High-Speed Rails and City Innovation System: Empirical Evidence from China
Abstract
:1. Introduction
2. High-Speed Rail in China and Space–Time Compression
3. Theoretical Background and Hypothesis Development
4. Data, Variables, and Empirical Strategies
4.1. Data
4.2. Variables and Measurement
4.2.1. Dependent Variables
4.2.2. Independent Variables
4.3. Methods
4.3.1. Standard Deviation Ellipse Method
4.3.2. Difference-in-Differences Method
5. Results
5.1. Space–Time Compression Process Analysis
5.2. Empirical Results
5.3. Placebo Test
5.4. Robustness Test: Spatial Error
5.5. Robustness Tests: Different Spatial Weight Matrices
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
NIP | Placebo Test: One Year after | |||
---|---|---|---|---|
Model 13 Fixed-Effects | Model 14 Random-Effects | Model 15 Fixed-Effects | Model 16 Random-Effects | |
DID | 229.241 **(2.07) | 212.685 *(1.93) | 104.648(0.86) | 107.879(0.89) |
NES | 193.138 ***(2.78) | 298.423 ***(4.62) | 190.205 ***(2.74) | 295.661 ***(4.57) |
SE | 5.168 ***(6.11) | 5.292 ***(6.28) | 5.135 ***(6.07) | 5.266 ***(6.24) |
NCS | 0.253 **(2.29) | 0.274 ***(2.5) | 0.255 **(2.3) | 0.274 **(2.5) |
NCU | −37.009 ***(−10.63) | −32.779 ***(−9.45) | −35.962 ***(−10.43) | −31.814 ***(−9.26) |
NRD | 0.004(0.87) | 0.02 ***(5.61) | 0.004(0.92) | 0.02 ***(5.65) |
EVG | 0.47 *(1.85) | 0.958 ***(12.92) | 0.468 *(1.84) | 0.954 ***(12.88) |
NFI | −0.084(−0.69) | −0.079(−0.66) | −0.075(−0.6) | −0.072(−0.6) |
TVD | −0.004(−0.35) | −0.014(−1.25) | −0.003(−0.25) | −0.013(−1.16) |
PGDP | −0.001(−1.42) | −0.001(−1.4) | −0.001(−1.43) | −0.001(−1.42) |
_cons | 5622.767 ***(10.2) | 5607.706 ***(10.18) | ||
−4.717 ***(−16.08) | −2.726 ***(−13.74) | −4.715 ***(−16.08) | −2.722 ***(−13.74) | |
Sigma_u | 1127.713 | 1126.325 | ||
Sigma_e | 715.213 | 718.57 | 715.451 | 718.808 |
Province FE | YES | YES | YES | YES |
City FE | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES |
Hausman Test | 356.45 *** | −522.67 *** | ||
Log likelihood | −42,350 | −45,160 | −42,350 | −45,160 |
Wald χ2 | 464.86 *** | 1365.58 *** | 461.09 *** | 1365.02 *** |
Pseudo R2 | 0.659 | 0.702 | 0.665 | 0.7 |
Wald test of spatial terms | 258.48 *** | 188.89 *** | 258.43 *** | 188.8 *** |
Appendix B
NIP | Placebo Test: One Year after | |||
---|---|---|---|---|
Model 17 Fixed-Effects | Model 18 Random-Effects | Model 19 Fixed-Effects | Model 20 Random-Effects | |
DID | 217.778 *(1.93) | 185.077 *(1.66) | 98.356(0.73) | 78.848(0.65) |
NES | 183.04 ***(2.6) | 331.962 ***(5.24) | 180.211 ***(2.56) | 329.595 ***(5.43) |
SE | 5.12 ***(5.64) | 4.877 ***(5.46) | 5.102 ***(5.61) | 4.857 **(2.48) |
NCS | 0.27 **(2.37) | 0.327 ***(2.94) | 0.272 **(2.36) | 0.328 ***(2.94) |
NCU | −38.039 ***(−10.63) | −30.517 ***(−8.61) | −37.114 ***(−10.46) | −29.711 ***(−8.45) |
NRD | 0.008 **(1.97) | 0.027 ***(7.89) | 0.009 **(2.01) | 0.027 ***(7.93) |
EVG | 0.664 **(2.57) | 0.654 ***(10.03) | 0.663 **(2.56) | 0.651 ***(9.99) |
NFI | −0.068(−0.52) | −0.041(−0.32) | −0.058(−0.44) | −0.035(−0.27) |
TVD | −0.013(−1.17) | −0.016(−1.48) | −0.012(−1.1) | −0.016(−1.41) |
PGDP | −0.001(−0.95) | −0.001(−0.69) | −0.001(−1.01) | −0.001(−0.74) |
_cons | −225.333(−0.78) | −232.287(−0.81) | ||
−2.867 ***(−18.44) | −0.985 ***(−6.68) | −2.867 ***(−18.42) | −0.985 ***(−6.68) | |
Sigma_u | 930.796 | 929.433 | ||
Sigma_e | 720.044 | 724.012 | 720.261 | 724.226 |
Province FE | YES | YES | YES | YES |
City FE | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES |
Hausman Test | 379.35 *** | 358.68 *** | ||
Log likelihood | −42,420 | −45,160 | −42,420 | −45,160 |
Wald χ2 | 940.66 *** | 1744.32 *** | 937.02 *** | 1745.74 *** |
Pseudo R2 | 0.501 | 0.765 | 0.506 | 0.765 |
Wald test of spatial terms | 339.87 *** | 44.61 *** | 339.28 *** | 44.64 *** |
References
- Liu, Y.; Zhang, X.; Pan, X.; Ma, X.; Tang, M. The spatial integration and coordinated industrial development of urban agglomerations in the Yangtze River Economic Belt, China. Cities 2020, 104, 102801. [Google Scholar] [CrossRef]
- Comunian, R. Rethinking the Creative City: The Role of Complexity, Networks and Interactions in the Urban Creative Economy. Urban Stud. 2015, 48, 1157–1179. [Google Scholar] [CrossRef]
- Ni, P.; Kamiya, M.; Shen, L.; Gong, W.; Xu, H. Reviews of Global Urban Competitiveness 2017–2018 Driving Force, Agglomeration, Connectivity and the New Global City. In House Prices: Changing the City World; Ni, P., Kamiya, M., Wang, H., Eds.; Springer: Clam, Switzerland, 2019; pp. 49–131. [Google Scholar]
- UN. The 2018 Revision of the World Urbanization Prospects; The Population Division of the United Nations Department of Economic and Social Affairs (UN DESA): New York, NY, USA, 2018. [Google Scholar]
- Feldman, M.P.; Audretsch, D.B. Innovation in cities: Science-based diversity, specialization and localized competition. Eur. Econ. Rev. 1999, 43, 409–429. [Google Scholar] [CrossRef]
- Acs, Z.J. Innovation and the Growth of Cities. Contrib. Econ. Anal. 2010, 266, 635–658. [Google Scholar]
- Visvizi, A.; Lytras, M.; Damiani, E.; Mathkour, H. Policy making for smart cities: Innovation and social inclusive economic growth for sustainability. J. Sci. Technol. Policy Manag. 2018, 9, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Forman, C.; Goldfarb, A.; Greenstein, S. How did location affect adoption of the commercial Internet? Global village vs. urban leadership—ScienceDirect. J. Urban Econ. 2005, 58, 389–420. [Google Scholar] [CrossRef]
- Bedir, M.; Hilgefort, J. The global village. Archit. Rev. 2019, 244, 24–27. [Google Scholar]
- Acuto, M.; Leffel, B. Understanding the global ecosystem of city networks. Urban Stud. 2021, 58, 1758–1774. [Google Scholar] [CrossRef]
- Jenkins, P.; Wilkinson, P. Assessing the Growing Impact of the Global Economy on Urban Development in Southern African Cities: Case Studies in Maputo and Cape Town. Cities 2002, 19, 33–47. [Google Scholar] [CrossRef]
- Dvir, R.; Pasher, E. Innovation engines for knowledge cities: An innovation ecology perspective. J. Knowl. Manag. 2004, 8, 16–27. [Google Scholar] [CrossRef] [Green Version]
- Yao, L.; Li, J.; Li, J. Urban innovation and intercity patent collaboration: A network analysis of China’s national innovation system. Technol. Forecast. Soc. Chang. 2020, 160, 120185. [Google Scholar] [CrossRef]
- Boikova, M.; Ilyina, I.; Salazkin, M. Urban Futures: Cities as Agents of Globalization and Innovation. Foresight STI Gov. 2011, 5, 32–48. [Google Scholar] [CrossRef]
- Harvey, D. The Condition of Postmodernity an Enquiry into the Origins of Cultural Change; Wiley-Blackwell: Oxford, UK, 1989. [Google Scholar]
- Jin, B.; Yang, W.; Li, X.; Sha, J.; Wang, X. A literature review on the space of flows. Arab. J. Geosci. 2021, 14, 1–24. [Google Scholar] [CrossRef]
- Janelle, D.G. Time, Space, and the Human Geographies of Opportunity. In Time, Space, and the Human Geographies of Opportunity; Wuppuluri, S., Ghirardi, G., Eds.; Springer: Cham, Switzerland, 2017; pp. 487–501. [Google Scholar]
- An, Y.; Wei, Y.D.; Yuan, F.; Chen, W. Impacts of high-speed rails on urban networks and regional development: A study of the Yangtze River Delta, China. Int. J. Sustain. Transp. 2021, 16, 483–495. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, W.; Zhou, Z.; Yuan, L. Geographic proximity, information flows and corporate innovation: Evidence from the high-speed rail construction in China. Pac.-Basin Financ. J. 2020, 61, 101342. [Google Scholar] [CrossRef]
- Coto-Millán, P.; Inglada, V.; Rey, B. Effects of network economies in high-speed rail: The Spanish case. Ann. Reg. Sci. 2007, 41, 911–925. [Google Scholar] [CrossRef]
- Shi, W.; Lin, K.-C.; McLaughlin, H.; Qi, G.; Jin, M. Spatial distribution of job opportunities in China: Evidence from the introduction of the high-speed rail. Transp. Res. Part A Policy Pract. 2020, 133, 138–147. [Google Scholar] [CrossRef]
- Ahlfeldt, G.M.; Feddersen, A. From periphery to core: Measuring agglomeration effects using high-speed rail. J. Econ. Geogr. 2018, 18, 355–390. [Google Scholar] [CrossRef]
- Komikado, H.; Morikawa, S.; Bhatt, A.; Kato, H. High-speed rail, inter-regional accessibility, and regional innovation: Evidence from Japan. Technol. Forecast. Soc. Chang. 2021, 167, 120697. [Google Scholar] [CrossRef]
- Dobruszkes, F.; Dehon, C.; Givoni, M. Does European high-speed rail affect the current level of air services? An EU-wide analysis. Transp. Res. Part A Policy Pract. 2014, 69, 461–475. [Google Scholar] [CrossRef]
- Gao, Y.; Zheng, J. The impact of high-speed rail on innovation: An empirical test of the companion innovation hypothesis of transportation improvement with China’s manufacturing firms. World Dev. 2020, 127, 104838. [Google Scholar] [CrossRef]
- Burström, T.; Peltonen, J. The role of knowledge-intense high-impact firms in city innovation systems. Innovation 2018, 20, 377–392. [Google Scholar] [CrossRef]
- Maye, D. ‘Smart food city’: Conceptual relations between smart city planning, urban food system. City Cult. Soc. 2019, 16, 18–24. [Google Scholar] [CrossRef]
- Andion, C.; Alperstedt, G.D.; Graeff, J.F.; Ronconi, L. Social innovation ecosystems and sustainability in cities: A study in Florianópolis, Brazil. Environ. Dev. Sustain. 2022, 24, 1259–1281. [Google Scholar] [CrossRef]
- Linde, L.; Sjödin, D.; Parida, V.; Wincent, J. Dynamic capabilities for ecosystem orchestration A capability-based framework for smart city innovation initiatives. Technol. Forecast. Soc. Chang. 2021, 166, 120614. [Google Scholar] [CrossRef]
- Garcia, B.C.; Chavez, D. Network-based innovation systems: A capital base for the Monterrey city-region, Mexico. Expert Syst. Appl. 2014, 41, 5636–5646. [Google Scholar] [CrossRef]
- Janelle, D.G. Central place development in a time–space framework. Prof. Geogr. 1968, 20, 5–10. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Zhou, K.; Li, X.; Zhou, Z.; Sun, W.; Zeng, J. Effectiveness of high-speed railway on regional economic growth for less developed areas. J. Transp. Geogr. 2020, 82, 102621. [Google Scholar] [CrossRef]
- Xu, Z.; Sun, T. The Siphon effects of transportation infrastructure on internal migration: Evidence from China’s HSR network. Appl. Econ. Lett. 2021, 28, 1066–1070. [Google Scholar] [CrossRef]
- Lu, Y.; Cheng, S. China’s total high-speed railway mileage to reach 39,000 kilometers by year end. People’s Daily, 26 May 2020; p. 4. [Google Scholar]
- Jia, S.; Zhou, C.; Qin, C. No difference in effect of high-speed rail on regional economic growth based on match effect perspective? Transp. Res. Part A Policy Pract. 2017, 106, 144–157. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Wang, B. The impact of High-Speed Rails on urban expansion: An investigation using an SDID with dynamic effects method. Socio-Econ. Plan. Sci. 2022, 82, 101294. [Google Scholar] [CrossRef]
- Jiao, J.; Wang, J.; Jin, F. Impacts of high-speed rail lines on the city network in China. J. Transp. Geogr. 2017, 60, 257–266. [Google Scholar] [CrossRef]
- Chou, J.-S.; Chien, Y.-L.; Nguyen, N.-M.; Truong, D.-N. Pricing policy of floating ticket fare for riding high speed rail based on time-space compression. Transp. Policy 2018, 69, 179–192. [Google Scholar] [CrossRef]
- Spiekermann, K.; Wegener, M. The shrinking continent: New time—space maps of Europe. Environ. Plan. B Plan. Des. 1994, 21, 653–673. [Google Scholar] [CrossRef]
- Gutiérrez, J.; González, R.; Gómez, G. The European high-speed train network: Predicted effects on accessibility patterns. J. Transp. Geogr. 1996, 4, 227–238. [Google Scholar] [CrossRef]
- Janelle, D.G. Time–space Convergence. In Handbook of Research Methods and Applications in Spatially Integrated Social Science; Stimson, R., Ed.; Edward Elgar Publishing, Inc.: Northampton, UK, 2014; pp. 43–60. [Google Scholar]
- McKenzie, R.D. The Metropolitan Community; McGraw-Hill Book: New York, NY, USA, 1933. [Google Scholar]
- Castells, M. The Informational City: Economic Restructuring and Urban Development; Wiley-Blackwell: Oxford, UK, 1989. [Google Scholar]
- Sheppard, E. David Harvey and Dialectical Space-Time. In David Harvey: A Critical Reader; Castree, N., Gregory, D., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2006. [Google Scholar]
- Hyman, G.; Mayhew, L. Advances in travel geometry and urban modelling. GeoJournal 2004, 59, 191–207. [Google Scholar] [CrossRef]
- Vickerman, R.; Spiekermann, K.; Wegener, M. Accessibility and Economic Development in Europe. Reg. Stud. 1999, 33, 1–15. [Google Scholar] [CrossRef]
- Lefebvre, H. The Production of Space; Wiley-Blackwell: Hoboken, NJ, USA, 1992. [Google Scholar]
- Bosch, S.; Schmidt, M. Wonderland of technology? How energy landscapes reveal inequalities and injustices of the German Energiewende. Energy Res. Soc. Sci. 2020, 70, 101733. [Google Scholar] [CrossRef]
- Westlund, H. A brief history of time, space, and growth: Waldo Tobler’s first law of geography revisited. Ann. Reg. Sci. 2013, 51, 917–924. [Google Scholar] [CrossRef]
- Graevenitz, G.; Graham, S.J.H.; Myers, A.F. Distance (still) hampers diffusion of innovations. Reg. Stud. 2022, 56, 227–241. [Google Scholar] [CrossRef]
- Breschi, S.; Lissoni, F. Mobility of skilled workers and co-invention networks: An anatomy of localized knowledge flows. J. Econ. Geogr. 2009, 9, 439–468. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Su, Y.S. The effect of institutional proximity in non-local university–industry collaborations: An analysis based on Chinese patent data. Res. Policy 2013, 42, 454–464. [Google Scholar]
- Dong, X.; Zheng, S.; Kahn, M.E. The role of transportation speed in facilitating high skilled teamwork across cities. J. Urban Econ. 2020, 115, 103212. [Google Scholar] [CrossRef]
- Cai, Y.; Tian, X.; Xia, H. Location, Proximity, and M&A Transactions. J. Econ. Manag. Strategy 2016, 25, 688–719. [Google Scholar]
- Duguet, E.; Macgarvie, M. How well do patent citations measure flows of technology? Evidence from French innovation surveys. Econ. Innov. New Technol. 2005, 14, 375–393. [Google Scholar] [CrossRef]
- Francis, B.B.; Hasan, I.; John, K.; Waisman, M. Urban agglomeration and CEO compensation. J. Financ. Quant. Anal. 2016, 51, 1925–1953. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y. ‘No county left behind?’ The distributional impact of high-speed rail upgrades in China. J. Econ. Geogr. 2017, 17, 489–520. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liang, S.; Kong, D.; Wang, Q. High-speed rail, small city, and cost of debt: Firm-level evidence. Pac.-Basin Financ. J. 2019, 57, 101194. [Google Scholar] [CrossRef]
- Thompson, A.C. Does public infrastructure affect economic activity?: Evidence from the rural interstate highway system. Reg. Sci. Urban Econ. 2000, 30, 457–490. [Google Scholar]
- Faber, B. Trade Integration, Market Size, and Industrialization: Evidence from China’s National Trunk Highway System. Rev. Econ. Stud. 2014, 81, 1046–1070. [Google Scholar] [CrossRef] [Green Version]
- Hodgson, C. The effect of transport infrastructure on the location of economic activity: Railroads and post offices in the American West. J. Urban Econ. 2018, 104, 59–76. [Google Scholar] [CrossRef]
- Gu, J. Spatiotemporal context and firm performance: The mediating effect of strategic interaction. Growth Chang. 2021, 52, 371–391. [Google Scholar] [CrossRef]
- Gu, J. Spatial Dynamics between Firm Sales and Environmental Responsibility: The Mediating Role of Corporate Innovation. Sustainability 2021, 13, 1648. [Google Scholar] [CrossRef]
- Anselin, L.; Griffith, D.A. Do Spatial Effects Really Matter in Regression Analysis? Pap. Reg. Sci. 1988, 65, 11–34. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, X. The value of invention patents in China: Country origin and technology field differences. China Econ. Rev. 2012, 23, 357–370. [Google Scholar]
- Parker, R.A.; Ridge, C.; Cong, C.; Appelbaum, R. China’s Nanotechnology Patent Landscape: An Analysis of Invention Patents Filed with the State Intellectual Property Office. Nanotechnol. Law Bus. 2009, 6, 524–539. [Google Scholar]
- Castaldi, C.; Los, B. Geographical patterns in US inventive activity 1977–1998: The “regional inversion” was underestimated. Res. Policy 2017, 46, 1187–1197. [Google Scholar] [CrossRef]
- Gong, J. Clarifying the Standard Deviational Ellipse. Geogr. Anal. 2002, 34, 155–167. [Google Scholar] [CrossRef]
- Gu, J. Spatiotemporal dynamics of the patent race: Empirical evidence from listed companies in China. Asian J. Technol. Innov. 2020, 30, 106–133. [Google Scholar] [CrossRef]
- Gu, J. Determinants of biopharmaceutical R&D expenditures in China: The impact of spatiotemporal context. Scientometrics 2021, 6, 1–21. [Google Scholar]
- Wang, B.; Shi, W.; Miao, Z. Confidence Analysis of Standard Deviational Ellipse and Its Extension into Higher Dimensional Euclidean Space. PLoS ONE 2015, 10, e0118537. [Google Scholar] [CrossRef] [PubMed]
- Gu, J. Spatial Interactions and the Commercialisation of Academic Patents: The Chinese Experience. Sci. Technol. Soc. 2022, 27, 543–562. [Google Scholar] [CrossRef]
- O’Neill, S.; Kreif, N.; Grieve, R.; Sutton, M.; Sekhon, J.S. Estimating causal effects: Considering three alternatives to difference-in-differences estimation. Health Serv. Outcomes Res. Methodol. 2016, 16, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonhomme, S.; Sauder, U. Recovering Distributions in Difference-in-Differences Models: A Comparison of Selective and Comprehensive Schooling. Rev. Econ. Stat. 2011, 93, 479–494. [Google Scholar] [CrossRef]
- Heckert, M. A Spatial Difference-in-Differences Approach to Studying the Effect of Greening Vacant Land on Property Values. Cityscape 2015, 17, 51–60. [Google Scholar]
- Gu, J. Spatial recruiting competition in Chinese higher education system. High. Educ. 2012, 63, 165–185. [Google Scholar] [CrossRef]
- Kosfeld, R.; Mitze, T.; Rode, J.; Wlde, K. The Covid-19 containment effects of public health measures A spatial difference-in-differences approach. J. Reg. Sci. 2021, 61, 799–825. [Google Scholar] [CrossRef]
- Jia, R.; Shao, S.; Yang, L. High-speed rail and CO2 emissions in urban China: A spatial difference-in-differences approach. Energy Econ. 2021, 99, 1873–6181. [Google Scholar] [CrossRef]
- Gu, J. Effects of Patent Policy on Outputs and Commercialization of Academic Patents in China: A Spatial Difference-in-Differences Analysis. Sustainability 2021, 13, 13459. [Google Scholar] [CrossRef]
- Anselin, L.; Florax, R.J.G.M.; Rey, S.J. Advances in Spatial Econometrics: Methodology, Tools and Applications; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Sage, J.L.; Pace, R.K. Introduction to Spatial Econometrics; Chapman and Hall, CRC: New York, NY, USA, 2009. [Google Scholar]
- Friedman, M. Newton and Kant on Absolute Space: From Theology to Transcendental Philosophy. In Constituting Objectivity: Transcendental Perspectives on Modern Physics; Bitbol, M., Kerszberg, P., Petitot, J., Eds.; Springer: Clam, Switzerland, 2009; pp. 35–50. [Google Scholar]
- Agrawal, A.; Galasso, A.; Oettl, A. Roads and Innovation. Rev. Econ. Stat. 2017, 99, 417–434. [Google Scholar] [CrossRef]
- Catalini, C.; Fons-Rosen, C.; Gaull, P. Did Cheaper Flights Change the Direction of Science? SSRN Electron. J. 2016, 3, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Antonelli, C. Collective knowledge communication and innovation: The evidence of technological districts. Reg. Stud. 2000, 34, 535–547. [Google Scholar] [CrossRef]
- Holm, E.J.; Jung, H.; Welch, E.W. The impacts of foreignness and cultural distance on commercialization of patents. J. Technol. Transf. 2021, 46, 29–61. [Google Scholar] [CrossRef]
- Drolc, C.A.; Gandrud, C.; Williams, L.K. Taking Time (and Space) Seriously: How Scholars Falsely Infer Policy Diffusion from Model Misspecification. Policy Stud. J. 2021, 49, 484–515. [Google Scholar] [CrossRef]
- Bonitz, M.; Bruckner, E.; Scharnhorst, A. Characteristics and impact of the Matthew Effect for Countries. Scientometrics 1997, 40, 407–422. [Google Scholar] [CrossRef]
- Amati, D.; Ciafaloni, M.; Veneziano, G. Can spacetime be probed below the string size? Phys. Lett. B 1989, 216, 41–47. [Google Scholar] [CrossRef]
- Janelle, K.-H. Constructing Carbon Market Spacetime: Climate Change and the Onset of Neo-Modernity. Ann. Assoc. Am. Geogr. 2010, 100, 953–962. [Google Scholar]
Variable | Obs | Mean | S.D. | Min | Max |
---|---|---|---|---|---|
NIP | 5580 | 940.118 | 2438.795 | 1.000 | 33,202.000 |
DID | 5580 | 0.090 | 0.147 | −0.090 | 0.229 |
NES | 5580 | 0.426 | 0.863 | 0.010 | 7.360 |
SE | 5580 | 4.285 | 17.186 | 0.000 | 554.982 |
NCS | 5580 | 182.200 | 217.131 | 1.900 | 1293.700 |
NCU | 5580 | 6.483 | 11.114 | 1.000 | 84.000 |
NRD | 5580 | 16,758.450 | 29,455.000 | 14.000 | 281,369.000 |
EVG | 5580 | 494.182 | 1558.180 | 0.003 | 16,708.950 |
NFI | 5580 | 80.720 | 231.414 | 0.000 | 3818.000 |
TVD | 5580 | 1522.297 | 2114.499 | 0.601 | 16,046.310 |
PGDP | 5580 | 32,501.820 | 30,261.460 | 99.000 | 467,749.000 |
NIP | NIP | |||
---|---|---|---|---|
Model 1 Fixed-Effect | Model 2 Random-Effect | Model 3 Random-Effect | Model 4 Random-Effect | |
DID | 225.816 **(2.02) | 208.793 *(1.91) | 231.129 **(2.11) | 229.308 **(2.1) |
NES | 211.458 ***(3.02) | 400.495 ***(6.47) | 287.366 ***(4.49) | 247.927 ***(3.85) |
SE | 5.06 ***(5.94) | 4.759 ***(5.69) | 4.897 ***(5.86) | 4.735 ***(5.66) |
NCS | 0.262 **(2.35) | 0.358 **(3.32) | 0.274 **(2.52) | 0.281 **(2.59) |
NCU | −37.222 ***(−10.62) | −28.482 ***(−8.41) | −32.117 ***(−9.39) | −32.319 ***(−9.44) |
NRD | 0.009 **(2.16) | 0.022 ***(6.22) | 0.018 ***(4.91) | 0.018 ***(5.04) |
EVG | 0.713 ***(2.79) | 0.923 ***(12.18) | 0.968 ***(13.11) | 1.078 ***(13.75) |
NFI | 0.004(0.03) | −0.121(−1.01) | −0.123(−1.03) | −0.111(−0.93) |
TVD | −0.013(−1.15) | −0.014(−1.28) | −0.01(−0.95) | −0.008(−0.65) |
PGDP | −0.001(−0.79) | −0.001(−1.65) | −0.001(−1.63) | −0.001(−1.59) |
_cons | 7139.197 ***(13.98) | 6711.118(13.87) | 7058.596(11.42) | |
−1.007 ***(−10.58) | −3.326 ***(−14.46) | −3.145 ***(−14.36) | −3.414 ***(−14.54) | |
Sigma_u | 1285.512 | 1231.867 | 1168.933 | |
Sigma_e | 720.213 | 713.062 | 712.189 | 711.507 |
Province FE | YES | NO | NO | YES |
City FE | YES | NO | YES | YES |
Year FE | YES | YES | YES | YES |
Hausman Test | −18.00 | |||
Log likelihood | −42,420 | −45,150 | −45,130 | −45,110 |
Wald χ2 | 315.49 *** | 1138.92 *** | 1222.72 *** | 1334.9 *** |
Pseudo R2 | 0.66 | 0.588 | 0.61 | 0.659 |
Wald test of spatial terms | 111.96 *** | 209.05 *** | 206.21 *** | 211.52 *** |
Placebo Test: One Year after | Placebo Test: One Year before | |||
---|---|---|---|---|
Model 5 Fixed-Effects | Model 6 Random-Effects | Model 7 Fixed-Effects | Model 8 Random-Effects | |
DID | 88.556(0.72) | 141.953 (1.18) | 238.841 **(2.11) | 234.39 **(2.12) |
NES | 208.645 ***(2.98) | 244.87 ***(3.8) | 210.906 ***(3.02) | 247.483 ***(3.84) |
SE | 5.028 ***(5.9) | 4.709 ***(5.63) | 5.047 ***(5.93) | 4.721 ***(5.64) |
NCS | 0.264 **(2.37) | 0.281 **(2.59) | 0.263 **(2.36) | 0.282 **(2.6) |
NCU | −36.193 ***(−10.43) | −31.276 ***(−9.22) | −37.269 ***(−10.63) | −32.332 ***(−9.44) |
NRD | 0.009 **(2.21) | 0.018 ***(5.08) | 0.009 **(2.15) | 0.018 ***(5.03) |
EVG | 0.71 ***(2.78) | 1.074 ***(13.91) | 0.713 ***(2.8) | 1.078 ***(13.95) |
NFI | 0.015(0.12) | −0.107(−0.89) | 0.003(0.02) | −0.111(−0.93) |
TVD | −0.012(−1.05) | −0.006(−0.56) | −0.013(−1.18) | −0.007(−0.67) |
PGDP | −0.001(−0.8) | −0.001(−1.61) | −0.001(−0.77) | −0.001(−1.57) |
_cons | 7044.466 ***(11.4) | 6711.118(13.87) | 7053.312 ***(11.41) | |
−1.007 ***(−10.57) | −3.412 ***(−11.4) | −1.007 ***(−10.57) | −3.412 ***(−14.54) | |
Sigma_u | 1167.455 | 1168.783 | ||
Sigma_e | 720.457 | 711.752 | 720.189 | 711.503 |
Province FE | YES | YES | YES | YES |
City FE | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES |
Hausman Test | −15.85 | −18.01 | ||
Log likelihood | −42,420 | −45,110 | −42,420 | −45,110 |
Wald χ2 | 311.58 *** | 1333.82 *** | 315.75 *** | 1335.43 *** |
Pseudo R2 | 0.662 | 0.56 | 0.66 | 0.659 |
Wald test of spatial terms | 111.73 *** | 211.05 *** | 111.75 *** | 211.45 *** |
NIP | Placebo Test: One Year after | |||
---|---|---|---|---|
Model 9 Fixed-Effects | Model 10 Random-Effects | Model 11 Fixed-Effects | Model 12 Random-Effects | |
DID | 234.708 **(2.1) | 191.143 *(1.73) | 157.217(1.3) | 122.776(1.02) |
NES | 187.335 ***(2.71) | 332.589 ***(5.3) | 183.694 ***(2.66) | 330.092 ***(5.26) |
SE | 0.731(0.554) | 2.995 **(2.49) | 0.713(0.58) | 2.991 **(2.48) |
NCS | 0.28 **(2.5) | 0.345 ***(3.13) | 0.28 **(2.5) | 0.345 ***(3.13) |
NCU | −37.923 ***(−10.4) | −29.117 ***(−8.04) | −37.071 ***(−10.22) | −28.407 ***(−7.89) |
NRD | −0.004(−0.88) | 0.022 ***(6.18) | −0.004(−0.85) | 0.022 ***(6.22) |
EVG | 0.51 **(1.97) | 0.729 ***(10.68) | 0.519 **(1.98) | 0.728 ***(10.66) |
NFI | −0.153(−1.06) | −0.062(−0.45) | −0.171(−1.17) | −0.073(−0.53) |
TVD | 0.002(0.17) | −0.003(−0.22) | 0.002(0.19) | −0.002(−0.29) |
PGDP | −0.001(−1.49) | −0.001(−1.16) | −0.001(−1.52) | −0.001(−1.19) |
_cons | −163.003(−0.56) | −170.351(−0.58) | ||
−1.172 ***(−23.72) | −1.905 ***(−27.73) | −1.173 ***(−23.81) | −1.905 ***(−27.73) | |
Sigma_u | 949.316 | 948.241 | ||
Sigma_e | 708.411 | 711.129 | 708.586 | 711.299 |
Province FE | YES | YES | YES | YES |
City FE | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES |
Hausman Test | 402.03 *** | 391.33 *** | ||
Log likelihood | −42340 | −45080 | −42340 | −45080 |
Wald χ2 | 880.89 *** | 2769.5 *** | 878.32 *** | 2769.48 *** |
Pseudo R2 | 0.23 | 0.759 | 0.237 | 0.759 |
Wald test of spatial terms | 562.52 *** | 769.06 *** | 566.8 *** | 769.13 *** |
NIP | Placebo Test: One Year after | |||
---|---|---|---|---|
Model 13 Fixed-Effects | Model 14 Random-Effects | Model 15 Fixed-Effects | Model 16 Random-Effects | |
DID | 229.241 **(2.07) | 212.685 *(1.93) | 104.648(0.86) | 107.879(0.89) |
−4.717 ***(−16.08) | −2.726 ***(−13.74) | −4.715 ***(−16.08) | −2.722 ***(−13.74) | |
Province FE | YES | YES | YES | YES |
City FE | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES |
Hausman Test | 356.45 *** | −522.67 *** | ||
Log likelihood | −42,350 | −45,160 | −42,350 | −45,160 |
Wald χ2 | 464.86 *** | 1365.58 *** | 461.09 *** | 1365.02 *** |
Pseudo R2 | 0.659 | 0.702 | 0.665 | 0.7 |
Wald test of spatial terms | 258.48 *** | 188.89 *** | 258.43 *** | 188.8 *** |
NIP | Placebo Test: One Year after | |||
---|---|---|---|---|
Model 17 Fixed-Effects | Model 18 Random-Effects | Model 19 Fixed-Effects | MODEL 20 Random-Effects | |
DID | 217.778 *(1.93) | 185.077 *(1.66) | 98.356(0.73) | 78.848(0.65) |
−2.867 ***(−18.44) | −0.985 ***(−6.68) | −2.867 ***(−18.42) | −0.985 ***(−6.68) | |
Province FE | YES | YES | YES | YES |
City FE | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES |
Hausman Test | 379.35 *** | 358.68 *** | ||
Log likelihood | −42,420 | −45,160 | −42,420 | −45,160 |
Wald χ2 | 940.66 *** | 1744.32 *** | 937.02 *** | 1745.74 *** |
Pseudo R2 | 0.501 | 0.765 | 0.506 | 0.765 |
Wald test of spatial terms | 339.87 *** | 44.61 *** | 339.28 *** | 44.64 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, J. High-Speed Rails and City Innovation System: Empirical Evidence from China. Systems 2023, 11, 24. https://doi.org/10.3390/systems11010024
Gu J. High-Speed Rails and City Innovation System: Empirical Evidence from China. Systems. 2023; 11(1):24. https://doi.org/10.3390/systems11010024
Chicago/Turabian StyleGu, Jiafeng. 2023. "High-Speed Rails and City Innovation System: Empirical Evidence from China" Systems 11, no. 1: 24. https://doi.org/10.3390/systems11010024
APA StyleGu, J. (2023). High-Speed Rails and City Innovation System: Empirical Evidence from China. Systems, 11(1), 24. https://doi.org/10.3390/systems11010024