Silicates of Potassium and Aluminium (Kaolin); Comparative Foliar Mitigation Treatments and Biochemical Insight on Grape Berry Quality in Vitis vinifera L. (cv. Touriga National and Touriga Franca)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Treatment and Sample Collection
2.2. Grape Berry Weight, pH, and Probable Alcohol
2.3. Calcium, Magnesium, and Potassium
2.4. Extract Preparation
2.4.1. Total Phenolics, Tannins, and Anthocyanin Content
2.4.2. Monomeric Anthocyanins Quantification by HPLC
2.5. Statistical Analysis
3. Results
3.1. Weight of the Berries
3.2. pH Values
3.3. Probable Alcohol
3.4. Total Phenolics
3.5. Total Tannins in Berry Skins and Seeds
3.6. Total Anthocyanins in Berry Skins and Monomeric Anthocyanins
3.7. Calcium, Potassium, and Magnesium Content
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Glenn, D.M.; Puterka, G.J. Particle films: A new technology for agriculture. Hortc. Rev. 2005, 31, 1–44. [Google Scholar]
- Buck, G.B.; Korndörfer, G.H.; Nolla, A.; Coelho, L. Potassium Silicate as Foliar Spray and Rice Blast Control. J. Plant Nutr. 2008, 31, 231–237. [Google Scholar] [CrossRef]
- Deshmukh, R.K.; Ma, J.F.; Bélanger, R.R. Editorial: Role of Silicon in Plants. Front. Plant Sci. 2017, 8, 1858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goussain, M.M.; Prado, E.; Moraes, J.C. Effect of silicon applied to wheat plants on the biology and probing behaviour of the greenbug Schizaphis graminum (Rond.) (Hemiptera: Aphididae). Neotrop. Entomol. 2005, 34, 807–813. [Google Scholar] [CrossRef]
- Jayawardana, H.A.R.K.; Weerahewa, H.L.D.; Saparamadu, M.D.J. Effect of root or foliar application of soluble silicon on plant growth, fruit quality and anthracnose development of capsicum. Trop. Agric. Res. 2015, 26, 74–81. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Sun, W.; Zhu, Y.G.; Christie, P. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environ. Pollut. 2007, 147, 422–428. [Google Scholar] [CrossRef] [Green Version]
- Palmer, S.A. Strawberry Powdery Mildew: Epidemiology and the Effect of Host Nutrition on Disease. Ph.D. Thesis, University of Adelaide, Adelaide, Australia, 2007. [Google Scholar]
- Rezende, D.C.; Rodrigues, F.Ã.; Carré-Missio, V.; Schurt, D.A.; Kawamura, I.K.; Korndörfer, G.H. Effect of root and foliar applications of silicon on brown spot development in rice. Australas. Plant Pathol. 2009, 38, 67–73. [Google Scholar] [CrossRef]
- Rodrigues, F.Ã.; Duarte, H.S.S.; Rezende, D.C.; Filho, J.A.W.; Korndörfer, G.H.; Zambolim, L. Foliar spray of potassium silicate on the control of angular leaf spot on beans. J. Plant Nutr. 2010, 33, 2082–2093. [Google Scholar] [CrossRef]
- Bowen, P.; Menzies, J.; Ehret, D.; Samuels, L.; Glass, A.D. Soluble silicon sprays inhibit powdery mildew development on grape leaves. J. Am. Soc. Hortic. Sci. 1992, 117, 906–912. [Google Scholar] [CrossRef]
- Al-Wasfy, M.M.M. The Synergistic Effects of Using Silicon with Some Vitamins on Growth and Fruiting of Flame Seedless Grapevines. Stem Cell 2014, 5, 8–13. [Google Scholar]
- Ebeling, W. Sorptive Dusts for Pest Control. Annu. Rev. Entomol. 1971, 16, 123–158. [Google Scholar] [CrossRef] [PubMed]
- Glenn, D.M. The Mechanisms of Plant Stress Mitigation by Kaolin-based Particle Films and Applications in Horticultural and Agricultural Crops. HortScience 2012, 47, 710–711. [Google Scholar] [CrossRef] [Green Version]
- Tubajika, K.M.; Civerolo, E.L.; Puterka, G.J.; Hashim, J.M.; Luvisi, D.A. The effects of kaolin, harpin, and imidacloprid on development of Pierce’s disease in grape. Crop Prot. 2007, 26, 92–99. [Google Scholar] [CrossRef]
- Cantore, V.; Pace, B.; Albrizio, R. Kaolin-based particle film technology affects tomato physiology, yield and quality. Environ. Exp. Bot. 2009, 66, 279–288. [Google Scholar] [CrossRef]
- Glenn, D.M. Particle Film Mechanisms of Action That Reduce the Effect of Environmental Stress in ‘Empire’ Apple. J. Am. Soc. Hortic. Sci. 2009, 134, 314–321. [Google Scholar] [CrossRef] [Green Version]
- Glenn, D.M.; Puterka, G.J. The use of plastic films and sprayable reflective particle films to increase light penetration in apple canopies and improve apple color and weight. HortScience 2007, 42, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Rosati, A.; Metcalf, S.G.; Buchner, R.P.; Fulton, A.E.; Lampinen, B.D. Effects of Kaolin Application on Light Absorption and Distribution, Radiation Use Efficiency and Photosynthesis of Almond and Walnut Canopies. Ann. Bot. 2006, 99, 255–263. [Google Scholar] [CrossRef] [Green Version]
- Dinis, L.T.; Bernardo, S.; Luzio, A.; Pinto, G.; Meijón, M.; Pintó-Marijuan, M.; Cotado, A.; Correia, C.; Moutinho-Pereira, J. Kaolin modulates ABA and IAA dynamics and physiology of grapevine under Mediterranean summer stress. J. Plant Physiol. 2018, 220, 181–192. [Google Scholar] [CrossRef]
- Dinis, L.T.; Bernardo, S.; Conde, A.; Pimentel, D.; Ferreira, H.; Félix, L.; Gerós, H.; Correia, C.; Moutinho-Pereira, J. Kaolin exogenous application boosts antioxidant capacity and phenolic content in berries and leaves of grapevine under summer stress. J. Plant Physiol. 2016, 191, 45–53. [Google Scholar] [CrossRef]
- Dinis, L.T.; Malheiro, A.; Luzio, A.; Fraga, H.; Ferreira, H.; Gonçalves, I.; Pinto, G.; Correia, C.; Moutinho-Pereira, J. Improvement of grapevine physiology and yield under summer stress by kaolin-foliar application: Water relations, photosynthesis and oxidative damage. Photosynthetica 2017, 56, 641–651. [Google Scholar] [CrossRef]
- Conde, A.; Pimentel, D.; Neves, A.; Dinis, L.T.; Bernardo, S.; Correia, C.M.; Gerós, H.; Moutinho-Pereira, J. Kaolin foliar application has a stimulatory effect on phenylpropanoid and flavonoid pathways in grape berries. Front. Plant Sci. 2016, 7, 1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shellie, K. Foliar Reflective Film and Water Deficit Increase Anthocyanin to Soluble Solids Ratio during Berry Ripening in Merlot. Am. J. Enol. Vitic. 2015, 66, 348–356. [Google Scholar] [CrossRef]
- Shellie, K.C.; King, B.A. Kaolin Particle Film and Water Deficit Influence Red Winegrape Color under High Solar Radiation in an Arid Climate. Am. J. Enol. Vitic. 2013, 64, 214–222. [Google Scholar] [CrossRef]
- Bernardo, S.; Dinis, L.T.; Machado, N.; Moutinho-Pereira, J. Grapevine abiotic stress assessment and search for sustainable adaptation strategies in Mediterranean-like climates. A review. Agron. Sustain. Dev. 2018, 38, 66. [Google Scholar] [CrossRef] [Green Version]
- Laane, H.M.P. The Effects of Foliar Sprays with Different Silicon Compounds. Plants 2018, 7, 45. [Google Scholar] [CrossRef] [Green Version]
- Aleixandre-Tudo, J.L.; Buica, A.; Nieuwoudt, H.; Aleixandre, J.L.; du Toit, W. Spectrophotometric analysis of phenolic compounds in grapes and wines. J. Agric. Food Chem. 2017, 65, 4009–4026. [Google Scholar] [CrossRef]
- Cynkar, W.; Cozzolino, D.; Dambergs, R.; Janik, L.; Gishen, M. The effects of homogenisation method and freezing on the determination of quality parameters in red grape berries of Vitis vinifera. Aust. J. Grape Wine Res. 2004, 10, 236–242. [Google Scholar] [CrossRef]
- Mercurio, M.D.; Dambergs, R.G.; Herderich, M.J.; Smith, P.A. High throughput analysis of red wine and grape phenolics adaptation and validation of methyl cellulose precipitable tannin assay and modified somers color assay to a rapid 96 well plate format. J. Agric. Food Chem. 2007, 55, 4651–4657. [Google Scholar] [CrossRef]
- Sarneckis, C.J.; Dambergs, R.; Jones, P.; Mercurio, M.; Herderich, M.J.; Smith, P. Quantification of condensed tannins by precipitation with methyl cellulose: Development and validation of an optimised tool for grape and wine analysis. Aust. J. Grape Wine Res. 2006, 12, 39–49. [Google Scholar] [CrossRef]
- Bohm, J. Portugal Vitícola, O Grande Livro das Castas. In Enciclopédia dos Vinhos de Portugal; Chaves Ferreira Publication: Lisbon, Portugal, 2010. [Google Scholar]
- Roby, G.; Harbertson, J.F.; Adams, D.A.; Matthews, M.A. Berry size and vine water deficits as factors in winegrape composition: Anthocyanins and tannins. Aust. J. Grape Wine Res. 2004, 10, 100–107. [Google Scholar] [CrossRef]
- Camilo, J.P.S. Poda Mecânica vs Poda Manual na Casta Touriga Nacional na Região do Dão. Ph.D. Thesis, Universidade do Porto, Porto, Portugal, 2009. [Google Scholar]
- Pimenta, F.A.T. Influência da Forma de Condução na Produtividade e Qualidade da Touriga Nacional. Master’s Thesis, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal, 2017. [Google Scholar]
- Bohm, J. Portugal Vitícola, O Grande Livro das Castas; Chaves Ferreira Publication: Lisbon, Portugal, 2007. [Google Scholar]
- Lima, I.M.S.D.B. Previsão de Produção da Casta Touriga Franca na Região do Douro Com Base nas Componentes de Rendimento. Ph.D. Thesis, Universidade do Porto, Porto, Portugal, 2014. [Google Scholar]
- Pinto, M.C.D.O. Viticultura de Precisão: Avaliação da Variabilidade Espacial da Produtividade e Qualidade na Casta Touriga Nacional no Alentejo. Ph.D. Thesis, Repositório da Universidade de Lisboa Communities and Collections ISA—Instituto Superior de Agronomia, Universidade do Porto, Porto, Portugal, 2015. [Google Scholar]
- Teixeira, J.I.M.C.V. Efeitos de Estratégias de Rega Deficitária Sobre o Rendimento e Qualidade da Casta Touriga Franca na Região do Douro. Ph.D. Thesis, Universidade do Porto, Porto, Portugal, 2015. [Google Scholar]
- Brillante, L.; Belfiore, N.; Gaiotti, F.; Lovat, L.; Sansone, L.; Poni, S.; Tomasi, D. Comparing Kaolin and Pinolene to Improve Sustainable Grapevine Production during Drought. PLoS ONE 2016, 11, e0156631. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A. Análise do Comportamento Vitivinícola da Casta “Touriga Nacional”, Face a Diferentes Condições Geográficas e Culturais na Região Demarcada do Douro. Ph.D. Thesis, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal, 2003. [Google Scholar]
- Sereno, P.M.V.M. Viticultura de Precisão: Utilização da Deteção Remota no Estudo da Variabilidade Espacial do Vigor, Produção e Qualidade, Castas “Syrah” e “Touriga Franca”. Ph.D. Thesis, Dissertação do Mestrado, Viticultura e Enologia, Universidade Técnica de Lisboa, Lisboa, Portugal, 2009. [Google Scholar]
- Meireles, A.M.P.L. Ambiente e Ordenamento do Território. In Controlo de Maturação e Clarificação do Mosto; University of Porto: Porto, Portugal, 2013. [Google Scholar]
- Correia, P.T.R. A Maturação Fenólica em Uvas Tintas: Comparação de Metodologias. Master’s Thesis, Escola de Ciências e Tecnologia, Universidade de Évora, Évora, Portugal, 2014. [Google Scholar]
- Lobos, G.A.; Acevedo-Opazo, C.; Guajardo-Moreno, A.; Valdés-Gómez, H.; Taylor, J.A.; Laurie, V.F. Effects of kaolin-based particle film and fruit zone netting on Cabernet Sauvignon grapevine physiology and fruit quality. OENO One 2015, 49, 137–144. [Google Scholar] [CrossRef]
- Kerns, D.L.; Wright, G.C. Protective and Yield Enhancement Qualities of Kaolin on Lemons; College of Agriculture; University of Arizona: Tucson, AZ, USA, 2000. [Google Scholar]
- Morandi, B.; Zibordi, M.; Losciale, P.; Manfrini, L.; Pierpaoli, E.; Grappadelli, L.C. Shading decreases the growth rate of young apple fruit by reducing their phloem import. Sci. Hortic. 2011, 127, 347–352. [Google Scholar] [CrossRef]
- Otero, A.; Goni, C.; Jifon, J.L.; Syvertsen, J.P. High Temperature Effects on Citrus Orange Leaf Gas Exchange, Flowering, Fruit Quality and Yield, Acta Horticulturae, 2011; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2011; pp. 1069–1075. [Google Scholar]
- Lo Verde, G.; Caleca, V.; Lo Verde, V. The use of kaolin to control Ceratitis capitata in organic citrus grove. Bull. Insectol. 2011, 64, 127–134. [Google Scholar]
- Andrade, M. Estabilização Tartárica de Vinhos Tintos por Combinação de Nanofiltração e Permuta Catiónica. Ph.D. Thesis, Universidade Católica Portuguesa, Porto, Portugal, 2012. [Google Scholar]
- Donéche, B.; Chardonnet, C. Evolution and localization or the main cations during grape berry development. Vitis 1992, 31, 175–181. [Google Scholar]
- Rizzon, L.A.; Gasparin, A.M. O carbonato de calcio na desacidificacao do vinho Isabel. Cienc. Rural 2005, 35, 720–723. [Google Scholar] [CrossRef]
- Schaller, K.; Löhnertz, O.; Chikkasubbanna, V. Uptake of potassium by the grape berries of different cultivars during growth and developement. Vitic. Enol. Sci. 1992, 47, 36–39. [Google Scholar]
- Borges, E.P. ABC Ilustrado—Da Vinha e do Vinho; Mauad Publication: Brasil, Ltda, 2008. [Google Scholar]
- Szöke, L.; Vanek, G.; Szabo, T. Nutrient uptake dynamics of grapevine during the vegetation. In Proceedings of the IV International Symposium on Grapevine Physiology, Turin, Itália, 11–15 May 1992; pp. 165–170. [Google Scholar]
- Pacheco, C.; Soveral Dias, J.C.; Calouro, F. Ritmo de Absorção de Nutrientes em Videiras das Castas Boal de Alicante e Periquita Sobre R 99, R 110 e 1103 P: I—Evolução dos Teores de N, P, K, Ca, Mg e B e dos Valores de Biomassa dos Cachos, Varas e Folhas; Laboratório Químico Agrícola Rebelo da Silva: Lisbon, Portugal, 1990; 12p. [Google Scholar]
- Parejo, J.; Gonzalo, A.; Giro, P. Seasonal differences of nutrient level in “Chardonnay”. In Proceedings of the IV International Symposium on Grapevine Physiology, Turin, Itália, 11–15 May 1992; pp. 171–174. [Google Scholar]
Variety/Sampling Time | Control | Kaolin 5% | Potassium Silicate (0.1%) | Potassium Silicate (0.05%) |
---|---|---|---|---|
Touriga National | ||||
26/07 | 0.68 ± 0.06 aA | 0.65 ± 0.06 aA | 0.54 ± 0.01 aA | 0.57 ± 0.04 aA |
02/08 | 0.73 ± 0.05 aA | 0.63 ± 0.08 aA | 0.59 ± 0.02 aA | 0.62 ± 0.14 abA |
09/08 | 0.81 ± 0.05 ab | 0.70 ± 0.04 aA | 0.62 ± 0.09 aA | 0.67 ± 0.11 abA |
17/08 | 1.00 ± 0.08 bcA | 1.06 ± 0.01 bA | 0.96 ± 0.02 bA | 0.86 ± 0.12 abA |
23/08 | 0.99 ± 0.02 bcA | 1.06 ± 0.03 bA | 1.04 ± 0.11 bA | 0.92 ± 0.04 abA |
07/09 | 1.25 ± 0.00 dA | 1.11 ± 0.15 bA | 0.94 ± 0.02 bA | 1.10 ± 0.21 bA |
20/09 | 1.19 ± 0.09 cdA | 1.18 ± 0.11 bA | 1.09 ± 0.13 bA | 1.05 ± 0.13 abA |
Touriga Franca | ||||
26/07 | 1.01 ± 0.11 aA | 0.92 ± 0.04 aA | 0.92 ± 0.19 aA | 1.04 ± 0.02 aA |
02/08 | 1.101 ± 0.33 abA | 1.19 ± 0.01 aA | 1.12 ± 0.21 abA | 1.05 ± 0.15 aA |
09/08 | 1.51 ± 0.16 abcA | 1.20 ± 0.41 bA | 1.16 ± 0.23 abA | 1.05 ± 0.48 aA |
17/08 | 1.59 ± 0.04 abcA | 1.54 ± 0.01 abA | 1.60 ± 0.17 bA | 1.28 ± 0.080 aA |
23/08 | 1.69 ± 0.02 bcA | 1.47 ± 0.17 abA | 1.43 ± 0.12 abA | 1.32 ± 0.04 aA |
07/09 | 1.58 ± 0.03 abcA | 1.52 ± 0.03 abA | 1.41 ± 0.03 abA | 1.43 ± 0.14 aA |
20/09 | 2.01 ± 0.20 cA | 1.59 ± 0.19 abA | 1.56 ± 0.04 baA | 1.59 ± 0.02 aA |
Variety/Sampling Time | Control | Kaolin 5% | Potassium Silicate (0.1%) | Potassium Silicate (0.05%) |
---|---|---|---|---|
Touriga National | ||||
26/07 | 2.77 ± 0.02 aA | 2.79 ± 0.02 aA | 2.78 ± 0.04 aA | 2.77 ± 0.04 aA |
02/08 | 2.93 ± 0.09 aA | 2.84 ± 0.04 abA | 2.83 ± 0.01 aA | 2.89 ± 0.04 abA |
09/08 | 3.05 ± 0.00 abA | 2.97 ± 0.06 abcA | 3.00 ± 0.06 aA | 2.96 ± 0.08 abA |
17/08 | 3.46 ± 0.00 cA | 3.22 ± 0.04 bcA | 3.33 ± 0.03 bA | 3.28 ± 0.16 bcA |
23/08 | 3.37 ± 0.16 bcA | 3.35 ± 0.11 cA | 3.54 ± 0.04 bA | 3.48 ± 0.22 cA |
07/09 | 3.91 ± 0.16 dA | 3.89 ± 0.20 dA | 4.06 ± 0.12 cA | 3.95 ± 0.04 dA |
20/09 | 4.19 ± 0.08 dA | 4.07 ± 0.11 dA | 4.21 ± 0.09 cA | 4.26 ± 0.00 dA |
Touriga Franca | ||||
26/07 | 2.86 ± 0.07 aA | 2.86 ± 0.01 aA | 2.91 ± 0.03 aA | 2.88 ± 0.07 aA |
02/08 | 2.99 ± 0.02 aA | 3.06 ± 0.03 abA | 3.07 ± 0.08 aA | 3.10 ± 0.03 aA |
09/08 | 3.23 ± 0.00 bA | 3.22 ± 0.01 abA | 3.25 ± 0.25 aA | 3.27 ± 0.18 aA |
17/08 | 3.68 ± 0.14 cA | 3.68 ± 0.12 bcA | 3.84 ± 0.08 bA | 3.81 ± 0.12 bA |
23/08 | 3.60 ± 0.00 cA | 3.65 ± 0.21 bcA | 4.01 ± 0.06 bA | 3.99 ± 0.11 bcA |
07/09 | 4.06 ± 0.01 dA | 3.92 ± 0.24 cA | 4.21 ± 0.01 bA | 4.30 ± 0.13 cdA |
20/09 | 4.34 ± 0.01 eA | 4.29 ± 0.25 cA | 4.67 ± 0.01 cA | 4.71 ± 0.06 dA |
Variety/Sampling Time | Control | Kaolin 5% | Potassium Silicate (0.1%) | Potassium Silicate (0.05%) |
---|---|---|---|---|
Touriga National | ||||
26/07 | 5.6 ± 0.1 aA | 5.4 ± 0.2 aA | 5.4 ± 0.1 aA | 5.4 ± 0.2 aA |
02/08 | 8.4 ± 0.1 bA | 7.8 ± 0.8 bA | 8.6 ± 0.6 bA | 8.4 ± 1.6 abA |
09/08 | 12.8 ± 1.5 cdA | 12.2 ± 1.8 dA | 11.0 ± 0.2 cA | 11.5 ± 1.7 bcA |
17/08 | 9.6 ± 0.2 bcA | 11.2 ± 0.1 cA | 10.6 ± 0.1 cA | 11.3 ± 0.7 bcA |
23/08 | 10.6 ± 1.4 bcdA | 11.7 ± 0.1 cA | 11.6 ± 0.1 cdA | 11.5 ± 0.4 bcA |
07/09 | 12.8 ± 0.9 cdA | 12.8 ± 0.1 dA | 13.5 ± 0.1 eA | 13.4 ± 0.6 cA |
20/09 | 13.4 ± 0.0 dA | 13.0 ± 0.1 dA | 12.7 ± 0.5 deA | 12.9 ± 0.0 cA |
Touriga Franca | ||||
26/07 | 5.6 ± 0.1 aA | 5.2 ± 0.9 aA | 5.4 ± 0.7 aA | 5.5 ± 0.6 aA |
02/08 | 9.3 ± 0.3 bA | 6.7 ± 0.3 abA | 7.4 ± 2.5 abA | 6.5 ± 2.8 abA |
09/08 | 9.1 ± 0.1 bA | 8.3 ± 0.8 bA | 8.8 ± 2.3 bA | 9.0 ± 2.6 bA |
17/08 | 10.2 ± 0.6 cA | 10.6 ± 1.2 bA | 10.4 ± 0.0 cA | 11.3 ± 0.0 cA |
23/08 | 11.0 ± 1.1 cA | 11.0 ± 0.7 bcA | 12.2 ± 0.8 cdA | 11.0 ± 0.6 cA |
07/09 | 11.9 ± 0.6 dA | 12.4 ± 0.8 cA | 13.0 ± 0.1 dA | 13.4 ± 0.1 dA |
20/09 | 12.2 ± 0.1 dA | 12.5 ± 0.6 cA | 13.0 ± 0.8 dA | 13.2 ± 0.3 dA |
Variety/Sampling Time | Control | Kaolin 5% | Potassium Silicate (0.1%) | Potassium Silicate (0.05%) |
---|---|---|---|---|
Touriga National | ||||
26/07 | 37.98 ± 0.46 aA | 33.62 ± 0.75 aA | 35.33 ± 2.53 aA | 33.17 ± 2.54 aA |
02/08 | 35.66 ± 2.42 aA | 33.68 ± 0.99 aA | 36.03 ± 2.26 aA | 35.95 ± 1.72 aA |
09/08 | 41.88 ± 4.66 aA | 43.37 ± 11.83 aA | 42.26 ± 6.57 aA | 39.71 ± 4.36 aA |
17/08 | 38.78 ± 2.53 aA | 39.47 ± 3.04 aA | 43.73 ± 9.21 aA | 43.26 ± 13.09 aA |
23/08 | 39.82 ± 9.33 aA | 41.19 ± 6.51 aA | 47.87 ± 11.05 aA | 51.24 ± 6.69 aA |
07/09 | 44.16 ± 3.47 aA | 42.42 ± 8.05 aA | 44.81 ± 15.83 aA | 41.76 ± 5.82 aA |
20/09 | 46.18 ± 8.18 aA | 50.96 ± 1.07 aA | 52.07 ± 11.28 aA | 51.32 ± 4.97 aA |
Touriga Franca | ||||
26/07 | 53.53 ± 1.09 aA | 49.33 ± 1.74 aA | 49.17 ± 8.13 aA | 52.21 ± 3.59 aA |
02/08 | 53.48 ± 9.94 abA | 52.71 ± 4.65 aA | 58.09 ± 4.46 aA | 54.07 ± 1.35 aA |
09/08 | 84.81 ± 6.06 abA | 67.55 ± 12.80 aA | 67.57 ± 2.79 aA | 58.78 ± 18.07 aA |
17/08 | 67.46 ± 13.31 abA | 74.12 ± 1.90 aA | 68.69 ± 5.08 aA | 61.25 ± 7.54 aA |
23/08 | 68.29 ± 3.97 abA | 70.96 ± 17.97 aA | 65.82 ± 16.04 aA | 62.51 ± 0.46 aA |
07/09 | 81.62 ± 9.66 abA | 74.97 ± 9.29 aA | 57.07± 3.96 aA | 59.48 ± 10.74 aA |
20/09 | 66.48 ± 3.58 bA | 67.22 ± 0.90 aA | 55.39 ± 6.79 aA | 54.87 ± 11.39 aA |
Variety/Sampling Time | Control | Kaolin 5% | Potassium Silicate (0.1%) | Potassium Silicate (0.05%) |
---|---|---|---|---|
Touriga National | ||||
26/07 | 20.01 ± 0.31 b | 22.42 ± 2.11 a | 22.04 ± 1.07 a | 21.23 ± 0.52 a |
02/08 | 20.25 ± 1.46 b | 20.42 ± 0.80 a | 20.19 ± 0.26 a | 22.82 ± 0.23 a |
09/08 | 37.39 ± 0.18 a | 49.24 ± 12.42 a | 51.28 ± 7.25 b | 45.53 ± 6.00 b |
17/08 | 39.99 ± 2.26 a | 35.71 ± 1.18 a | 37.66 ± 5.12 ab | 35.53 ± 6.75 ab |
23/08 | 32.74 ± 1.96 a | 34.31 ± 10.18 a | 35.92 ± 6.80 ab | 39.63 ± 2.39 ab |
07/09 | 37.31 ± 5.34 a | 37.80 ± 6.52 a | 29.93 ± 12.06 a | 29.26 ± 3.05 a |
20/09 | 32.36 ± 3.28 abA | 31.69 ± 0.57 abA | 31.92 ± 5.33 abA | 33.62 ± 2.66 abA |
Touriga Franca | ||||
26/07 | 26.93 ± 0.68 a | 32.46 ± 1.60 a | 28.45 ± 2.27 a | 25.76 ± 1.59 b |
02/08 | 26.30 ± 2.66 a | 27.94 ± 1.26 a | 23.48 ± 0.92 a | 22.06 ± 0.68 b |
09/08 | 45.04 ± 19.16 a | 48.29 ± 7.05 a | 54.32 ± 11.42 a | 53.73 ± 3.89 a |
17/08 | 48.95 ± 0.84 a | 45.77 ± 1.03 a | 41.77 ± 6.22 a | 51.29 ± 3.11 ab |
23/08 | 45.78 ± 0.15 a | 44.12 ± 5.60 a | 40.22 ± 2.38 a | 50.43 ± 2.13 a |
07/09 | 48.68 ± 7.31 a | 46.37 ± 5.54 a | 34.79 ± 21.22 a | 53.27 ± 3.78 a |
20/09 | 47.59 ± 2.45 aA | 49.77 ±3.89 aA | 45.08 ± 5.42 aA | 39.89 ± 6.02 abA |
Variety/Sampling Time | Control | Kaolin 5% | Potassium Silicate (0.1%) | Potassium Silicate (0.05%) |
---|---|---|---|---|
Touriga National | ||||
26/07 | 128.15 ± 4.29 b | 109.37 ± 7.38 a | 128.39 ± 1.23 a | 130.79 ± 4.46 a |
02/08 | 116.67 ± 7.95 b | 118.96 ± 10.24 a | 119.43 ± 8.17 a | 114.92 ± 0.54 a |
09/08 | 114.14 ± 9.08 a | 103.58 ± 6.77 a | 116.67 ± 18.68 b | 113.42 ± 10.66 b |
17/08 | 105.97 ± 2.29 a | 100.51 ± 10.45 a | 107.17 ± 3.02 ab | 104.47 ± 5.58 ab |
23/08 | 102.51 ± 0.82 a | 93.94 ± 6.14 a | 103.29 ± 4.82 ab | 107.62 ± 8.45 ab |
07/09 | 93.26 ± 7.22 a | 72.11 ± 8.11 a | 82.81 ± 6.16 a | 73.70 ± 3.99 a |
20/09 | 84.56 ± 3.62 abA | 78.72 ± 4.68A | 78.15 ± 9.60 abA | 87.94 ± 2.66 abA |
Touriga Franca | ||||
26/07 | 156.04 ± 10.58 a | 159.44 ± 10.19 a | 162.03 ± 2.63 a | 148.40 ± 6.49 b |
02/08 | 157.32 ± 3.52 a | 166.19 ± 11.83 a | 151.73 ± 32.69 a | 167.52 ± 3.47 b |
09/08 | 150.52 ± 22.83 a | 152.43 ± 2.00 a | 150.99 ± 5.36 a | 157.39 ± 14.89 a |
17/08 | 145.25 ± 5.13 a | 147.23 ± 3.97 a | 146.66 ± 11.66 a | 145.09 ± 4.69 ab |
23/08 | 129.51 ± 12.27 a | 134.64 ± 19.38 a | 126.27 ± 12.69 a | 129.60 ± 1.91 a |
07/09 | 105.58 ± 5.53 a | 128.68 ± 4.68 a | 114.30 ± 3.03 a | 121.96 ± 18.79 a |
20/09 | 104.84 ± 15.67 aA | 109.14 ± 4.48 aA | 108.37 ± 8.39 aA | 127.68 ± 7.28 abA |
Variety/Sampling Time | Control | Kaolin 5% | Potassium Silicate (0.1%) | Potassium Silicate (0.05%) |
---|---|---|---|---|
Touriga National | ||||
26/07 | 0.07 ± 0.05 a | 0.05 ± 0.01 a | 0.04 ± 0.00 a | 0.05 ± 0.02 a |
02/08 | 0.85 ± 0.35 a | 0.26 ± 0.16 a | 0.26 ± 0.02 a | 0.53 ± 0.57 a |
09/08 | 3.21 ± 0.26 ab | 2.18 ± 0.39 a | 1.92 ± 0.01 ab | 1.89 ± 0.57 a |
17/08 | 5.39 ± 0.60 ab | 7.02 ± 0.65 b | 7.03 ± 0.13 bc | 7.22 ± 2.94 ab |
23/08 | 6.82 ± 2.56 bc | 7.63 ± 1.66 bc | 8.93 ± 0.44 c | 10.01 ± 1.41 b |
07/09 | 7.82 ± 2.71 c | 7.74 ± 1.56 c | 8.32 ± 0.11 c | 7.81 ± 1.44 b |
20/09 | 8.10 ± 1.49 cA | 8.80 ± 0.35 cA | 9.25 ± 0.39 cA | 9.42 ± 0.85 bA |
Touriga Franca | ||||
26/07 | 1.55 ± 0.84 a | 1.13 ± 0.28 a | 1.43 ± 0.38 a | 1.67 ± 0.78 a |
02/08 | 4.75 ± 4.32 ab | 6.17 ± 0.51 ab | 5.06 ± 2.46 ab | 4.26 ± 3.05 ab |
09/08 | 15.02 ± 0.21 bc | 11.07 ± 2.93 abc | 9.93 ± 2.72 bc | 9.26 ± 5.47 ab |
17/08 | 12.33 ± 3.49 bc | 14.61 ± 0.66 bcd | 13.33 ± 1.45 cd | 12.63 ± 1.73 bc |
23/08 | 14.05 ± 1.85 c | 14.62 ± 4.99 bcd | 13.89 ± 3.73 d | 12.72 ± 0.23 c |
07/09 | 15.40 ± 2.32 c | 13.83 ± 1.19 cd | 10.27 ± 0.25 cd | 10.37 ± 1.91 bc |
20/09 | 10.92 ± 0.51 cA | 11.37 ± 0.39 dA | 8.59 ± 0.94 cdA | 8.98 ± 1.89 bcA |
Variety/Sampling Time | Control | Kaolin 5% | Potassium Silicate (0.1%) | Potassium Silicate (0.05%) |
---|---|---|---|---|
Touriga National | ||||
dl-3-gluc | 50 ± 0.00 a | 50 ± 0.00 ab | 50 ± 0.02 a | 70 ± 0.00 a |
cy-3-gluc | 10 ± 0.00 a | 10 ± 0.00 a | 20 ± 0.00 a | 20 ± 0.00 a |
pt-3-gluc | 80 ± 0.01 ab | 80 ± 0.00 ab | 80 ± 0.02 a | 110 ± 0.00 a |
pe-3-gluc | 120 ± 0.02 ab | 140 ± 0.04 ab | 150 ± 0.06 ab | 180 ± 0.02 b |
mv-3-gluc | 780 ± 0.05 abc | 780 ± 0.00 abc | 850 ± 0.02 c | 820 ± 0.00 bc |
cy-3-acetylgluc | 20 ± 0.00 a | 10 ± 0.00 a | 20 ± 0.00 a | 20 ± 0.00 a |
pt-3-acetylgluc | 10 ± 0.00 a | 30 ± 0.03 a | 30 ± 0.03 a | 40 ± 0.04 a |
pe-3-acetylgluc | 30 ± 0.01 a | 30 ± 0.00 a | 40 ± 0.01 a | 40 ± 0.00 a |
mv-3-acetylgluc | 250 ± 0.01 abc | 260 ± 0.01 bc | 270 ± 0.04 c | 230 ± 0.02 abc |
dl-3-coumaroylgluc | n.d. | 10 ± 0.00 ab | n.d. | n.d. |
cy-3-coumaroyllgluc | 20 ± 0.00 a | 20 ± 0.00 a | 20 ± 0.00 a | 20 ± 0.00 a |
pt-3-coumaroylgluc | 20 ± 0,00 b | 10 ± 0.00 ab | 10 ± 0.01 ab | n.d. |
pe-3-coumaroylgluc | 60 ± 0.02 a | 60 ± 0.01 a | 60 ± 0.00 a | 60 ± 0.00 a |
mv-3-coumaroylgluc | 271 ± 0.01 a | 312 ± 0.03 a | 280 ± 0.05 a | 242 ± 0.01 a |
Touriga Franca | ||||
dl-3-gluc | 20 ± 0.00 b | 50 ± 0.01 a | 50 ± 0.01 ab | 60 ± 0.00 a |
cy-3-gluc | n.d. | 10 ± 0.00 a | 20 ± 0.00 a | 10 ± 0.00 a |
pt-3-gluc | 40 ± 0.00 b | 90 ± 0.00 a | 80 ± 0.02 ab | 10 ± 0.00 a |
pe-3-gluc | 50 ± 0.01 a | 90 ± 0.02 ab | 100 ± 0.02 ab | 140 ± 0.01 ab |
mv-3-gluc | 690 ± 0.01 a | 780 ± 0.00 abc | 730 ± 0.02 ab | 780 ± 0.02 abc |
cy-3-acetylgluc | 10 ± 0.00 a | 10 ± 0.00 a | 10 ± 0.00 a | 20 ± 0.01 a |
pt-3-acetylgluc | 10 ± 0.00 a | 20 ± 0.00 a | 10 ± 0.00 a | 10 ± 0.00 a |
pe-3-acetylgluc | 10 ± 0.00 a | 20 ± 0.00 a | 20 ± 0.00 a | 30 ± 0.00 a |
mv-3-acetylgluc | 200 ± 0.01 abc | 190 ± 0.00 ab | 190 ± 0.02 a | 190 ± 0.00 ab |
dl-3-coumaroylgluc | 10 ± 0.00 bc | 10 ± 0.00 bc | 10 ± 0.00 c | n.d. |
cy-3-coumaroylgluc | 20 ± 0.00 a | 20 ± 0.00 a | 20 ± 0.00 a | 20 ± 0.01 a |
pt-3-coumaroylgluc | 10 ± 0.00 ab | 10 ±0.00 ab | 10 ± 0.00 ab | 10 ± 0.00 ab |
pe-3-coumaroylgluc | 30 ± 0.01 a | 40 ± 0.00 a | 30 ± 0.00 a | 40 ± 0.01 a |
mv-3-coumaroylgluc | 350 ± 0.03 a | 290 ± 0.02 a | 250 ± 0.03 a | 250 ± 0.00 a |
Variety/Sampling Time | Control | Kaolin 5% | Potassium Silicate (0.1%) | Potassium Silicate (0.05%) |
---|---|---|---|---|
Touriga National | ||||
26/07 | 111.5 ± 21.1 aA | 121.6 ± 26.6 aA | 130.0 ± 47.9 aA | 117.1 ± 26.3 aA |
02/08 | 45.9 ± 2.3 bA | 68.7 ± 27.6 aA | 73.2 ± 28.0 aA | 78.2 ± 57.3 aA |
09/08 | 107.2 ± 2.8 aA | 55.5 ± 51.4 aA | 66.5 ± 19.5 aA | 35.5 ± 15.9 aA |
17/08 | 84.6 ± 15.8 abA | 60.0 ± 0.7 aA | 85.3 ± 1.8 aA | 71.5 ± 11.7 aA |
23/08 | 82.2 ± 14.8 abA | 65.6 ± 5.4 aA | 57.7 ± 0.9 aA | 56.1 ± 5.0 aA |
07/09 | 75.3 ± 12.2 abA | 58.2 ± 12.6 aA | 75.0 ± 14.8 aA | 83.3 ± 16.7 aA |
20/09 | 65.0 ± 9.5 abA | 56.5 ± 1.9 aA | 69.0 ± 4.4 aA | 98.4 ± 7.4 aB |
Touriga Franca | ||||
26/07 | 104.5 ± 13.8 aA | 92.9 ± 30.5 aA | 98.0 ± 2.0 aA | 78.5 ± 13.8 aA |
02/08 | 96.4 ± 50.8 aA | 53.7 ± 17.2 aA | 71.9 ± 20.8 aA | 79.4 ± 24.3 aA |
09/08 | 87.7 ± 13.2 aA | 78.4 ± 4.3 aA | 109.3 ± 40.7 aA | 160.8 ± 97.7 aA |
17/08 | 57.6 ± 16.6 aA | 76.1 ± 8.0 aA | 101.6 ± 13.7 aA | 86.5 ± 19.0 aA |
23/08 | 73.1 ± 11.3 aA | 74.6 ± 9.0 aA | 60.6 ± 1.1 aA | 73.1 ± 4.0 aA |
07/09 | 86.5 ± 1.0 aA | 84.2 ± 8.4 aA | 84.9 ± 9.8 aA | 89.8 ± 11.9 aA |
20/09 | 58.7 ± 16.2 aA | 68.6 ± 2.7 aA | 71.5 ± 6.7 aA | 67.8 ± 2.6 aA |
Variety/Sampling Time | Control | Kaolin 5% | Potassium Silicate (0.1%) | Potassium Silicate (0.05%) |
---|---|---|---|---|
Touriga National | ||||
26/07 | 646.2 ± 6.2 aAB | 685.0 ± 47.5 bcdAB | 729.7 ± 12.8 bcB | 568.9 ± 60.6 abA |
02/08 | 358.9 ± 25.4 aA | 346.1 ± 23.3 aA | 336.7 ± 19.7 aA | 468.1 ± 139.2 abA |
09/08 | 584.8 ± 343.4 aA | 477.8 ± 48.82 abA | 856.1 ± 45.7 bA | 879.8 ± 236.1 bcA |
17/08 | 585.9 ± 141.6 aA | 362.0 ± 71.5 aA | 358.9 ± 57.1 aA | 244.9 ± 63.83 aA |
23/08 | 503.7 ± 40.3 aA | 516.0 ± 11.5 abcA | 410.2 ± 65.6 aA | 336.3 ± 81.1 aA |
07/09 | 767.9 ± 166.0 aA | 861.9 ± 108.1 dA | 808.1 ± 39.1 bA | 841.1 ± 65.0 bcA |
20/09 | 839.6 ± 84.6 aA | 792.7 ± 110.1 cdA | 806.5 ± 75.9 bA | 1113.7± 12.8 cA |
Touriga Franca | ||||
26/07 | 795.8 ± 92.0 aA | 782.8 ± 47.4 abA | 740.3 ± 104.9 aA | 701.0 ± 168.1 abcA |
02/08 | 382.3 ± 50.2 aA | 287.9 ± 82.4 aA | 343.2 ± 103.8 aA | 318.5 ± 5.7 aA |
09/08 | 629.4 ± 344.7 aA | 356.9 ± 38.0 abA | 308.6 ± 144.2 aA | 406.4 ± 73.3 abA |
17/08 | 502.4 ± 114.1 aA | 393.1 ± 57.7 abA | 595.8 ± 340.2 aA | 413.0 ± 57.8 abA |
23/08 | 468.8 ± 23.1 aA | 391.1 ± 13.5 abA | 459.9 ± 96.5 aA | 644.3 ± 291.8 abcA |
07/09 | 548.9 ± 64.5 aA | 611.1 ± 197.8 abA | 898.3 ± 78.9 abA | 1184.4 ± 386.6 bcA |
20/09 | 1084.6 ± 283.9 aA | 853.0 ± 265.6 bA | 1446.1 ± 7.3 bA | 1384.7 ± 167.7 cA |
Variety/Sampling Time | Control | Kaolin 5% | Potassium Silicate (0.1%) | Potassium Silicate (0.05%) |
---|---|---|---|---|
Touriga National | ||||
26/07 | 163.9 ± 69.2 bA | 121.6 ± 26.6 aA | 223.6 ± 23.2 aA | 185.3 ± 16.9 bA |
02/08 | 122.5 ± 47.5 bA | 142.0 ± 39.4 aA | 166.5 ± 32.6 aA | 172.8 ± 28.7 aA |
09/08 | 116.8 ± 25.8 aA | 95.7 ± 1.5 aA | 129.5 ± 9.7 aA | 105.7 ± 2.9 aA |
17/08 | 117.7 ± 4.3 aA | 93.2 ± 8.2 bA | 112.4 ± 1.2 aA | 105.5 ± 28.2 bA |
23/08 | 91.2 ± 25.0 aA | 86.6 ± 21.2 aA | 80.3 ± 7.7 aA | 80.6 ± 1.2 aA |
07/09 | 101.1 ± 5.8 aA | 86.9 ± 13.0 bA | 127.0 ± 20.0 bcA | 102.0 ± 18.3 aA |
20/09 | 78.9 ± 1.5 aA | 83.0 ± 7.9 aA | 84.3 ± 1.5 aA | 94.5 ± 13.1 bA |
Touriga Franca | ||||
26/07 | 139.9 ± 21.8 aA | 140.3 ± 19.8 aA | 147.9 ± 27.9 aA | 138.3 ± 39.0 aA |
02/08 | 118.0 ± 44.8 aA | 106.0 ± 17.6 aA | 154.4 ± 63.2 bA | 153.5 ± 4.1 bA |
09/08 | 89.5 ±3.0 aA | 112.1 ± 2.8 bA | 121.7 ± 15.8 bA | 137.8 ± 45.5 cA |
17/08 | 101.9 ± 19.8 aA | 95.6 ± 10.9 aA | 96.4 ± 7.8 aA | 103.0 ± 17.2 aA |
23/08 | 102.7 ± 15.6 aA | 99.2 ± 12.1 aA | 86.9 ± 0.7 aA | 92.7 ± 8.9 aA |
07/09 | 106.430.4 aA | 84.5 ± 7.4 aA | 89.7 ± 7.2 aA | 132.5 ± 13.9 bA |
20/09 | 83.5 ± 6.7 aA | 84.8 ± 2.8 aA | 93.3 ± 1.1 bA | 100.5 ± 1.3 bcA |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, R.K.; Afonso, J.; Nogueira, M.; Oliveira, A.A.; Cosme, F.; Falco, V. Silicates of Potassium and Aluminium (Kaolin); Comparative Foliar Mitigation Treatments and Biochemical Insight on Grape Berry Quality in Vitis vinifera L. (cv. Touriga National and Touriga Franca). Biology 2020, 9, 58. https://doi.org/10.3390/biology9030058
Singh RK, Afonso J, Nogueira M, Oliveira AA, Cosme F, Falco V. Silicates of Potassium and Aluminium (Kaolin); Comparative Foliar Mitigation Treatments and Biochemical Insight on Grape Berry Quality in Vitis vinifera L. (cv. Touriga National and Touriga Franca). Biology. 2020; 9(3):58. https://doi.org/10.3390/biology9030058
Chicago/Turabian StyleSingh, Rupesh Kumar, Jessica Afonso, Marta Nogueira, Ana A. Oliveira, Fernanda Cosme, and Virgílio Falco. 2020. "Silicates of Potassium and Aluminium (Kaolin); Comparative Foliar Mitigation Treatments and Biochemical Insight on Grape Berry Quality in Vitis vinifera L. (cv. Touriga National and Touriga Franca)" Biology 9, no. 3: 58. https://doi.org/10.3390/biology9030058
APA StyleSingh, R. K., Afonso, J., Nogueira, M., Oliveira, A. A., Cosme, F., & Falco, V. (2020). Silicates of Potassium and Aluminium (Kaolin); Comparative Foliar Mitigation Treatments and Biochemical Insight on Grape Berry Quality in Vitis vinifera L. (cv. Touriga National and Touriga Franca). Biology, 9(3), 58. https://doi.org/10.3390/biology9030058