Clinical Genetics of Prolidase Deficiency: An Updated Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Population
3.2. Phenotypical Characterization of Patients with PD
3.2.1. First Symptoms of PD
3.2.2. Developmental Delay/Intellectual Disability and Other Neurologic Features
3.2.3. Dysmorphy
3.2.4. Dermatological Symptoms
Chronic Ulcers
Additional Dermatological Signs
3.2.5. Recurrent Respiratory Infections and Pulmonary Lesions
3.2.6. Failure to Thrive
3.2.7. Gastroenterologic Symptoms
3.3. Biological Characterization of Patients with PD
3.3.1. Hematologic Disorders
3.3.2. Immunologic Disorders
3.3.3. Imidopeptiduria
4. Treatments and Follow-Up
5. Prolidase Structure Activity and Regulation
6. Molecular Genetics
7. Histology of Patient’s and Animal Model’s Tissues
8. Pathophysiology of PD
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kitchener, R.L.; Grunden, A.M. Prolidase function in proline metabolism and its medical and biotechnological applications. J. Appl. Microbiol. Biochem. 2012, 113, 233–247. [Google Scholar] [CrossRef] [PubMed]
- Surazynski, A.; Miltyk, W.; Palka, J.; Phang, J.M. Prolidase-dependent regulation of collagen biosynthesis. Amino Acids 2008, 35, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Powell, G.F.; Maniscalco, R.M. Bound hydroxyproline excretion following gelatin loading in prolidase deficiency. Metabolism 1976, 25, 503–508. [Google Scholar] [CrossRef]
- Forlino, A.; Lupi, A.; Vaghi, P.; Icaro Cornaglia, A.; Calligaro, A.; Campari, E.; Cetta, G. Mutation analysis of five new patients affected by prolidase deficiency: The lack of enzyme activity causes necrosis-like cell death in cultured fibroblasts. Hum. Genet. 2002, 111, 314–322. [Google Scholar] [CrossRef]
- Hintze, J.P.; Kirby, A.; Torti, E.; Batanian, J.R. Prolidase deficiency in a mexican-american patient identified by array cgh reveals a novel and the largest pepd gene deletion. Mol. Syndromol. 2016, 7, 80–86. [Google Scholar] [CrossRef]
- Lupi, A.; Tenni, R.; Rossi, A.; Cetta, G.; Forlino, A. Human prolidase and prolidase deficiency: An overview on the characterization of the enzyme involved in proline recycling and on the effects of its mutations. J. Amino Acids 2008, 35, 739–752. [Google Scholar] [CrossRef]
- Viglio, S.; Annovazzi, L.; Conti, B.; Genta, I.; Perugini, P.; Zanone, C.; Casado, B.; Cetta, G.; Iadarola, P. The role of emerging techniques in the investigation of prolidase deficiency: From diagnosis to the development of a possible therapeutical approach. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2006, 832, 1–8. [Google Scholar] [CrossRef]
- Ogata, A.; Tanaka, S.; Tomoda, T.; Murayama, E.; Endo, F.; Kikuchi, I. Autosomal recessive prolidase deficiency. Three patients with recalcitrant ulcers. Arch. Dermatol. 1981, 117, 689–697. [Google Scholar] [CrossRef]
- Vestita, M.; Giudice, G.; Bonamonte, D. Hyperbaric oxygen therapy in the management of severe legulcers from prolidase deficiency. BMJ Case Rep. 2017. [Google Scholar] [CrossRef] [Green Version]
- Caselli, D.; Cimaz, R.; Besio, R.; Rossi, A.; De Lorenzi, E.; Colombo, R.; Cantarini, L.; Riva, S.; Spada, M.; Forlino, A.; et al. Partial rescue of biochemical parameters after hematopoietic stem cell transplantation in a patient with prolidase deficiency due to two novel pepd mutations. JIMD Rep. 2012, 3, 71–77. [Google Scholar]
- Ferreira, C.R.; Cusmano-Ozog, K. Spurious elevation of multiple urine amino acids by ion-exchange chromatography in patients with prolidase deficiency. JIMD Rep. 2017, 31, 45–49. [Google Scholar] [PubMed] [Green Version]
- Jackson, S.H.; Dennis, A.W.; Greenberg, M. Iminodipeptiduria: A genetic defect in recycling collagen; a method for determining prolidase in erythrocytes. Can. Med. Assoc. J. 1975, 113, 759, 762–763. [Google Scholar] [PubMed]
- Goodman, S.I.; Solomons, C.C.; Muschenheim, F.; McIntyre, C.A.; Miles, B.; O’Brien, D. A syndrome resembling lathyrism associated with iminodipeptiduria. Am. J. Med. 1968, 45, 152–159. [Google Scholar] [CrossRef]
- Besio, R.; Gioia, R.; Cossu, F.; Monzani, E.; Nicolis, S.; Cucca, L.; Profumo, A.; Casella, L.; Tenni, R.; Bolognesi, M.; et al. Kinetic and structural evidences on human prolidase pathological mutants suggest strategies for enzyme functional rescue. PLoS ONE 2013, 8, e58792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kodama, H.; Ohhashi, T.; Ohba, C.; Ohno, T.; Arata, J.; Kubonishi, I.; Miyoshi, I. Characteristics and partial purification of prolidase and prolinase from leukocytes of a normal human and a patient with prolidase deficiency. Clin. Chim. Acta 1989, 180, 65–72. [Google Scholar] [CrossRef]
- Lupi, A.; Rossi, A.; Campari, E.; Pecora, F.; Lund, A.M.; Elcioglu, N.H.; Gultepe, M.; Di Rocco, M.; Cetta, G.; Forlino, A. Molecular characterisation of six patients with prolidase deficiency: Identification of the first small duplication in the prolidase gene and of a mutation generating symptomatic and asymptomatic outcomes within the same family. J. Med. Genet. 2006, 43, e58. [Google Scholar] [CrossRef] [Green Version]
- Hershkovitz, T.; Hassoun, G.; Indelman, M.; Shlush, L.I.; Bergman, R.; Pollack, S.; Sprecher, E. A homozygous missense mutation in pepd encoding peptidase d causes prolidase deficiency associated with hyper-ige syndrome. Clin. Exp. Dermatol. 2006, 31, 435–440. [Google Scholar] [CrossRef]
- Falik-Zaccai, T.C.; Khayat, M.; Luder, A.; Frenkel, P.; Magen, D.; Brik, R.; Gershoni-Baruch, R.; Mandel, H. A broad spectrum of developmental delay in a large cohort of prolidase deficiency patients demonstrates marked interfamilial and intrafamilial phenotypic variability. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2010, 153, 46–56. [Google Scholar] [CrossRef]
- Royce, P.; Steinmann, B. Prolidase Deficiency. In Connective Tissue and Its Heritable Disorders: Molecular, Genetic, and Medical Aspects, 2nd ed.; Wiley-Liss: New York, NY, USA, 2002; pp. 727–738. [Google Scholar]
- Lemieux, B.; Auray-Blais, C.; Giguere, R.; Shapcott, D. Prolidase deficiency: Detection of cases by a newborn urinary screening programme. J. Inherit. Metab. Dis. 1984, 7, 145–146. [Google Scholar]
- Falik-Zaccai, T.C.; Kfir, N.; Frenkel, P.; Cohen, C.; Tanus, M.; Mandel, H.; Shihab, S.; Morkos, S.; Aaref, S.; Summar, M.L.; et al. Population screening in a druze community: The challenge and the reward. Genet. Med. 2008, 10, 903–909. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Kurien, B.T.; Lundgren, D.; Patel, N.C.; Kaufman, K.M.; Miller, D.L.; Porter, A.C.; D’Souza, A.; Nye, L.; Tumbush, J.; et al. A nonsense mutation of pepd in four amish children with prolidase deficiency. Am. J. Med. Genet. A 2006, 140, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Kopanos, C.; Tsiolkas, V.; Kouris, A.; Chapple, C.E.; Aguilera, M.A.; Meyer, R.; Massouras, A. Varsome: The human genomic variant search engine. Oxf. Bioinf. 2018. [Google Scholar] [CrossRef] [PubMed]
- Wildeman, M.; Van Ophuizen, E.; Den Dunnen, J.T.; Taschner, P.E. (Improving sequence variant descriptions in mutation databases and literature using the Mutalyzer sequence variation nomenclature checker. Hum. Mutat. 2008, 29, 6–13. [Google Scholar] [CrossRef]
- Kent, W.J.; Sugnet, C.W.; Furey, T.S.; Roskin, K.M.; Pringle, T.H.; Zahler, A.M.; Haussler, D. The human genome browser at UCSC. Genome Res. 2002, 12, 996–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bissonnette, R.; Friedmann, D.; Giroux, J.M.; Dolenga, M.; Hechtman, P.; Der Kaloustian, V.M.; Dubuc, R. Prolidase deficiency: A multisystemic hereditary disorder. J. Am. Acad Dermatol. 1993, 29, 818–821. [Google Scholar] [CrossRef]
- Tanoue, A.; Endo, F.; Kitano, A.; Matsuda, I. A single nucleotide change in the prolidase gene in fibroblasts from two patients with polypeptide positive prolidase deficiency. Expression of the mutant enzyme in nih 3t3 cells. J. Clin. Investig. 1990, 86, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Besio, R.; Maruelli, S.; Gioia, R.; Villa, I.; Grabowski, P.; Gallagher, O.; Bishop, N.J.; Foster, S.; De Lorenzi, E.; Colombo, R.; et al. Lack of prolidase causes a bone phenotype both in human and in mouse. Bone 2015, 72, 53–64. [Google Scholar] [CrossRef]
- Butbul Aviel, Y.; Mandel, H.; Avitan Hersh, E.; Bergman, R.; Adiv, O.E.; Luder, A.; Brik, R. Prolidase deficiency associated with systemic lupus erythematosus (sle): Single site experience and literature review. Pediatr. Rheumatol. Online J. 2012, 10, 18. [Google Scholar] [CrossRef] [Green Version]
- Ledoux, P.; Scriver, C.R.; Hechtman, P. Expression and molecular analysis of mutations in prolidase deficiency. Am. J. Hum. Genet. 1996, 59, 1035–1039. [Google Scholar]
- Dyne, K.; Zanaboni, G.; Bertazzoni, M.; Cetta, G.; Viglio, S.; Lupi, A.; Iadarola, P. Mild, late-onset prolidase deficiency: Another italian case. Br. J. Dermatol. 2001, 144, 635–636. [Google Scholar] [CrossRef]
- Lopes, I.; Marques, L.; Neves, E.; Silva, A.; Taveira, M.; Pena, R.; Vilarinho, L.; Martins, E. Prolidase deficiency with hyperimmunoglobulin e: A case report. Pediatr. Allergy Immunol. 2002, 13, 140–142. [Google Scholar] [CrossRef] [PubMed]
- Suri, D.; Pandit, R.A.; Saini, A.G.; Droga, S.; Gupta, A.; Rawat, A.; Dwivedi, I.; Masih, S.; Attri, S.V. A novel splice acceptor site mutation (ivs11 g > a) of pepd gene causing prolidase deficiency associated with hyperimmunoglobulinemia e. Gene Rep. 2016, 29–32. [Google Scholar] [CrossRef]
- Gray, R.G.F.; Green, A.; Ward, A.M.; Anderson, I.; Peck, D.S. Biochemical and immunological studies on a family with prolidase deficiency. J. Inherit. Metab. Dis. 1983, 6, 143–144. [Google Scholar] [CrossRef]
- Zanaboni, G.; Dyne, K.M.; Rossi, A.; Monafo, V.; Cetta, G. Prolidase deficiency: Biochemical study of erythrocyte and skin fibroblast prolidase activity in italian patients. Haematologica 1994, 79, 13–18. [Google Scholar]
- Kiratli Nalbant, E.; Karaosmanoglu, N.; Kutlu, O.; Ceylaner, S.; Eksioglu, H.M. A rare case of prolidase deficiency with situs inversus totalis, identified by a novel mutation in the pepd gene. JAAD Case Rep. 2019, 5, 436–438. [Google Scholar] [CrossRef] [Green Version]
- Lombeck, I.; Wendel, U.; Versieck, J.; van Ballenberghe, L.; Bremer, H.J.; Duran, R.; Wadman, S. Increased manganese content and reduced arginase activity in erythrocytes of a patient with prolidase deficiency (iminodipeptiduria). Eur. J. Pediatr. 1986, 144, 571–573. [Google Scholar] [CrossRef]
- Boright, A.P.; Scriver, C.R.; Lancaster, G.A.; Choy, F. Prolidase deficiency: Biochemical classification of alleles. Am. J. Med. Gene 1989, 44, 731–740. [Google Scholar]
- Klar, A.; Navon-Elkan, P.; Rubinow, A.; Branski, D.; Hurvitz, H.; Christensen, E.; Khayat, M.; Falik-Zaccai, T.C. Prolidase deficiency: It looks like systemic lupus erythematosus but it is not. Eur. J. Paediatr. 2010, 169, 727–732. [Google Scholar] [CrossRef]
- Arata, J.; Tada, J.; Yamada, T.; Oono, T.; Yasutomi, H.; Oka, E. Angiopathic pathogenesis of clinical manifestations in prolidase deficiency. Arch. Dermatol. 1991, 127, 124–125. [Google Scholar] [CrossRef]
- Arata, J.; Umemura, S.; Yamamoto, Y.; Hagiyama, M.; Nohara, N. Prolidase deficiency: Its dermatological manifestations and some additional biochemical studies. Arch. Dermatol. 1979, 115, 62–67. [Google Scholar] [CrossRef]
- Qazi, M.; Taseer, A.B.; Iffat, H.; Farah, S.; Sabiya, M. Prolidase deficiency. Indian J. Dermatol. 2007, 52, 53–55. [Google Scholar]
- Berardesca, E.; Fideli, D.; Bellosta, M.; Dyne, K.M.; Zanaboni, G.; Cetta, G. Blood transfusions in the therapy of a case of prolidase deficiency. Br. J. Dermatol. 1992, 126, 193–195. [Google Scholar] [CrossRef]
- Karthikeyan, K.; Polly, D.; Asmathulla, S.; Balamurugan, R.; Kaviraj, M. Topical proline therapy in prolidase deficiency. J. Clin. Exp. Dermatol. 2019, 44, 344–346. [Google Scholar] [CrossRef]
- Pedersen, P.S.; Christensen, E.; Brandt, N.J. Prolidase deficiency. Acta Paediatr. Scand. 1983, 72, 785–788. [Google Scholar] [CrossRef]
- Pandit, R.A.; Chen, C.J.; Butt, T.A.; Islam, N. Identification and analysis of a novel mutation in pepd gene in two kashmiri siblings with prolidase enzyme deficiency. Gene 2013, 516, 316–319. [Google Scholar] [CrossRef]
- Nir, V.; Ilivitky, A.; Hakim, F.; Yoseph, R.B.; Gur, M.; Mandel, H.; Bentur, L. Pulmonary manifestations of prolidase deficiency. Pediatr. Pulmonol. 2016, 51, 1229–1233. [Google Scholar] [CrossRef]
- Cottin, V.; Nasser, M.; Traclet, J.; Chalabreysse, L.; Lebre, A.S.; Si-Mohamed, S.; Philit, F.; Thivolet-Bejui, F. Prolidase deficiency: A new genetic cause of combined pulmonary fibrosis and emphysema syndrome in the adult. Eur. Respir. J. 2020, 55, 1901952. [Google Scholar] [CrossRef]
- Rayment, J.H.; Jobling, R.; Bowdin, S.; Cutz, E.; Dell, S.D. Prolidase deficiency diagnosed by whole exome sequencing in a child with pulmonary capillaritis. ERJ Open Res. 2019, 5. [Google Scholar] [CrossRef]
- Rizvi, S.A.; Elder, M.; Beasley, G. A novel manifestation of prolidase deficiency in a toddler diagnosed with very-early-onset crohn disease. J. Pediatr. Gastroenterol. Nutr. 2019, 69, e89–e90. [Google Scholar] [CrossRef]
- Kuloglu, Z.; Kansu, A.; Serwas, N.; Demir, A.; Yaman, A.; Ensari, A.; Boztug, K. Inflammatory bowel disease-like phenotype in a young girl with prolidase deficiency: A new spectrum of clinical manifestation. Genet. Couns. 2015, 26, 205–211. [Google Scholar]
- Lupi, A.; Perugini, P.; Genta, I.; Modena, T.; Conti, B.; Casado, B.; Cetta, G.; Pavanetto, F.; Iadarola, P. Biodegradable microspheres for prolidase delivery to human cultured fibroblasts. J. Pharm. Pharmacol. 2004, 56, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.S.; Vilarinho, L. Doença metabólica rara.Deficiência em prolidase. Acta Paediatr. Port 1997, 28, 237–239. [Google Scholar]
- Kurien, B.T.; D’Sousa, A.; Bruner, B.F.; Gross, T.; James, J.A.; Targoff, I.N.; Maier-Moore, J.S.; Harley, I.T.; Wang, H.; Scofield, R.H. Prolidase deficiency breaks tolerance to lupus-associated antigens. Int. J. Rheum. Dis. 2013, 16, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Lupi, A.; Casado, B.; Soli, M.; Bertazzoni, M.; Annovazzi, L.; Viglio, S.; Cetta, G.; Iadarola, P. Therapeutic apheresis exchange in two patients with prolidase deficiency. Br. J. Dermatol. 2002, 147, 1237–1240. [Google Scholar] [CrossRef]
- Ferreira, C.; Wang, H. Prolidase Deficiency. Gene Reviews. Available online: https://www.ncbi.nlm.nih.gov/books/NBK299584/ (accessed on 1 February 2020).
- Hechtman, P.; Richter, A.; Corman, N.; Leong, Y.M. In situ activation of human erythrocyte prolidase: Potential for enzyme replacement therapy in prolidase deficiency. Pediatr. Res. 1988, 24, 709–712. [Google Scholar] [CrossRef] [Green Version]
- Endo, F.; Matsuda, I.; Ogata, A.; Tanaka, S. Human erythrocyte prolidase and prolidase deficiency. Pediatr. Res. 1982, 16, 227–231. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, K.; Tohyama, J.; Tsujino, S.; Sato, K.; Oono, T.; Arata, J.; Endo, F.; Sakuragawa, N. Amelioration of prolidase deficiency in fibroblasts using adenovirus mediated gene transfer. Jpn. J. Hum. Genet. 1997, 42, 401–408. [Google Scholar] [CrossRef] [Green Version]
- Perugini, P.; Hassan, K.; Genta, I.; Modena, T.; Pavanetto, F.; Cetta, G.; Zanone, C.; Iadarola, P.; Asti, A.; Conti, B. Intracellular delivery of liposome-encapsulated prolidase in cultured fibroblasts from prolidase-deficient patients. J. Control. Release 2005, 102, 181–190. [Google Scholar] [CrossRef]
- Sato, S.; Ohnishi, T.; Uejima, Y.; Furuichi, M.; Fujinaga, S.; Imai, K.; Nakamura, K.; Kawano, Y.; Suganuma, E. Induction therapy with rituximab for lupus nephritis due to prolidase deficiency. Rheumatology 2020. [Google Scholar] [CrossRef]
- Sjostrom, H.; Noren, O. Structural properties of pig intestinal proline dipeptidase. Biochim. Biophys. Acta 1974, 359, 177–185. [Google Scholar] [CrossRef]
- Lowther, W.T.; Matthews, B.W. Metalloaminopeptidases: Common functional themes in disparate structural surroundings. Chem. Rev. 2002, 102, 4581–4608. [Google Scholar] [CrossRef] [PubMed]
- King, G.F.; Middlehurst, C.R.; Kuchel, P.W. Direct nmr evidence that prolidase is specific for the trans isomer of imidodipeptide substrates. Biochemistry 1986, 25, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Nakayama, K.; Sagara, Y.; Awata, S.; Yamashita, K.; Manabe, M.; Kodama, H. Characterization of prolidase activity in erythrocytes from a patient with prolidase deficiency: Comparison with prolidase i and ii purified from normal human erythrocytes. Clin. Biochem. 2005, 38, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Uramatsu, S.; Liu, G.; Yang, Q.; Uramatsu, M.; Chi, H.; Lu, J.; Yamashita, K.; Kodama, H. Characterization of prolidase i and ii purified from normal human erythrocytes: Comparison with prolidase in erythrocytes from a patient with prolidase deficiency. Amino Acids 2009, 37, 543–551. [Google Scholar] [CrossRef]
- Liu, G.; Nakayama, K.; Awata, S.; Tang, S.; Kitaoka, N.; Manabe, M.; Kodama, H. Prolidase isoenzymes in the rat: Their organ distribution, developmental change and specific inhibitors. Pediatr. Res. 2007, 62, 54–59. [Google Scholar] [CrossRef] [Green Version]
- Endo, F.; Tanoue, A.; Ogata, T.; Motohara, K.; Matsuda, I. Immunoaffinity purification of human erythrocyte prolidase. Clin. Chim. Acta 1988, 176, 143–149. [Google Scholar] [CrossRef]
- Tanoue, A.; Endo, F.; Matsuda, I. Structural organization of the gene for human prolidase (peptidase d) and demonstration of a partial gene deletion in a patient with prolidase deficiency. J. Biol. Chem. 1990, 265, 11306–11311. [Google Scholar]
- Wilk, P.; Uehlein, M.; Kalms, J.; Dobbek, H.; Mueller, U.; Weiss, M.S. Substrate specificity and reaction mechanism of human prolidase. FEBS J. 2017, 284, 2870–2885. [Google Scholar] [CrossRef] [Green Version]
- Besio, R.; Baratto, M.C.; Gioia, R.; Monzani, E.; Nicolis, S.; Cucca, L.; Profumo, A.; Casella, L.; Basosi, R.; Tenni, R.; et al. A mn(ii)-mn(ii) center in human prolidase. Biochim. Biophys. Acta 2013, 1834, 197–204. [Google Scholar] [CrossRef]
- Lupi, A.; Della Torre, S.; Campari, E.; Tenni, R.; Cetta, G.; Rossi, A.; Forlino, A. Human recombinant prolidase from eukaryotic and prokaryotic sources. Expression, purification, characterization and long-term stability studies. FEBS J. 2006, 273, 5466–5478. [Google Scholar] [CrossRef]
- Theriot, C.M.; Tove, S.R.; Grunden, A.M. Biotechnological applications of recombinant microbial prolidases. Adv. Appl. Microbiol. 2009, 68, 99–132. [Google Scholar] [PubMed]
- Ledoux, P.; Scriver, C.; Hechtman, P. Four novel pepd alleles causing prolidase deficiency. Am. J. Med. Genet. A 1994, 54, 1014–1021. [Google Scholar]
- Chi, H.; Lu, J.; Liu, G.; Tong, J.; Nakayama, K.; Yamashita, K.; Kitaoka, N.; Kodama, H. Activity of prolidase isoenzymes in the rat brain: Subcellular and regional distribution during development. Brain Res. 2009, 1303, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Cheng, Z.; Zheng, L. Functional and molecular characterization of rat intestinal prolidase. Pediatr. Res. 2003, 53, 905–914. [Google Scholar] [CrossRef] [Green Version]
- Surazynski, A.; Liu, Y.; Miltyk, W.; Phang, J.M. Nitric oxide regulates prolidase activity by serine/threonine phosphorylation. J. Cell. Biochem. 2005, 96, 1086–1094. [Google Scholar] [CrossRef] [Green Version]
- Endo, F.; Tanoue, A.; Hata, A.; Kitano, A.; Matsuda, I. Deduced amino acid sequence of human prolidase and molecular analyses of prolidase deficiency. J. Inherit. Metab. Dis. 1989, 12, 351–354. [Google Scholar] [CrossRef]
- Endo, F.; Tanoue, A.; Nakai, H.; Hata, A.; Indo, Y.; Titani, K.; Matsuda, I. Primary structure and gene localization of human prolidase. J. Biol. Chem. 1989, 264, 4476–4481. [Google Scholar]
- Tanoue, A.; Endo, F.; Akaboshi, I.; Oono, T.; Arata, J.; Matsuda, I. Molecular defect in siblings with prolidase deficiency and absence or presence of clinical symptoms. A 0.8-kb deletion with breakpoints at the short, direct repeat in the pepd gene and synthesis of abnormal messenger rna and inactive polypeptide. JCI 1991, 87, 1171–1176. [Google Scholar] [CrossRef] [Green Version]
- Kikuchi, S.; Tanoue, A.; Endo, F.; Wakasugi, S.; Matsuo, N.; Tsujimoto, G. A novel nonsense mutation of the pepd gene in a japanese patient with prolidase deficiency. J. Hum. Genet. 2000, 45, 102–104. [Google Scholar] [CrossRef] [Green Version]
- Bhatnager, R.; Dang, A.S. Comprehensive in-silico prediction of damage associated snps in human prolidase gene. Sci. Rep. 2018, 8, 9430. [Google Scholar] [CrossRef] [Green Version]
- Wilk, P.; Uehlein, M.; Piwowarczyk, R.; Dobbek, H.; Mueller, U.; Weiss, M.S. Structural basis for prolidase deficiency disease mechanisms. FEBS J. 2018, 285, 3422–3441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Insolia, V.; Piccolini, V.M. Brain morphological defects in prolidase deficient mice: First report. Eur. J. Histochem. EJH 2014, 58, 2417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Insolia, V.; Priori, E.C.; Gasperini, C.; Coppa, F.; Cocchia, M.; Iervasi, E.; Ferrari, B.; Besio, R.; Maruelli, S.; Bernocchi, G.; et al. Prolidase enzyme is required for extracellular matrix integrity and impacts on postnatal cerebellar cortex development. J. Comp. Neurol. 2020, 528, 61–80. [Google Scholar] [CrossRef]
- Jung, S.; Silvius, D.; Nolan, K.A.; Borchert, G.L.; Millet, Y.H.; Phang, J.M.; Gunn, T.M. Developmental cardiac hypertrophy in a mouse model of prolidase deficiency. Birth Defects Res. A Clin. Mol. Teratol. 2011, 91, 204–217. [Google Scholar] [CrossRef]
- Adibi, S.A.; Mercer, D.W. Protein digestion in human intestine as reflected in luminal, mucosal, and plasma amino acid concentrations after meals. JCI 1973, 52, 1586–1594. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Bazer, F.W.; Burghardt, R.C.; Johnson, G.A.; Kim, S.W.; Knabe, D.A.; Li, P.; Li, X.; McKnight, J.R.; Satterfield, M.C.; et al. Proline and hydroxyproline metabolism: Implications for animal and human nutrition. Amino Acids 2011, 40, 1053–1063. [Google Scholar] [CrossRef] [Green Version]
- Misiura, M.; Miltyk, W. Proline-containing peptides-new insight and implications: A review. Biofactors 2019, 45, 857–866. [Google Scholar] [CrossRef]
- Karna, E.; Szoka, L.; Huynh, T.Y.L.; Palka, J.A. Proline-dependent regulation of collagen metabolism. Cell. Mol. Life Sci. 2019. [Google Scholar] [CrossRef] [Green Version]
- Krane, S.M. The importance of proline residues in the structure, stability and susceptibility to proteolytic degradation of collagens. Amino Acids 2008, 35, 703–710. [Google Scholar] [CrossRef]
- Chamson, A.; Voigtlander, V.; Myara, I.; Frey, J. Collagen biosynthesis anomalies in prolidase deficiency: Effect of glycyl-l-proline on the degradation of newly synthesized collagen. Clin. Physiol. Biochem. 1989, 7, 128–136. [Google Scholar]
- Koivisto, L.; Heino, J.; Hakkinen, L.; Larjava, H. Integrins in wound healing. Adv. Wound Care 2014, 3, 762–783. [Google Scholar] [CrossRef] [Green Version]
- Labat-Robert, J.; Robert, L. Interaction between cells and extracellular matrix: Signaling by integrins and the elastin-laminin receptor. Prog. Mol. Subcell. Biol. 2000, 25, 57–70. [Google Scholar]
- Zareba, I.; Palka, J. Prolidase-proline dehydrogenase/proline oxidase-collagen biosynthesis axis as a potential interface of apoptosis/autophagy. BioFactors 2016, 42, 341–348. [Google Scholar] [CrossRef]
- Surazynski, A.; Sienkiewicz, P.; Wolczynski, S.; Palka, J. Differential effects of echistatin and thrombin on collagen production and prolidase activity in human dermal fibroblasts and their possible implication in beta1-integrin-mediated signaling. Pharmacol. Res. 2005, 51, 217–221. [Google Scholar] [CrossRef]
- Miltyk, W.; Karna, E.; Wolczynski, S.; Palka, J. Insulin-like growth factor i-dependent regulation of prolidase activity in cultured human skin fibroblasts. Mol. Cell. B Biochem. 1998, 189, 177–183. [Google Scholar] [CrossRef]
- Ruiz-Ortega, M.; Rodríguez Vita, J.; Sanchez Lopez, E.; Carvajal, G.; Egido, J. Tgf-β signaling in vascular fibrosis. Cardiovasc. Res. 2007, 74, 196–206. [Google Scholar] [CrossRef] [Green Version]
- Serralheiro, P.; Soares, A.; Costa Almeida, C.M.; Verde, I. Tgf-β1 in vascular wall pathology: Unraveling chronic venous insufficiency pathophysiology. Int. J. Mol. Sci. 2017, 18, 2534. [Google Scholar] [CrossRef] [Green Version]
- Surazynski, A.; Miltyk, W.; Prokop, I.; Palka, J. Prolidase-dependent regulation of tgf beta (corrected) and tgf beta receptor expressions in human skin fibroblasts. Eur. J. Pharmacol. 2010, 649, 115–119. [Google Scholar] [CrossRef]
- Corcoran, S.E.; O’Neill, L.A. Hif1alpha and metabolic reprogramming in inflammation. JCI 2016, 126, 3699–3707. [Google Scholar] [CrossRef]
- Zimna, A.; Kurpisz, M. Hypoxia-inducible factor-1 in physiological and pathophysiological angiogenesis: Applications and therapies. BioMed Res. Int. 2015, 2015, 549412. [Google Scholar] [CrossRef] [Green Version]
- Szoka, L.; Karna, E.; Hlebowicz-Sarat, K.; Karaszewski, J.; Palka, J.A. Exogenous proline stimulates type i collagen and hif-1alpha expression and the process is attenuated by glutamine in human skin fibroblasts. Mol. Cell. Biochem. 2017, 435, 197–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palazon, A.; Goldrath, A.W.; Nizet, V.; Johnson, R.S. Hif transcription factors, inflammation, and immunity. Immunity 2014, 41, 518–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surazynski, A.; Donald, S.P.; Cooper, S.K.; Whiteside, M.A.; Salnikow, K.; Liu, Y.; Phang, J.M. Extracellular matrix and hif-1 signaling: The role of prolidase. Int. J. Cancer 2008, 122, 1435–1440. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. Nf-kappab signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorrington, M.G.; Fraser, I.D.C. Nf-kappab signaling in macrophages: Dynamics, crosstalk, and signal integration. Front. Immunol. 2019, 10, 705. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spodenkiewicz, M.; Spodenkiewicz, M.; Cleary, M.; Massier, M.; Fitsialos, G.; Cottin, V.; Jouret, G.; Poirsier, C.; Doco-Fenzy, M.; Lèbre, A.-S. Clinical Genetics of Prolidase Deficiency: An Updated Review. Biology 2020, 9, 108. https://doi.org/10.3390/biology9050108
Spodenkiewicz M, Spodenkiewicz M, Cleary M, Massier M, Fitsialos G, Cottin V, Jouret G, Poirsier C, Doco-Fenzy M, Lèbre A-S. Clinical Genetics of Prolidase Deficiency: An Updated Review. Biology. 2020; 9(5):108. https://doi.org/10.3390/biology9050108
Chicago/Turabian StyleSpodenkiewicz, Marta, Michel Spodenkiewicz, Maureen Cleary, Marie Massier, Giorgos Fitsialos, Vincent Cottin, Guillaume Jouret, Céline Poirsier, Martine Doco-Fenzy, and Anne-Sophie Lèbre. 2020. "Clinical Genetics of Prolidase Deficiency: An Updated Review" Biology 9, no. 5: 108. https://doi.org/10.3390/biology9050108
APA StyleSpodenkiewicz, M., Spodenkiewicz, M., Cleary, M., Massier, M., Fitsialos, G., Cottin, V., Jouret, G., Poirsier, C., Doco-Fenzy, M., & Lèbre, A. -S. (2020). Clinical Genetics of Prolidase Deficiency: An Updated Review. Biology, 9(5), 108. https://doi.org/10.3390/biology9050108