
- Elmasri, R.; Navathe, S. Grundlagen von Datenbanksystemen, 1st ed.; Pearson Studium: München, Germany, 2002; ISBN 3827370213. [Google Scholar]
- Hübner, C.; Suchold, N.; Alex, J.; Thron, M.; Zipper, H.; Rieger, L. Offene Plattform für die Prozessoptimierung—Digitaler Zwilling im Wassermanagement 4.0—Effiziente Lösungen durch Modellierung und Simulation. In VDI-Berichte Nr. 2330; Verband deutscher Ingenieure, Ed.; VDI Verlag: Duesseldorf, Germany, 2018; pp. 493–502. ISBN 9783181023303. [Google Scholar]
- Ellgass, W.; Holt, N.; Saldana-Lemus, H.; Richmond, J.; Barenji, A.V.; Gonzalez-Badillo, G. A Digital Twin Concept for Manufacturing Systems. In Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition, Pittsburgh, PA, USA, 9–15 November 2018; pp. 1–9. [Google Scholar]
- Petrik, D.; Mormul, M.; Reimann, P.; Gröger, C. Anforderungen für Zeitreihendatenbanken im industriellen IoT. In IoT—Best Practices; Meinhardt, S., Wortmann, F., Eds.; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2021; pp. 339–377. ISBN 978-3-658-32438-4. [Google Scholar]
- Timescale Inc. Why Timescale? Built for Developers, Trusted by Businesses: A PostgreSQL Cloud Platform Engineered for Your Most Demanding Data Needs. Built for Scale, Speed, and Savings. Available online: https://www.timescale.com/products#enjoyPostgres (accessed on 1 August 2023).
- Schneider, M. TimeScaleDB vs. influxDB: Zeitreihendatenbanken für das IIoT. Available online: https://www.inovex.de/de/blog/timescaledb-vs-influxdb-zeitreihen-iiot/#:~:text=TimescaleDB%20ist%20eine%20Erweiterung%20(Plugin,auch%20nach%20Merkmalen%20segmentiert%20ab (accessed on 1 August 2023).
- Wang, R.Y.; Strong, D.M. Beyond Accuracy: What Data Quality Means to Data Consumers. J. Manag. Inf. Syst. 1996, 12, 5–33. [Google Scholar] [CrossRef]
- Wand, Y.; Wang, R.Y. Anchoring data quality dimensions in ontological foundations. Commun. ACM 1996, 39, 86–95. [Google Scholar] [CrossRef]
- Batini, C.; Cappiello, C.; Francalanci, C.; Maurino, A. Methodologies for Data Quality Assessment and Improvement. ACM Comput. Surv. 2009, 41, 1–52. [Google Scholar] [CrossRef]
- Fleischer, J.; Klee, B.; Spohrer, A.; Merz, S. Leitfaden Sensorik für Industrie 4.0: Wege zum kostengünstigen Sensorsystem; VDMA Forum Industrie: Frankfurt am Main, Germany, 2018. [Google Scholar]
- Petrevska, E. TCP-Basierte Kommunikationsprotokolle als Schlüsseltechnologien für das IioT. 2021. Available online: https://www.pepperl-fuchs.com/germany/de/44926.htm (accessed on 27 July 2023).
- Al-Masri, E.; Kalyanam, K.R.; Batts, J.; Kim, J.; Singh, S.; Vo, T.; Yan, C. Investigating Messaging Protocols for the Internet of Things (IoT). IEEE Access 2020, 8, 94880–94911. [Google Scholar] [CrossRef]
- Silva, D.; Carvalho, L.I.; Soares, J.; Sofia, R.C. A Performance Analysis of Internet of Things Networking Protocols: Evaluating MQTT, CoAP, OPC UA. Appl. Sci. 2021, 11, 4879. [Google Scholar] [CrossRef]
- Babel, W. Internet of Things und Industrie 4.0, 1st ed.; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2023; ISBN 9783658399016. [Google Scholar]
- Ulich, E. Arbeitspsychologie, 6th ed.; vdf Hochschulverlag AG an der ETH Zürich: Zürich, Switzerland, 2005; Available online: http://scans.hebis.de/HEBCGI/show.pl?13318868_vlg.pdf (accessed on 17 October 2023).
- Partsch, H.A. Requirements-Engineering Systematisch: Modellbildung für Softwaregestützte Systeme; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 978-3-642-05357-3. [Google Scholar]
- Ebert, C. Systematisches Requirements Engineering: Anforderungen Ermitteln, Spezifizieren, Analysieren und Verwalten, 5th ed.; Dpunkt-Verlag: Heidelberg, Germany, 2014; ISBN 9783864901393. [Google Scholar]
Source | Industry 4.0 Technologies | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Vertical Integration | Analytics | Big Data | Digital Shadow/Twin | Horizontal Integration | Auto-ID | Cyberphysical Systems | Real-Time Data | Cloud Computing | Simulation | ||
Ciano et al. (2021) | [11] | ● | |||||||||
Dillinger et al. (2022) | [12] | ● | ● | ● | ● | ● | ● | ● | ● | ● | |
Erlach et al. (2021) | [13] | ● | ● | ||||||||
Langlotz and Aurich (2021) | [14] | ● | |||||||||
Mayr et al. (2018) | [15] | ● | ● | ● | ● | ● | ● | ● | |||
Dillinger et al. (2022) | [16] | ● | ● | ● | ● | ||||||
Florescu and Barabas (2022) | [17] | ● | ● | ● | ● | ● | ● | ||||
Liu and Zhang (2023) | [18] | ● | ● | ● | |||||||
Ortega et al. (2022) | [19] | ● | ● | ● | |||||||
Pereira et al. (2022) | [20] | ● | ● | ● | |||||||
∑ | 3 | 4 | 6 | 8 | 2 | 3 | 2 | 4 | 3 | 4 |
No. | Design Guideline |
---|---|
1.1.1 | The considered product family is defined. |
1.1.2 | The value stream is explicitly separated. |
1.2.1 | The use case for the digital twin in value stream management is determined. |
1.2.2 | The relevant data are derived from the use case and specified for each process step. |
1.3.1 | The data stored in existing IT systems are defined and the storage location for each data point is determined. |
1.3.2 | The data acquired by multimodal data acquisition are defined and the acquisition type of each data point is determined. |
No. | Design Guideline | |
---|---|---|
2.1.1 | The sampling rate and acquisition type are defined for each data point and limited to the necessary minimum. | |
2.1.2 | The specific storage location is uniquely named for each data point. | |
2.1.3 | Each data point acquired is provided with a unique time stamp. | |
2.2.1 | The entities of the value stream are identified and unambiguously labelled. | Conceptual DM |
2.2.2 | The relationships between the entities are defined. | |
2.2.3 | The entity types are subdivided and grouped by generalization and specialization. | |
2.2.4 | The relevant attributes of the entities are systematized. | |
2.2.5 | The unique identifying attributes are defined as primary keys. | Logical DM |
2.2.6 | Further relationships are described by foreign keys. | |
2.2.7 | The data types of the attributes are specified. | |
2.2.8 | Redundant data are avoided by normalization. | |
2.2.9 | The database management system and the database client are selected and installed. | Physical DM |
2.2.10 | The logical data model is transferred to the data base language. | |
2.2.11 | The database connects the existing IT systems and the visualization tool. | |
2.3.1 | Data cleansing and pre-processing is based on the five dimensions of data quality. | |
2.3.2 | Descriptive data exploration and analysis is applied to gain a thorough understanding of the data. | |
2.3.3 | The identification of changes, seasonalities or cyclic patterns is achieved through time series analysis. |
No. | Design Guideline |
---|---|
3.1.1 | Communication technologies are selected on an application-specific basis according to their technical characteristics. |
3.1.2 | A standardized communication protocol is used for each data point. |
3.2.1 | Software requirements are specified using the HTO approach. |
3.2.2 | Systematic weighting of the requirements ensures the selection of the visualization software. |
3.2.3 | Software solutions are identified using defined search criteria. |
3.2.4 | The evaluation results in the selection of the most suitable software solution. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frick, N.; Terwolbeck, J.; Seibel, B.; Metternich, J. Design Model for the Digital Shadow of a Value Stream. Systems 2024, 12, 20. https://doi.org/10.3390/systems12010020
Frick N, Terwolbeck J, Seibel B, Metternich J. Design Model for the Digital Shadow of a Value Stream. Systems. 2024; 12(1):20. https://doi.org/10.3390/systems12010020
Chicago/Turabian StyleFrick, Nicholas, Jan Terwolbeck, Benjamin Seibel, and Joachim Metternich. 2024. "Design Model for the Digital Shadow of a Value Stream" Systems 12, no. 1: 20. https://doi.org/10.3390/systems12010020
APA StyleFrick, N., Terwolbeck, J., Seibel, B., & Metternich, J. (2024). Design Model for the Digital Shadow of a Value Stream. Systems, 12(1), 20. https://doi.org/10.3390/systems12010020