Fresh Product Supply Chain Analysis in Cauca, Colombia — A Hass Avocado System Dynamics Approach
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Problem Map
3.2. Study Region
3.3. Description of the Model’s Variables
3.3.1. Crop Performance
3.3.2. Farmer’s Cash Flow
3.3.3. Description of the Model’s Variables
3.3.4. Description of the Model Level Equations
3.4. Structure of the Causal Diagram
3.5. Construction of the Forrester Diagram
4. Results and Discussion
4.1. Scenario 1—Current Situation
4.2. Scenario 2—Access to Credit
4.3. Scenario 3—Implementation of Good Agricultural Practices
4.4. Scenario 4—Producer Association Membership
4.5. Scenario 5—Government Support and Investment
5. Conclusions and Further Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SD | System Dynamics |
ICA | Colombian Agricultural Institute |
GAP | Good Agricultural Practices |
References
- da Cunha Dias, T.A.; Lora, E.E.S.; Maya, D.M.Y.; del Olmo, O.A. Global Potential Assessment of Available Land for Bioenergy Projects in 2050 within Food Security Limits. Land Use Policy 2021, 105, 105346. [Google Scholar] [CrossRef]
- Ortiz-Bobea, A.; Ault, T.R.; Carrillo, C.M.; Chambers, R.G.; Lobell, D.B. Anthropogenic Climate Change Has Slowed Global Agricultural Productivity Growth. Nat. Clim. Chang. 2021, 11, 306–312. [Google Scholar] [CrossRef]
- Nazareth, D.L.; Rothenberger, M.A. Assessing the Cost-Effectiveness of Software Reuse: A Model for Planned Reuse. J. Syst. Softw. 2004, 73, 245–255. [Google Scholar] [CrossRef]
- Sinha, B.B.; Dhanalakshmi, R. Recent Advancements and Challenges of Internet of Things in Smart Agriculture: A Survey. Future Gener. Comput. Syst. 2022, 126, 169–184. [Google Scholar] [CrossRef]
- Novikova, A.; Startiene, G. The Advantages and Disadvantages of Intensive and Extensive Farming Activities. Res. Rural Dev. 2018, 2, 139. [Google Scholar]
- Ibba, P.; Crepaldi, M.; Cantarella, G.; Zini, G.; Barcellona, A.; Rivola, M.; Petrelli, M.; Petti, L.; Lugli, P. Design and Validation of a Portable AD5933–Based Impedance Analyzer for Smart Agriculture. IEEE Access 2021, 9, 63656–63675. [Google Scholar] [CrossRef]
- Nkumulwa, H.O.; Pauline, N.M. Role of Climate-Smart Agriculture in Enhancing Farmers’ Livelihoods and Sustainable Forest Management: A Case of Villages Around Songe-Bokwa Forest, Kilindi District, Tanzania. Front. Sustain. Food Syst. 2021, 5, 671419. [Google Scholar] [CrossRef]
- Bastan, M.; Khorshid-Doust, R.R.; Sisi, S.D.; Ahmadvand, A. Sustainable Development of Agriculture: A System Dynamics Model. Kybernetes 2018, 47, 142–162. [Google Scholar] [CrossRef]
- Meemken, E.-M.; Bellemare, M.F. Smallholder Farmers and Contract Farming in Developing Countries. Proc. Natl. Acad. Sci. USA 2020, 117, 259–264. [Google Scholar] [CrossRef]
- Pawlak, K.; Kołodziejczak, M. The Role of Agriculture in Ensuring Food Security in Developing Countries: Considerations in the Context of the Problem of Sustainable Food Production. Sustainability 2020, 12, 5488. [Google Scholar] [CrossRef]
- Buse Thorne, E.; Chong, M.; Obregón, C. La papa, sus aportes en el pasado, presente y futuro del Perú. In Búsqueda de un Desarrollo Integral: 20 Ensayos en Torno al Perú del Bicentenario; Beltrán, A., Sanborn, C.A., Yamada, G., Eds.; Universidad del Pacífico: Lima, Peru, 2021; pp. 395–413. [Google Scholar]
- Parra-Bracamonte, G.M.; Lopez-Villalobos, N.; Morris, S.T.; Vázquez-Armijo, J.F. An Overview on Production, Consumer Perspectives and Quality Assurance Schemes of Beef in Mexico. Meat Sci. 2020, 170, 108239. [Google Scholar] [CrossRef] [PubMed]
- Md Nor, S.; Ding, P. Trends and Advances in Edible Biopolymer Coating for Tropical Fruit: A Review. Food Res. Int. 2020, 134, 109208. [Google Scholar] [CrossRef] [PubMed]
- García, J.S.A.; Hurtado-Salazar, A.; Ceballos-Aguirre, N. Current Overview of Hass Avocado in Colombia. Challenges and Opportunities: A Review. Ciênc. Rural 2021, 51, e20200903. [Google Scholar] [CrossRef]
- Correa, M.C.G.; del Mar Chacón Molina, M.; Jaramillo, S.J. El Mercado Del Aguacate Hass En Japón: Retos Para Los Exportadores Colombianos. Rev. Digit. Mundo Asia Pac. 2021, 10, 86–99. [Google Scholar]
- Paz-Orozco, H.; Meléndez-Bermúdez, O.; Gonzalez-Feliu, J.; Morillo, D.; Rey, C.; Gatica, G. The Organization of Fruit Collection Transport in Conditions of Extreme Rurality: A Rural CVRP Case. In Workshop on Engineering Applications; Springer: Cham, Switzerland, 2022; pp. 234–242. [Google Scholar]
- Cho, K.; Goldstein, B.; Gounaridis, D.; Newell, J.P. Where Does Your Guacamole Come from? Detecting Deforestation Associated with the Export of Avocados from Mexico to the United States. J. Environ. Manag. 2021, 278, 111482. [Google Scholar] [CrossRef]
- Turner, B.L.; Menendez, H.M.; Gates, R.; Tedeschi, L.O.; Atzori, A.S. System Dynamics Modeling for Agricultural and Natural Resource Management Issues: Review of Some Past Cases and Forecasting Future Roles. Resources 2016, 5, 40. [Google Scholar] [CrossRef] [Green Version]
- Penagos, Á.J.T.; Osorio, J.C.; Vidal-Holguín, C.J. Sustainability Improvement of Coffee Farms in Valle Del Cauca (Colombia) Through System Dynamics. In Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems; Dolgui, A., Bernard, A., Lemoine, D., von Cieminski, G., Romero, D., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 607–617. [Google Scholar]
- Pallete, F.; Rivera, L.; Tacza, L.; Luna, A.; Chong, M. Distribution Network Optimization in the Peruvian Agro-Industrial Sector. In Algorithms and Computational Techniques Applied to Industry; Studies in Systems, Decision and Control; García Alcaraz, J.L., Realyvásquez Vargas, A., Eds.; Springer: Cham, Switzerland, 2022; Volume 435. [Google Scholar]
- Attarmoghaddam, N.; Khorakian, A.; Fakoor Saghih, A.M. Employing system dynamic and DEMATEL for improving the new product development time in knowledge-based companies. J. Ind. Prod. Eng. 2022, 39, 521–534. [Google Scholar] [CrossRef]
- Menzel, C.M.; Le Lagadec, M.D. Increasing the productivity of avocado orchards using high-density plantings: A review. Sci. Hortic. 2014, 177, 21–36. [Google Scholar] [CrossRef]
- Ramírez Contreras, P.D.R. Fuentes de Financiamiento y su Impacto en la Rentabilidad de los Pequeños Productores de maíz del Cantón Mocache, año 2014. Bachelor’s Thesis, Universidad Técnica Estatal de Quevedo, Quevedo, Ecuador, 2015. [Google Scholar]
- Fischer, E.; Qaim, M. Linking Smallholders to Markets: Determinants and Impacts of Farmer Collective Action in Kenya. World Dev. 2012, 40, 1255–1268. [Google Scholar] [CrossRef] [Green Version]
- Zulkarnain, L.H.; Wardhana, M.Y. Alternative Based Farmer Model for Increasing Red Chili Production in Bener Meriah, Aceh. IOP Conf. Ser. Earth Environ. Sci. 2021, 644, 012050. [Google Scholar] [CrossRef]
- Turnip, D.M.S.; Arkeman, Y.; Muslich. A Design of Competitive Cocoa Agro-Industry Supply Chain System in Putat Village, Gunung Kidul District. IOP Conf. Ser. Earth Environ. Sci. 2019, 335, 012014. [Google Scholar] [CrossRef]
- Forrester, J.W. Industrial dynamics. J. Oper. Res. Soc. 1997, 48, 1037–1041. [Google Scholar] [CrossRef]
- Forrester, J.W. Urban Dynamic; M.I.T.Press: Cambridge, MA, USA, 1969. [Google Scholar]
- Robinson, W.C. The Limits to Growth: A Report for the Club of Rome’s Project on the Predicament of Mankind Donella H. Meadows, Dennis L. Meadows, Jergen Randers, and William W. Behrens, III. Demography 1973, 10, 289–299. [Google Scholar] [CrossRef]
- García, J.M. Aplicaciones Prácticas de La Dinámica de Sistemas En Un Mundo Complejo; Universidad de Puerto Rico: Mayagüez, PR, USA, 2006; pp. 1–13. [Google Scholar]
- Li, F.J.; Dong, S.C.; Li, F. A System Dynamics Model for Analyzing the Eco-Agriculture System with Policy Recommendations. Ecol. Model. 2012, 227, 34–45. [Google Scholar] [CrossRef]
- Walters, J.P.; Archer, D.W.; Sassenrath, G.F.; Hendrickson, J.R.; Hanson, J.D.; Halloran, J.M.; Vadas, P.; Alarcon, V.J. Exploring Agricultural Production Systems and Their Fundamental Components with System Dynamics Modelling. Ecol. Model. 2016, 333, 51–65. [Google Scholar] [CrossRef] [Green Version]
- Birthal, P.S.; Hazrana, J. Crop Diversification and Resilience of Agriculture to Climatic Shocks: Evidence from India. Agric. Syst. 2019, 173, 345–354. [Google Scholar] [CrossRef]
- Barrientos-Fuentes, J.C.; Torrico-Albino, J.C. Socio-Economic Perspectives of Family Farming in South America: Cases of Bolivia, Colombia and Peru. Agron. Colomb. 2014, 32, 266–275. [Google Scholar] [CrossRef]
- Vergara, W.; Rios, A.R.; Trapido, P.; Malarín, H. Agriculture and Future Climate in Latin America and the Caribbean: Systemic Impacts and Potential Responses; Inter-American Development Bank Report; Inter-American Development Bank: Washington, DC, USA, 2014. [Google Scholar]
- Castro, O.; Arturo, J.; Ramírez, M.M.H. Perspectiva de Trazabilidad En La Cadena de Suministros de Frutas: Un Enfoque Desde La Dinámica de Sistemas. Ingeniería 2014, 19, 63–84. [Google Scholar]
- Pérez, A.; Villena, J.; Matuk, D.; Luna, A.; Chong, M. An Analytical Hierarchy Approach Applied in the Packaging Supply Chain. In Supply Chain Management and Logistics in Emerging Markets; Yoshizaki, H.T.Y., Mejía Argueta, C., Mattos, M.G., Eds.; Emerald Publishing Limited: Bingley, UK, 2020; pp. 89–104. [Google Scholar] [CrossRef]
- Ovalle, O.R.; Orozco, H.P.; Sinisterra, H.A. Analysis of Financial Flow for Small Producers of Colombian Coffee. In Handbook of Research on Urban and Humanitarian Logistics; IGI Global: Hershey, PA, USA, 2019; pp. 158–178. [Google Scholar] [CrossRef]
- Aroca, Y.M.; Tovar Perilla, N. Evaluación de La Sostenibilidad de Una Agrocadena de Suministro de Producto Fresco Orientada al Mercado Internacional. Caso Aplicado a La Cadena Del Aguacate Hass En El Norte Del Tolima. Indagare 2019, 7. [Google Scholar] [CrossRef]
- Hasan, N.; Suryani, E.; Hendrawan, R. Analysis of Soybean Production and Demand to Develop Strategic Policy of Food Self Sufficiency: A System Dynamics Framework. Procedia Comput. Sci. 2015, 72, 605–612. [Google Scholar] [CrossRef] [Green Version]
- Aprillya, M.R.; Suryani, E.; Dzulkarnain, A. System Dynamics Simulation Model to Increase Paddy Production for Food Security. J. Inf. Syst. Eng. Bus. Intell. 2019, 5, 67–75. [Google Scholar] [CrossRef]
- Wicaksono, M.G.S.; Suryani, E.; Hendrawan, R.A. Increasing Productivity of Rice Plants Based on IoT (Internet of Things) to Realize Smart Agriculture Using System Thinking Approach. Procedia Comput. Sci. 2022, 197, 607–616. [Google Scholar] [CrossRef]
- Ding, X.; Yang, Z. Knowledge Mapping of Platform Research: A Visual Analysis Using VOSviewer and CiteSpace. Electron. Commer. Res. 2022, 22, 787–809. [Google Scholar] [CrossRef]
- Shobeiri, E.; Shen, H.; Genco, F.; Tokuhiro, A. Investigating Long-Term Commitments to Replace Electricity Generation with SMRs and Estimates of Climate Change Impact Costs Using a Modified VENSIM Dynamic Integrated Climate Economy (DICE) Model. Energies 2022, 15, 3613. [Google Scholar] [CrossRef]
- Anacona, C.A.; Bonilla, B.P.M.; Cabrera, E.V.R.; Pino, A.F.S. Evaluation of Cup Profile for Post-Harvest in Coffee Variety Castillo from Cauca Department. Trends Sci. 2022, 19, 4526. [Google Scholar] [CrossRef]
- Solis, A.F.; Revelo luna, D.A.; Campo Ceballos, D.A.; Gaviria López, C.A. Correlación del contenido de clorofila foliar de la especie Coffea arabica con índices espectrales en imágenes. Biotecnol. Sect. Agropecu. Agroind. 2021, 19, 51–68. [Google Scholar] [CrossRef]
- Anacona-Mopan, Y.; Segura-Dorado, J.; Paz-Orozco, H. Optimización de la distribución en planta con formulación QAP y simulación de eventos discretos. Informador Técnico 2023, 87, 13–28. [Google Scholar] [CrossRef]
- Zanker, M.; Bureš, V. Knowledge Management as a Domain, System Dynamics as a Methodology. Systems 2022, 10, 82. [Google Scholar] [CrossRef]
- AGRONET. Comparativo de Área, Producción, Rendimiento y Participación Departamental por Cultivo. Available online: https://www.agronet.gov.co/estadistica/ (accessed on 20 September 2022).
- Muñoz, C.; Tenganan, S.Y.P.; Rodríguez, I.M.L.; Mojica, J.F.P.; Banguero, D.J.C. Insectos Polinizadores del Aguacate (Persea Americana Mill.) cv. Hass en Colombia; Corpoica Editorial: Bogota, Colombia, 2017. [Google Scholar]
- AGROSAVIA. Aguacate Hass en Cauca Mejorará su Productividad y Calidad de Exportación. Available online: https://www.agronet.gov.co/Noticias/Paginas/Aguacate-Hass-en-Cauca-mejorar (accessed on 18 July 2022).
- Amare, M.; Mariara, J.; Oostendorp, R.; Pradhan, M. The Impact of Smallholder Farmers’ Participation in Avocado Export Markets on the Labor Market, Farm Yields, Sales Prices, and Incomes in Kenya. Land Use Policy 2019, 88, 104168. [Google Scholar] [CrossRef]
- Cofre, G.; Riquelme, I.; Engler, A.; Jara-Rojas, R. Adopción de Buenas Prácticas Agrícolas (BPA: Costo de Cumplimiento y Beneficios Percibidos Entre Productores de Fruta Fresca. Idesia (Arica) 2012, 30, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Accame Mantero, S.; Blanco Quiroga, A.J.; Sancho Moreno, M.F.; Vásquez Arias Schreiber, L.M. Análisis de Los Pequeños Productores de Palto En El Perú: Propuestas Para La Mejora de Su Rendimiento Productivo; ESAN: Lima, Peru, 2018. [Google Scholar]
- Taylor, I.W.; Ullah, M.A.; Koul, S.; Ulloa, M.S. Evaluating the Impact of Institutional Improvement on Control of Corruption—A System Dynamics Approach. Systems 2022, 10, 64. [Google Scholar] [CrossRef]
- Huo, H.; Liu, H.; Bao, X.; Cui, W. Eco-Efficiency Assessment of Beijing-Tianjin-Hebei Urban Agglomeration Based on Emergy Analysis and Two-Layer System Dynamics. Systems 2022, 10, 61. [Google Scholar] [CrossRef]
- Al-Elq, A.H. Simulation-Based Medical Teaching and Learning. J. Fam. Community Med. 2010, 17, 35. [Google Scholar] [CrossRef]
- Arango, E.S.; Cortes, L.M.S. Producción y comercialización de aguacate tipo Hass en el municipio de Sonsón (Colombia). EstefaníA Soto Arango Liliana MaríA SepúLveda Cortes Univ. Antioq. Fac. Ing. Dep. Ing. Ind. MedellíN Colomb. 2020, 1, 97. [Google Scholar]
- Urquiza, L.S.P.; Rebollar, S.R.; Juárez, N.C.; Martínez, J.H.; Tenorio, G.G. Análisis De Viabilidad Económica Para La Producción Comercial De Aguacate Hass. Rev. Mex. Agronegocios 2015, 19, 1325–1338. [Google Scholar]
- Pulina, G.; Milán, M.J.; Lavín, M.P.; Theodoridis, A.; Morin, E.; Capote, J.; Thomas, D.L.; Francesconi, A.H.D.; Caja, G. Invited Review: Current Production Trends, Farm Structures, and Economics of the Dairy Sheep and Goat Sectors. J. Dairy Sci. 2018, 101, 6715–6729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Aleman, P. Global Standards and Local Knowledge Building: Upgrading Small Producers in Developing Countries. Proc. Natl. Acad. Sci. USA 2012, 109, 12344–12349. [Google Scholar] [CrossRef] [Green Version]
- Jibir, A.; Ahmed, I.; Bello, A. Impact of Small and Medium Scale Enterprises on Economic Growth: Evidence from Nigeria. Glob. J. Econ. Bus. 2018, 427, 1–9. [Google Scholar]
- Johnny, E.G.; Mariara, J.K.; Mulwa, R.; M Ruigu, G. Smallholder Avocado Contract Farming in Kenya: Determinants and Differentials in Outcomes. Afr. J. Econ. Rev. 2019, 7, 91–112. [Google Scholar]
- Kumar, S.; Raut, R.D.; Nayal, K.; Kraus, S.; Yadav, V.S.; Narkhede, B.E. To Identify Industry 4.0 and Circular Economy Adoption Barriers in the Agriculture Supply Chain by Using ISM-ANP. J. Clean. Prod. 2021, 293, 126023. [Google Scholar] [CrossRef]
Variables | Equation | Type |
---|---|---|
Accumulated Pdn (A) | Production Ton (pt) | Level |
Inventory (I) | Hass Production-Sales in Kg | Level |
Accumulated productivity (AP) | Productivity (P) | Level |
Utility (U) | If then else (Revenues-Expenses (EX)-Reinvestment) > 0, (Revenues-Expenses-Reinvestment), 0) | Level |
Maximum Amount (M) | If then else( Financing Needs (FN) > 0, Financing Needs, 0) | Level |
Balance (B) | - Quota (q) | Level |
Production Hass (h) | (Fruits per tree (Time)*Trees per hectare*0.18) * (Accumulated production) | Flow |
Average yield | If then else (Accumulated production > 0, Accumulated production/Time, 0) | Auxiliary |
Demand | Hass production*15*(1 + 0.003) | Auxiliary |
Sales (S) | If then else (Demand > Inventory, Inventory, Hass Production) | Flow |
Revenues (Re) | If then else (Global GAP > 0, External kg price*kg sales*kg sales, Internal kg price*kg sales) | Flow |
Internal price | Uniform random (0.68, 0.9) | Auxiliary |
International price | Uniform random (1.58, 2.04) | Auxiliary |
Profit | If then else ((Income-Expense-Reinvestment) > 0, (Income-Expense-Reinvestment), 0) | Level |
Production costs | If then else (Producer Association > 0, (((Fertilizers + Labor + Plant Material + Equipment (Time) + Technical Assistance) * (1 − 0.28)) − Supporting State) | Auxiliary |
Reinvestment (Rei) | If then else (Profit > 0, if then if (Profit ≥ Maximum investment, Maximum investment, (Profit) * Reinvestment rate), 0) | Flow |
State Support | 2252.54 | Auxiliary |
Financing needs | If then else (Periodic cash flow < 0, -Periodic cash flow, 0) | Auxiliary |
Interest rate | If then else (Producers’ Association > 0, (0.0175 + 0.05), 0.0175 + 0.07)) | Auxiliary |
State investment | If then else (State Support > 0, 0.01, 0) | Auxiliary |
Access to credit | If yes (Loan > 0, 0.07, 0) | Auxiliary |
Application of GAP | Uniform Random (0.03, 0.08, 0) | Auxiliary |
Producer Association | Random Uniform (0.06, 0.077, 0) | Auxiliary |
Government support | If then else(Reinvestment > 0, Reinvestment*2 × 10, 0) | Auxiliary |
Productivity (P) | Fixed lag (Access to profits + Producer Association + Global GAP + Investment status + Productivity increase through reinvestment, Lag, 0) | Flow |
Utility (U) | Sales revenue - Production costs | Level |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anacona Mopan, Y.E.; Rubiano-Ovalle, O.; Paz, H.; Solis Pino, A.F.; Chong, M.; Luna, A. Fresh Product Supply Chain Analysis in Cauca, Colombia — A Hass Avocado System Dynamics Approach. Systems 2023, 11, 29. https://doi.org/10.3390/systems11010029
Anacona Mopan YE, Rubiano-Ovalle O, Paz H, Solis Pino AF, Chong M, Luna A. Fresh Product Supply Chain Analysis in Cauca, Colombia — A Hass Avocado System Dynamics Approach. Systems. 2023; 11(1):29. https://doi.org/10.3390/systems11010029
Chicago/Turabian StyleAnacona Mopan, Yesid Ediver, Oscar Rubiano-Ovalle, Helmer Paz, Andrés Felipe Solis Pino, Mario Chong, and Ana Luna. 2023. "Fresh Product Supply Chain Analysis in Cauca, Colombia — A Hass Avocado System Dynamics Approach" Systems 11, no. 1: 29. https://doi.org/10.3390/systems11010029
APA StyleAnacona Mopan, Y. E., Rubiano-Ovalle, O., Paz, H., Solis Pino, A. F., Chong, M., & Luna, A. (2023). Fresh Product Supply Chain Analysis in Cauca, Colombia — A Hass Avocado System Dynamics Approach. Systems, 11(1), 29. https://doi.org/10.3390/systems11010029