Bidding Evaluation and Contractor Selection Using Balance Index Model and Comprehensive Input Efficiency Based on Data Envelopment Analysis
Abstract
:1. Introduction
2. Literature Review
2.1. Application Research of DEA in Bid Evaluation
2.2. Contractor Selection Criteria
3. Methodology
3.1. Basic Model of DEA
3.2. Cross-Evaluation Mechanism
3.3. Balance Index Model
3.4. Comprehensive Input Efficiency Model
4. Case Study
4.1. General Information of the Bidding Project
4.2. Implementation of Comprehensive Bid Evaluation Mechanism
- (1)
- Comprehensive evaluation index system
- (2)
- Comprehensive scoring mechanism and evaluation results
- (3)
- Comprehensive score result
4.3. Improvement of Comprehensive Bid Evaluation Mechanism
- (1)
- Index system conversion and data process
- (2)
- Comprehensive bid evaluation analysis based on DEA
- (3)
- Analysis of evaluation results
5. Conclusions and Discussions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ye, K.; Li, B.; Shen, L. Key Factors Considered in Compiling Tender Prices for China’s Public Works Projects. J. Manag. Eng. 2013, 29, 206–215. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Watanabe, T. The Impact of Project Organizational Culture on the Performance of Construction Projects. Sustainability 2017, 9, 781. [Google Scholar] [CrossRef] [Green Version]
- Birjandi, A.K.; Akhyani, F.; Sheikh, R.; Sankar Sana, S. Evaluation and selecting the contractor in bidding with incomplete information using MCGDM method. Soft Comput. 2019, 23, 10569–10585. [Google Scholar] [CrossRef]
- Yu, W.-D.; Chang, H.-K.; Hsu, Y.-Y.; Cheng, S.T. Pretendering decision model for contractor selection of public procurement projects. J. Constr. Eng. Manag. 2020, 146, 04020126. [Google Scholar] [CrossRef]
- Radzi, A.R.; Rahman, R.A.; Doh, S.I.; Esa, M. Construction Readiness for Highway Projects: Key Decision Criteria. J. Constr. Eng. Manag. 2022, 148, 04021196. [Google Scholar] [CrossRef]
- Idrees, S.M.; Eid, M.S.; Awwad, R. Impact of Altering the Bid Selection Method to Below-Average Method: An Agent-Based Modeling Approach. J. Manag. Eng. 2023, 39, 04023003. [Google Scholar] [CrossRef]
- Yu, W.-D.; Wang, K.-W. Best Value or Lowest Bid? A Quantitative Perspective. J. Constr. Eng. Manag. 2012, 138, 128–134. [Google Scholar]
- Cheaitou, A.; Larbi, R.; Al Housani, B. Decision making framework for tender evaluation and contractor selection in public organizations with risk considerations. Socio-Econ. Plan. Sci. 2018, 68, 100620. [Google Scholar] [CrossRef]
- Mbachu, J. Conceptual framework for the assessment of subcontractors’ eligibility and performance in the construction industry. Constr. Manag. Econ. 2008, 26, 471–484. [Google Scholar] [CrossRef]
- Horta, I.M.; Camanho, A.S.; Lima, A.F. Design of Performance Assessment System for Selection of Contractors in Construction Industry E-Marketplaces. J. Constr. Eng. Manag. 2013, 139, 910–917. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Shiue, F.-J.; Zheng, M.-C.; Chang, Y.-C. Integrating value estimation and simulation for contractor selection. Autom. Constr. 2020, 119, 103340. [Google Scholar] [CrossRef]
- Semaan, N.; Salem, M. A deterministic contractor selection decision support system for competitive bidding. Eng. Constr. Archit. Manag. 2017, 24, 61–77. [Google Scholar] [CrossRef]
- Liu, B.; Huo, T.; Liao, P.; Gong, J.; Xue, B. A Group Decision-Making Aggregation Model for Contractor Selection in Large Scale Construction Projects Based on Two-Stage Partial Least Squares (PLS) Path Modeling. Group Decis. Negot. 2015, 24, 855–883. [Google Scholar] [CrossRef]
- Liu, B.; Huo, T.; Liao, P.; Yuan, J.; Sun, J.; Hu, X. A special Partial Least Squares (PLS) path decision modeling for bid evaluation of large construction projects. KSCE J. Civ. Eng. 2017, 21, 579–592. [Google Scholar] [CrossRef]
- Liu, B.; Yang, X.; Huo, T.; Shen, G.Q.; Wang, X. A linguistic group decision-making framework for bid evaluation in mega public projects considering carbon dioxide emissions reduction. J. Clean. Prod. 2017, 148, 811–825. [Google Scholar] [CrossRef]
- Aldamak, A.; Zolfaghari, S. Review of efficiency ranking methods in data envelopment analysis. Measurement 2017, 106, 161–172. [Google Scholar] [CrossRef]
- Nahangi, M.; Chen, Y.T.; McCabe, B. Safety-based efficiency evaluation of construction sites using data envelopment analysis (DEA). Saf. Sci. 2019, 113, 382–388. [Google Scholar] [CrossRef]
- El-Mashaleh, M.S.; Rababeh, S.M.; Hyari, K.H. Utilizing data envelopment analysis to benchmark safety performance of construction contractors. Int. J. Proj. Manag. 2010, 28, 61–67. [Google Scholar] [CrossRef]
- Martin, H.; Koylass, J.; Welch, F. An exploration of the consistency limits of the analytical hierarchy process and its impact on contractor selection. Int. J. Constr. Manag. 2018, 18, 14–25. [Google Scholar] [CrossRef]
- Koc, K.; Okudan, O. Assessment of Life Cycle Risks of Deconstruction in Urban Regeneration Projects. J. Constr. Eng. Manag. 2021, 147, 04021137. [Google Scholar] [CrossRef]
- Elsayegh, A.; El-adaway, I.H. Collaborative Planning Index: A Novel Comprehensive Benchmark for Collaboration in Construction Projects. J. Manag. Eng. 2021, 37, 04021057. [Google Scholar] [CrossRef]
- Hasnain, M.; Thaheem, M.J.; Ullah, F. Best Value Contractor Selection in Road Construction Projects: ANP-Based Decision Support System. Int. J. Civ. Eng. 2018, 16, 695–714. [Google Scholar] [CrossRef]
- Al Subaie, A.A.; Faisal, M.N.; Sabir, L.B. ISO 21500 and the Sustainability Focused ANP-BOCR Framework for Subcontractor Selection in Megaprojects. Proj. Manag. J. 2023, 17. [Google Scholar] [CrossRef]
- Tomczak, M.; Jaśkowski, P. Application of Type-2 Interval Fuzzy Sets to Contractor Qualification Process. KSCE J. Civ. Eng. 2018, 22, 2702–2713. [Google Scholar] [CrossRef]
- Martin, H.; Ramjarrie, K. Cloud Contractor Selection Model for Design-Build Open Tender. J. Constr. Eng. Manag. 2021, 147, 04021020. [Google Scholar] [CrossRef]
- Taylan, O.; Kabli, M.R.; Porcel, C.; Herrera-Viedma, E. Contractor Selection for Construction Projects Using Consensus Tools and Big Data. Int. J. Fuzzy Syst. 2018, 20, 1267–1281. [Google Scholar] [CrossRef]
- Plebankiewicz, E.; Kubek, D. Multicriteria Selection of the Building Material Supplier Using AHP and Fuzzy AHP. J. Constr. Eng. Manag. 2016, 142, 04015057. [Google Scholar] [CrossRef]
- Guo, D.; Wu, J. A complete ranking of DMUs with undesirable outputs using restrictions in DEA models. Math. Comput. Model. 2013, 58, 1102–1109. [Google Scholar] [CrossRef]
- Inti, S.; Tandon, V. Integration of Data Envelopment Analysis-Based Preference Aggregation Method and α Particle Swarm Optimization Technique into Group Decision Model. J. Comput. Civ. Eng. 2017, 31, 1–12. [Google Scholar] [CrossRef]
- Liu, S.-T. A DEA ranking method based on cross-efficiency intervals and signal-to-noise ratio. Ann. Oper. Res. 2018, 261, 207–232. [Google Scholar] [CrossRef]
- Wen, Y.; An, Q.; Xu, X.; Chen, Y. Selection of Six Sigma project with interval data: Common weight DEA model. Kybernetes 2018, 47, 1307–1324. [Google Scholar] [CrossRef]
- Ang, S.; Chen, M.; Yang, F. Group cross-efficiency evaluation in data envelopment analysis: An application to Taiwan hotels. Comput. Ind. Eng. 2018, 125, 190–199. [Google Scholar] [CrossRef]
- Talluri, S. A buyer–seller game model for selection and negotiation of purchasing bids. Eur. J. Oper. Res. 2002, 143, 171–180. [Google Scholar] [CrossRef]
- Chetan, T.G.; Jenamani, M.; Sarmah, S.P. Iterative Multi-Attribute Procurement Auction with Decision Support for Bid Formulation. Asia-Pac. J. Oper. Res. 2022, 39, 2150036. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, W.G.; Wu, Y. Bid evaluation decision for major project based on analytic hierarchy process and data envelopment analysis cross-efficiency model. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 3639–3647. [Google Scholar] [CrossRef]
- Yang, J.B.; Wang, H.-H.; Wang, W.-C.; Ma, S.-M. Using Data Envelopment Analysis to Support Best-Value Contractor Selection. J. Civ. Eng. Manag. 2016, 22, 199–209. [Google Scholar] [CrossRef]
- Watt, D.J.; Kayis, B.; Willey, K. The relative importance of tender evaluation and contractor selection criteria. Int. J. Proj. Manag. 2010, 28, 51–60. [Google Scholar] [CrossRef]
- Cristóbal, J.R.S. Contractor Selection Using Multicriteria Decision-Making Methods. J. Constr. Eng. Manag. 2012, 138, 751–758. [Google Scholar] [CrossRef]
- Alhumaidi, H.M. Construction Contractors Ranking Method Using Multiple Decision-Makers and Multiattribute Fuzzy Weighted Average. J. Constr. Eng. Manag. 2015, 141, 04014092. [Google Scholar] [CrossRef]
- El-Abbasy, M.S.; Zayed, T.; Ahmed, M.; Alzraiee, H. Contractor Selection Model for Highway Projects Using Integrated Simulation and Analytic Network Process. J. Constr. Eng. Manag. 2013, 139, 755–767. [Google Scholar] [CrossRef]
- Chen, Z.S.; Zhang, X.; Rodríguez, R.M.; Pedrycz, W.; Martínez, L. Expertise-based bid evaluation for construction-contractor selection with generalized comparative linguistic ELECTRE III. Autom. Constr. 2021, 125, 103578. [Google Scholar] [CrossRef]
- Chen, Z.S.; Zhang, X.; Pedrycz, W.; Wang, X.-J.; Skibniewski, M.J. Bid evaluation in civil construction under uncertainty: A two-stage LSP-ELECTRE III-based approach. Eng. Appl. Artif. Intell. 2020, 94, 103835. [Google Scholar] [CrossRef]
- Watt, D.J.; Kayis, B.; Willey, K. Identifying key factors in the evaluation of tenders for projects and services. Int. J. Proj. Manag. 2009, 27, 250–260. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, H.; He, Y. A System for Tender Price Evaluation of Construction Project Based on Big Data. Procedia Eng. 2015, 123, 606–614. [Google Scholar] [CrossRef] [Green Version]
- Hatush, Z.; Skitmore, M. Contractor selection using multicriteria utility theory: An additive model. Build. Environ. 1998, 33, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Jaskowski, P.; Biruk, S.; Bucon, R. Assessing contractor selection criteria weights with fuzzy AHP method application in group decision environment. Autom. Constr. 2010, 19, 120–126. [Google Scholar] [CrossRef]
- Marzouk, M.M.; El Kherbawy, A.A.; Khalifa, M. Factors influencing sub-contractors selection in construction projects. HBRC J. 2013, 9, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Lai, K.K.; Liu, S.L.; Wang, S.Y. A method used for evaluating bids in the chinese construction industry. Int. J. Proj. Manag. 2004, 22, 193–201. [Google Scholar] [CrossRef]
- El-Sayegh, S.M. Multi-criteria decision support model for selecting the appropriate construction management at risk firm. Constr. Manag. Econ. 2009, 27, 385–398. [Google Scholar] [CrossRef]
- Hosseini Nasab, H.; Ghamsarian, M.M. A fuzzy multiple-criteria decision-making model for contractor prequalification. J. Decis. Syst. 2015, 24, 433–448. [Google Scholar] [CrossRef]
- Afshar, M.R.; Alipouri, Y.; Sebt, M.H.; Chan, W.T. A type-2 fuzzy set model for contractor prequalification. Autom. Constr. 2017, 84, 356–366. [Google Scholar] [CrossRef]
- Singh, D.; Tiong, R.L.K. Contractor Selection Criteria: Investigation of Opinions of Singapore Construction Practitioners. J. Constr. Eng. Manag. 2006, 132, 998–1008. [Google Scholar] [CrossRef]
- Hatush, Z.; Skitmore, M. Evaluating contractor prequalification data: Selection criteria and project success factors. Constr. Manag. Econ. 1997, 15, 129–147. [Google Scholar] [CrossRef] [Green Version]
- Rashvand, P.; Majid, M.Z.A.; Pinto, J.K. Contractor management performance evaluation model at prequalification stage. Expert Syst. Appl. 2015, 42, 5087–5101. [Google Scholar] [CrossRef]
- Tiong, R.L.K.; Alum, J. Evaluation of proposals for BOT projects. Int. J. Proj. Manag. 1997, 15, 67–72. [Google Scholar] [CrossRef]
- Holt, G.D.; Olomolaiye, P.O.; Harris, F.C. Factors influencing U.K. construction clients’ choice of contractor. Build. Environ. 1994, 29, 241–248. [Google Scholar]
- Nieto-Morote, A.; Ruz-Vila, F. A fuzzy multi-criteria decision-making model for construction contractor prequalification. Autom. Constr. 2012, 25, 8–19. [Google Scholar] [CrossRef] [Green Version]
- Mahdi, I.M.; Riley, M.J.; Fereig, S.M.; Alex, A.P. A multi-criteria approach to contractor selection. Eng. Constr. Archit. Manag. 2002, 9, 29–37. [Google Scholar]
- Sarkis, J.; Meade, L.M.; Presley, A.R. Incorporating sustainability into contractor evaluation and team formation in the built environment. J. Clean. Prod. 2012, 31, 40–53. [Google Scholar] [CrossRef]
- Alsugair, A.M. Framework for Evaluating Bids of Construction Contractors. J. Manag. Eng. 1999, 15, 72–78. [Google Scholar] [CrossRef]
- Alirezaee, M.R.; Afsharian, M. A complete ranking of DMUs using restrictions in DEA models. Appl. Math. Comput. 2007, 189, 1550–1559. [Google Scholar] [CrossRef]
Category | Criteria | Sub-Criteria | Sources |
---|---|---|---|
The indicator system for comprehensive bid evaluation | Tendered price | Bid price | [13,14,15,22,37,43,44,45,46,47,48,49] |
The balance of the quotation | [13,14,15,43,46,47,48] | ||
The intensity of project investment | Labor use plan | [13,14,15,45,50,51,52,53] | |
Equipment usage plan | [12,13,14,15,45,50,51,52,53,54] | ||
Enterprise comprehensive strength | Qualification level of the enterprise | [43,53,54,55] | |
Qualification of project manager | [3,14,37,40,43,45] | ||
Social reputation | [13,14,15,26,43,45,48,51,52,56] | ||
Construction experience and achievements | [13,14,15,26,38,43,45,51,56,57,58] | ||
Technical equipment and technical force | [13,14,15,26,50,51,53] | ||
Credit level of bidder | Quality of enterprise | [43,50,53,55] | |
Quality of assets | [3,12,52,53,55,56,59] | ||
Economic benefit | [3,13,14,15,26,50,53,56,59] | ||
Credit standing | [3,13,14,15,26,37,45,50,51,53,56] | ||
Construction organization design | Construction scheme | [13,14,15,37,43,45,53,58,59,60] | |
Quality assurance system and measure | [3,12,13,14,15,26,37,43,45,50,51,52,53,54,58,60] | ||
Construction schedule and guarantee measures | [3,12,13,14,15,26,37,43,45,51,52,53,54,58,60] | ||
Safety precautions | [3,12,13,14,15,26,38,45,50,51,52,53,54,56,58,59,60] |
Category | Specific Evaluation Index |
---|---|
Tender offer A1 (47 points) | Quotation A11 (45 points) |
Balance and rationality of quotation A12 (2 points) | |
Construction plan A2 (48 points) | Construction layout A21 (2 points) |
Construction cofferdam and drainage A22 (3 points) | |
Construction progress A23 (3 points) | |
Construction equipment and labor allocation A24 (3 points) | |
Construction personnel A25 (4 points) | |
Quality assurance measures A26 (2 points) | |
Concrete works A27 (2 points) | |
Earthworks A28 (2 points) | |
Foundation works A29 (2 points) | |
Masonry and bedding A210 (1 point) | |
Material A211 (2 points) | |
Metal structure A212 (2 points) | |
Hoist A213 (2 points) | |
Procurement and installation of auxiliary equipment of pump station A214 (2 points) | |
Electrical equipment A215 (3 points) | |
Main engine pump installation and combined trial run A216 (5 points) | |
Procurement, installation, and commissioning of crane A217 (1 point) | |
Building engineering A218 (1.5 points) | |
Civilized construction site A219 (1 point) | |
Safety production A220 (1 point) | |
Integrity commitment A221 (0.5 points) | |
Performance and credit A3 (5 points) | Similar engineering experience A31 (3 points) |
Enterprise credit A32 (2 points) |
Index | A | B | C | D | E | F | G | H | I |
---|---|---|---|---|---|---|---|---|---|
A11 | 42.2 | 45 | 43.4 | 31.8 | 27.2 | 26.4 | 42.3 | 43.8 | 28.00 |
A12 | 1.00 | 1.00 | 1.00 | 0.50 | 1.50 | 1.00 | 1.50 | 0.83 | 0.00 |
A21 | 1.11 | 2.00 | 1.51 | 1.00 | 1.00 | 1.50 | 1.03 | 2.00 | 150 |
A22 | 1.56 | 2.50 | 2.03 | 2.50 | 0.56 | 2.50 | 2.09 | 1.06 | 3.00 |
A23 | 3.00 | 3.00 | 2.56 | 2.56 | 2.06 | 3.00 | 3.00 | 2.56 | 3.00 |
A24 | 3.00 | 2.50 | 1.50 | 1.50 | 1.50 | 3.00 | 2.53 | 2.92 | 2.99 |
A25 | 3.98 | 3.98 | 3.51 | 3.02 | 3.98 | 3.97 | 3.98 | 3.51 | 2.56 |
A26 | 2.00 | 1.53 | 2.00 | 1.00 | 2.00 | 1.53 | 1.99 | 1.99 | 2.00 |
A27 | 1.06 | 1.99 | 1.03 | 1.53 | 1.06 | 1.56 | 1.50 | 1.56 | 1.11 |
A28 | 1.56 | 2.00 | 1.06 | 1.11 | 1.06 | 1.56 | 1.94 | 1.50 | 1.06 |
A29 | 4.00 | 4.94 | 4.44 | 4.28 | 3.67 | 4.06 | 4.50 | 4.44 | 4.44 |
A210 | 1.00 | 1.00 | 0.50 | 1.00 | 0.50 | 1.00 | 1.00 | 1.00 | 1.00 |
A211 | 2.00 | 2.00 | 2.00 | 1.50 | 1.00 | 2.00 | 2.00 | 2.00 | 1.50 |
A212 | 2.00 | 2.00 | 1.77 | 1.68 | 1.50 | 1.82 | 1.82 | 1.91 | 1.91 |
A213 | 1.82 | 1.82 | 1.82 | 1.82 | 1.82 | 1.50 | 1.82 | 1.91 | 1.91 |
A214 | 2.00 | 1.50 | 2.00 | 2.00 | 1.00 | 1.50 | 2.00 | 2.00 | 1.11 |
A215 | 1.50 | 3.00 | 3.00 | 2.50 | 2.00 | 2.50 | 3.00 | 3.00 | 3.06 |
A216 | 3.17 | 4.50 | 4.00 | 4.00 | 3.56 | 4.39 | 3.14 | 4.50 | 3.50 |
A217 | 0.50 | 1.00 | 1.00 | 1.00 | 0.28 | 1.00 | 1.00 | 0.42 | 0.21 |
A218 | 1.00 | 1.50 | 1.50 | 1.50 | 1.00 | 1.50 | 1.50 | 1.00 | 1.00 |
A219 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
A220 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
A221 | 0.50 | 0.50 | 0.00 | 0.50 | 0.50 | 0.50 | 0.00 | 0.00 | 0.00 |
A31 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 1.50 | 3.00 | 1.50 | 3.00 |
A32 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 1.50 | 2.00 |
Total points | 86.94 | 96.27 | 88.63 | 75.30 | 65.61 | 73.39 | 90.68 | 88.80 | 71.51 |
Bidder | Tender Offer (Yuan) | Total Points | Bid Ranking |
---|---|---|---|
A | 42,482,107.00 | 86.9 | 5 |
B | 44,580,000.00 | 96.3 | 1 |
C | 43,019,720.00 | 88.6 | 4 |
D | 49,704,915.00 | 75.3 | 6 |
E | 50,760,636.00 | 65.6 | 9 |
F | 50,936,817.00 | 73.4 | 7 |
G | 46,718,760.00 | 90.7 | 2 |
H | 43,401,777.00 | 88.8 | 3 |
I | 50,569,755.00 | 71.8 | 8 |
Index Data | A | B | C | D | E | F | G | H | I |
---|---|---|---|---|---|---|---|---|---|
I1 | 0.7461 | 0.6509 | 0.8562 | 0.8941 | 1.0000 | 0.6516 | 0.7475 | 0.7890 | 0.7175 |
I2 | 0.8842 | 0.7130 | 0.8105 | 0.8545 | 1.0000 | 0.8178 | 0.7705 | 0.7515 | 0.8768 |
I3 | 0.8750 | 0.7500 | 0.8750 | 0.7500 | 0.8750 | 0.7500 | 0.8750 | 1.0000 | 1.0000 |
I4 | 0.6000 | 0.6000 | 0.6000 | 0.6000 | 0.6000 | 0.9000 | 0.6000 | 1.0000 | 0.6000 |
O1 | 1.0000 | 0.9529 | 0.9875 | 0.8547 | 0.8369 | 0.8340 | 0.9093 | 0.9788 | 0.8401 |
O2 | 0.6667 | 0.6667 | 0.6667 | 0.3333 | 1.0000 | 0.6667 | 1.0000 | 0.5533 | 0.0000 |
Bidder | Self-Evaluation Efficiency | Rank | Cross- Evaluation | Rank | Balance Index | Rank | Comprehensive Input Efficiency | Rank |
---|---|---|---|---|---|---|---|---|
A | 0.9445 | 5 | 0.7842 | 4 | −1.1667 | 6 | 1.0833 | 8 |
B | 1.0000 | 1 | 0.9012 | 2 | −1.5175 | 1 | 1.1897 | 1 |
C | 0.9682 | 4 | 0.8027 | 3 | −1.1667 | 6 | 1.1458 | 5 |
D | 0.7067 | 8 | 0.5368 | 7 | −1.3146 | 5 | 1.1643 | 4 |
E | 0.7778 | 7 | 0.4632 | 8 | −1.1154 | 9 | 1.0955 | 7 |
F | 1.0000 | 1 | 0.6599 | 5 | −1.3333 | 3 | 1.1666 | 3 |
G | 1.0000 | 1 | 0.9357 | 1 | −1.3153 | 4 | 1.1841 | 2 |
H | 0.9234 | 6 | 0.5515 | 6 | −1.4129 | 2 | 1.1254 | 6 |
I | 0.6222 | 9 | 0.3315 | 9 | −1.1667 | 6 | 1.0625 | 9 |
Bidder | Comprehensive Score | Balance Index Model | Comprehensive Input Efficiency Model |
---|---|---|---|
A | 5 | 6 | 8 |
B | 1 | 1 | 1 |
C | 4 | 6 | 5 |
D | 6 | 5 | 4 |
E | 9 | 9 | 7 |
F | 7 | 3 | 3 |
G | 2 | 4 | 2 |
H | 3 | 2 | 6 |
I | 8 | 6 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Chen, S.; Ding, Z.; Xu, B. Bidding Evaluation and Contractor Selection Using Balance Index Model and Comprehensive Input Efficiency Based on Data Envelopment Analysis. Systems 2023, 11, 245. https://doi.org/10.3390/systems11050245
Liu X, Chen S, Ding Z, Xu B. Bidding Evaluation and Contractor Selection Using Balance Index Model and Comprehensive Input Efficiency Based on Data Envelopment Analysis. Systems. 2023; 11(5):245. https://doi.org/10.3390/systems11050245
Chicago/Turabian StyleLiu, Xun, Siyu Chen, Zhenhan Ding, and Bixiao Xu. 2023. "Bidding Evaluation and Contractor Selection Using Balance Index Model and Comprehensive Input Efficiency Based on Data Envelopment Analysis" Systems 11, no. 5: 245. https://doi.org/10.3390/systems11050245
APA StyleLiu, X., Chen, S., Ding, Z., & Xu, B. (2023). Bidding Evaluation and Contractor Selection Using Balance Index Model and Comprehensive Input Efficiency Based on Data Envelopment Analysis. Systems, 11(5), 245. https://doi.org/10.3390/systems11050245