Circulating Biomarkers of Accelerated Sarcopenia in Respiratory Diseases
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Hand-Grip Strength
2.3. Spirometry and Pulse Oximetry
2.4. Measurement of Plasma Biomarkers
2.5. Measurements of Plasma 8-Isoprostanes, C-Reactive Proteins (CRP) and Creatine Kinase (CK)
2.6. Quantification of Circulating miRs
2.7. Statistical Analysis
3. Results
3.1. Characteristics of the Participants
3.2. Relationship of Plasma Biomarkers Levels with HGS and ASMI
3.3. Correlation of Plasma Biomarkers with Gait Speed and Daily Steps Count
3.4. Relationships of Respiratory Diseases with Plasma Markers of Inflammation, Oxidative Stress and Muscle Damage
3.5. Correlation of Plasma Dkk-3, CAF22 and miRs with Each Other in Respiratory Diseases
3.6. Relationship of Hand-grip Strength with ASMI in Respiratory Diseases
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, E.J.; Park, N.J.; Sohn, H.S.; Kim, Y.H. Handgrip Strength and All-Cause Mortality in Middle-Aged and Older Koreans. Int. J. Environ. Res. Public Health 2019, 16, 740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujimoto, K.; Inage, K.; Eguchi, Y.; Orita, S.; Suzuki, M.; Kubota, G.; Sainoh, T.; Sato, J.; Shiga, Y.; Abe, K.; et al. Use of Bioelectrical Impedance Analysis for the Measurement of Appendicular Skeletal Muscle Mass/Whole Fat Mass and Its Relevance in Assessing Osteoporosis among Patients with Low Back Pain: A Comparative Analysis Using Dual X-ray Absorptiometry. Asian Spine J. 2018, 12, 839–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harada, H.; Kai, H.; Shibata, R.; Niiyama, H.; Nishiyama, Y.; Murohara, T.; Yoshida, N.; Katoh, A.; Ikeda, H. New diagnostic index for sarcopenia in patients with cardiovascular diseases. PLoS ONE 2017, 12, e0178123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, C.H.; Chung, J.H. Association between hand grip strength and spirometric parameters: Korean National health and Nutrition Examination Survey (KNHANES). J. Thorac. Dis. 2018, 10, 6002–6009. [Google Scholar] [CrossRef] [PubMed]
- Hollander-Kraaijeveld, F.M.; Lindeman, Y.; de Roos, N.M.; Burghard, M.; van de Graaf, E.A.; Heijerman, H.G.M. Non-fasting bioelectrical impedance analysis in cystic fibrosis: Implications for clinical practice and research. J. Cyst. Fibros. 2020, 19, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Kon, S.S.; Patel, M.S.; Canavan, J.L.; Clark, A.L.; Jones, S.E.; Nolan, C.M.; Cullinan, P.; Polkey, M.I.; Man, W.D. Reliability and validity of 4-metre gait speed in COPD. Eur. Respir. J. 2013, 42, 333–340. [Google Scholar] [CrossRef]
- Lee, K.Y.; Ito, K.; Maneechotesuwan, K. Inflammation to Pulmonary Diseases. Mediat. Inflamm. 2016, 2016, 7401245. [Google Scholar] [CrossRef] [Green Version]
- Park, H.S.; Kim, S.R.; Lee, Y.C. Impact of oxidative stress on lung diseases. Respirology 2009, 14, 27–38. [Google Scholar] [CrossRef]
- Can, B.; Kara, O.; Kizilarslanoglu, M.C.; Arik, G.; Aycicek, G.S.; Sumer, F.; Civelek, R.; Demirtas, C.; Ulger, Z. Serum markers of inflammation and oxidative stress in sarcopenia. Aging Clin. Exp. Res. 2017, 29, 745–752. [Google Scholar] [CrossRef]
- Chang, J.S.; Kim, T.H.; Nguyen, T.T.; Park, K.S.; Kim, N.; Kong, I.D. Circulating irisin levels as a predictive biomarker for sarcopenia: A cross-sectional community-based study. Geriatr. Gerontol. Int. 2017, 17, 2266–2273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwak, J.Y.; Hwang, H.; Kim, S.K.; Choi, J.Y.; Lee, S.M.; Bang, H.; Kwon, E.S.; Lee, K.P.; Chung, S.G.; Kwon, K.S. Prediction of sarcopenia using a combination of multiple serum biomarkers. Sci. Rep. 2018, 8, 8574. [Google Scholar] [CrossRef] [PubMed]
- Drey, M.; Sieber, C.C.; Bauer, J.M.; Uter, W.; Dahinden, P.; Fariello, R.G.; Vrijbloed, J.W. C-terminal Agrin Fragment as a potential marker for sarcopenia caused by degeneration of the neuromuscular junction. Exp. Gerontol. 2013, 48, 76–80. [Google Scholar] [CrossRef]
- Steinbeck, L.; Ebner, N.; Valentova, M.; Bekfani, T.; Elsner, S.; Dahinden, P.; Hettwer, S.; Scherbakov, N.; Schefold, J.C.; Sandek, A.; et al. Detection of muscle wasting in patients with chronic heart failure using C-terminal agrin fragment: Results from the Studies Investigating Co-morbidities Aggravating Heart. Eur. J. Heart Fail. 2015, 17, 1283–1293. [Google Scholar] [CrossRef] [PubMed]
- Scherbakov, N.; Knops, M.; Ebner, N.; Valentova, M.; Sandek, A.; Grittner, U.; Dahinden, P.; Hettwer, S.; Schefold, J.C.; von Haehling, S.; et al. Evaluation of C-terminal Agrin Fragment as a marker of muscle wasting in patients after acute stroke during early rehabilitation. J. Cachexia Sarcopenia Muscle 2016, 7, 60–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapchinsky, S.; Vuda, M.; Miguez, K.; Elkrief, D.; de Souza, A.R.; Baglole, C.J.; Aare, S.; MacMillan, N.J.; Baril, J.; Rozakis, P.; et al. Smoke-induced neuromuscular junction degeneration precedes the fibre type shift and atrophy in chronic obstructive pulmonary disease. J. Physiol. 2018, 596, 2865–2881. [Google Scholar] [CrossRef]
- Yin, J.; Yang, L.; Xie, Y.; Liu, Y.; Li, S.; Yang, W.; Xu, B.; Ji, H.; Ding, L.; Wang, K.; et al. Dkk3 dependent transcriptional regulation controls age related skeletal muscle atrophy. Nat. Commun. 2018, 9, 1752. [Google Scholar] [CrossRef] [PubMed]
- Diniz, G.P.; Wang, D.Z. Regulation of Skeletal Muscle by microRNAs. Compr. Physiol. 2016, 6, 1279–1294. [Google Scholar] [CrossRef]
- Yanai, K.; Kaneko, S.; Ishii, H.; Aomatsu, A.; Ito, K.; Hirai, K.; Ookawara, S.; Ishibashi, K.; Morishita, Y. MicroRNAs in Sarcopenia: A Systematic Review. Front. Med. (Lausanne) 2020, 7, 180. [Google Scholar] [CrossRef]
- Zhang, T.; Brinkley, T.E.; Liu, K.; Feng, X.; Marsh, A.P.; Kritchevsky, S.; Zhou, X.; Nicklas, B.J. Circulating MiRNAs as biomarkers of gait speed responses to aerobic exercise training in obese older adults. Aging 2017, 9, 900–913. [Google Scholar] [CrossRef] [Green Version]
- Mirza, S.; Clay, R.D.; Koslow, M.A.; Scanlon, P.D. COPD Guidelines: A Review of the 2018 GOLD Report. Mayo Clin. Proc. 2018, 93, 1488–1502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bateman, E.D.; Hurd, S.S.; Barnes, P.J.; Bousquet, J.; Drazen, J.M.; FitzGerald, J.M.; Gibson, P.; Ohta, K.; O’Byrne, P.; Pedersen, S.E.; et al. Global strategy for asthma management and prevention: GINA executive summary. Eur. Respir. J. 2008, 31, 143–178. [Google Scholar] [CrossRef] [PubMed]
- Ryu, Y.J. Diagnosis of pulmonary tuberculosis: Recent advances and diagnostic algorithms. Tuberc. Respir. Dis. 2015, 78, 64–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qaisar, R.; Karim, A.; Muhammad, T. Plasma CAF22 Levels as a Useful Predictor of Muscle Health in Patients with Chronic Obstructive Pulmonary Disease. Biology 2020, 9, 166. [Google Scholar] [CrossRef]
- World Medical, A. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- Qaisar, R.; Karim, A.; Muhammad, T. Circulating Biomarkers of Handgrip Strength and Lung Function in Chronic Obstructive Pulmonary Disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2020, 15, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Culver, B.H.; Graham, B.L.; Coates, A.L.; Wanger, J.; Berry, C.E.; Clarke, P.K.; Hallstrand, T.S.; Hankinson, J.L.; Kaminsky, D.A.; MacIntyre, N.R.; et al. Recommendations for a Standardized Pulmonary Function Report. An Official American Thoracic Society Technical Statement. Am. J. Respir. Crit. Care Med. 2017, 196, 1463–1472. [Google Scholar] [CrossRef]
- He, N.; Zhang, Y.L.; Zhang, Y.; Feng, B.; Zheng, Z.; Wang, D.; Zhang, S.; Guo, Q.; Ye, H. Circulating MicroRNAs in Plasma Decrease in Response to Sarcopenia in the Elderly. Front. Genet. 2020, 11, 167. [Google Scholar] [CrossRef] [Green Version]
- Qaisar, R.; Bhaskaran, S.; Ranjit, R.; Sataranatarajan, K.; Premkumar, P.; Huseman, K.; Van Remmen, H. Restoration of SERCA ATPase prevents oxidative stress-related muscle atrophy and weakness. Redox Biol. 2019, 20, 68–74. [Google Scholar] [CrossRef]
- Bandyopadhyay, A. Body composition and hand grip strength in male brick-field workers. Malays. J. Med. Sci. 2008, 15, 31–36. [Google Scholar]
- Karpman, C.; Benzo, R. Gait speed as a measure of functional status in COPD patients. Int. J. Chron. Obstruct. Pulmon. Dis. 2014, 9, 1315–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.; Park, S.; Shephard, R.J.; Aoyagi, Y. Yearlong physical activity and sarcopenia in older adults: The Nakanojo Study. Eur. J. Appl. Physiol. 2010, 109, 953–961. [Google Scholar] [CrossRef] [PubMed]
- Jaitovich, A.; Barreiro, E. Skeletal Muscle Dysfunction in Chronic Obstructive Pulmonary Disease. What We Know and Can Do for Our Patients. Am. J. Respir. Crit. Care Med. 2018, 198, 175–186. [Google Scholar] [CrossRef]
- Rahman, I.; Adcock, I.M. Oxidative stress and redox regulation of lung inflammation in COPD. Eur. Respir. J. 2006, 28, 219–242. [Google Scholar] [CrossRef] [PubMed]
- Zenzmaier, C.; Sklepos, L.; Berger, P. Increase of Dkk-3 blood plasma levels in the elderly. Exp. Gerontol. 2008, 43, 867–870. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Ahmed, J.; Wang, G.; Hassan, I.; Strulovici-Barel, Y.; Hackett, N.R.; Crystal, R.G. Down-regulation of the canonical Wnt beta-catenin pathway in the airway epithelium of healthy smokers and smokers with COPD. PLoS ONE 2011, 6, e14793. [Google Scholar] [CrossRef] [Green Version]
- Paton, N.I.; Ng, Y.M. Body composition studies in patients with wasting associated with tuberculosis. Nutrition 2006, 22, 245–251. [Google Scholar] [CrossRef]
- Reza, M.M.; Subramaniyam, N.; Sim, C.M.; Ge, X.; Sathiakumar, D.; McFarlane, C.; Sharma, M.; Kambadur, R. Irisin is a pro-myogenic factor that induces skeletal muscle hypertrophy and rescues denervation-induced atrophy. Nat. Commun. 2017, 8, 1104. [Google Scholar] [CrossRef]
- Sataranatarajan, K.; Qaisar, R.; Davis, C.; Sakellariou, G.K.; Vasilaki, A.; Zhang, Y.; Liu, Y.; Bhaskaran, S.; McArdle, A.; Jackson, M.; et al. Neuron specific reduction in CuZnSOD is not sufficient to initiate a full sarcopenia phenotype. Redox. Biol. 2015, 5, 140–148. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, Y.; Gulbas, G.; Ermis, H.; Kamisli, O.; Kamisli, S.; Ozcan, C. Investigation of neuromuscular transmission in patients with chronic obstructive pulmonary disease: A preliminary report. Eur. Respir. J. 2012, 40, 214. [Google Scholar]
- Gulbas, G.; Kaplan, Y.; Kamisli, O.; Ermis, H.; Kamisli, S.; Ozcan, C. Neuromuscular transmission in hypoxemic patients with chronic obstructive pulmonary disease. Respir. Physiol. Neurobiol. 2013, 189, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Valdez, G.; Heyer, M.P.; Feng, G.; Sanes, J.R. The role of muscle microRNAs in repairing the neuromuscular junction. PLoS ONE 2014, 9, e93140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Punga, A.R.; Andersson, M.; Alimohammadi, M.; Punga, T. Disease specific signature of circulating miR-150-5p and miR-21-5p in myasthenia gravis patients. J. Neurol Sci 2015, 356, 90–96. [Google Scholar] [CrossRef] [PubMed]
- McNeill, E.M.; Warinner, C.; Alkins, S.; Taylor, A.; Heggeness, H.; DeLuca, T.F.; Fulga, T.A.; Wall, D.P.; Griffith, L.C.; Van Vactor, D. The conserved microRNA miR-34 regulates synaptogenesis via coordination of distinct mechanisms in presynaptic and postsynaptic cells. Nat. Commun. 2020, 11, 1092. [Google Scholar] [CrossRef] [Green Version]
- Alexander, M.S.; Kunkel, L.M. Skeletal Muscle MicroRNAs: Their Diagnostic and Therapeutic Potential in Human Muscle Diseases. J. Neuromuscul. Dis. 2015, 2, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, N.; Leidinger, P.; Becker, K.; Backes, C.; Fehlmann, T.; Pallasch, C.; Rheinheimer, S.; Meder, B.; Stahler, C.; Meese, E.; et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res. 2016, 44, 3865–3877. [Google Scholar] [CrossRef]
- Moreau, J.; Ordan, M.A.; Barbe, C.; Mazza, C.; Perrier, M.; Botsen, D.; Brasseur, M.; Portefaix, C.; Renard, Y.; Talliere, B.; et al. Correlation between muscle mass and handgrip strength in digestive cancer patients undergoing chemotherapy. Cancer Med. 2019, 8, 3677–3684. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Shin, Y.; Huh, J.; Sung, Y.S.; Lee, I.S.; Yoon, K.H.; Kim, K.W. Recent Issues on Body Composition Imaging for Sarcopenia Evaluation. Korean J. Radiol. 2019, 20, 205–217. [Google Scholar] [CrossRef]
- Harris-Love, M.O.; Benson, K.; Leasure, E.; Adams, B.; McIntosh, V. The Influence of Upper and Lower Extremity Strength on Performance-Based Sarcopenia Assessment Tests. J. Funct. Morphol.Kinesiol. 2018, 3, 53. [Google Scholar] [CrossRef] [Green Version]
Healthy Controls | COPD | Asthma | Pulmonary TB | |
---|---|---|---|---|
Age at baseline (years) | 65.1 ± 5.5 | 68.1 ± 6.5 | 58.7 ± 4.2 | 62.8 ± 5.1 |
Number of Participants | 101 | 100 | 87 | 83 |
Body composition | ||||
BMI (Kg/m2) | 25.1 ± 4.4 | 25.9 ± 4.1 | 27.2 ± 3.5 | 23.1 ± 4.2 ƙ |
ASM (Kg) | 23.8 ± 4.7 | 22.1 ± 4.1 | 23.2 ± 3.8 | 22 ± 3.4 |
ASMI (Kg/m2) | 8.3 ± 1.5 | 7.8 ± 1.35 | 7.6 ± 1.3 | 7.1 ± 1.4 * |
Percent fat | 37 ± 4.1 | 36.4 ± 4.6 | 42.1 ± 5.1 | 34.2 ± 4.6 ƙ |
Physical Parameters | ||||
HGS (kg) | 29.4 ± 6.4 | 23.1 ± 4.1 * | 24.1 ± 4.3 * | 22.4 ± 5.3 * |
HGS/ASM | 1.23 ± 0.31 | 1.06 ± 0.23 * | 1.03 ± 0.21 * | 0.99 ± 0.26 *# |
4-Meter Gait Speed (m/s) | 1.13 ± 0.27 | 0.94 ± 0.29 * | 0.98 ± 0.33 * | 1.01 ± 0.22 * |
Daily steps count | 7171 ± 1,609 | 4103 ± 1,276 * | 3101 ± 1,133 *# | 3257 ± 855 *# |
Spirometry and oxygen saturation | ||||
FEV1% predicted | 95.55 ± 5.7 | 55.68 ± 5.5 * | 49.7 ± 4.6 * | 59.9 ± 5.4 * |
PEFR% predicted | 90.91 ± 5.5 | 69.48 ± 5.5 * | 61.51 ± 5.7 * | 63.33 ± 5.9 * |
SpO2 | 98.1 ± 2.3 | 93.2 ± 2.5 * | 92.1 ± 2.2 * | 94.4 ± 1.8 * |
Proportion of smokers, n (%) | 12 (12.1%) | 39 (39%) | 33 (37%) | 8 (9.6%) |
Plasma biomarkers | ||||
Dkk-3 (ng/ul) | 8.72 ± 1.3 | 10.87 ± 1.4 * | 10.22 ± 1.5 * | 9.41 ± 1.3 |
CAF22 (pM) | 118.7 ± 24.7 | 228.6 ± 34.7 * | 201.6 ± 39.2 * | 168.7 ± 41.4 *# |
8-isoprostanes (pg/mL) | 53.9 ± 11.7 | 81.3 ± 12.4 * | 93.2 ± 16.6 * | 69.3 ± 10.4 * |
CRP(mg/dl) | 0.170 ± 0.04 | 0.292 ± 0.07 * | 0.268 ± 0.05 * | 0.263 ± 0.04 * |
Creatine kinase (IU/L) | 183.5 ± 27.3 | 293.3 ± 39.7 * | 244 ± 35.4 * | 318.4 ± 58.3 * |
Healthy Controls | COPD | Asthma | Pulmonary TB | ||
---|---|---|---|---|---|
Dkk-3 | Gait speed Step count | 0.123 * 0.166 * | 0.274 ** 0.314 ** | 0.199 * 0.093 | 0.099 0.081 |
CAF22 | Gait speed Step count | 0.111 * 0.093 | 0.198 * 0.023 * | 0.118 * 0.323 ** | 0.051 0.128 * |
miR-21 | Gait speed Step count | 0.071 0.068 | 0.095 * 0.118 * | 0.029 0.217 ** | 0.058 0.079 |
miR-34a | Gait speed Step count | 0.083 * 0.028 | 0.048 0.073 * | 0.051 0.063 | 0.069 0.093 * |
miR-133 | Gait speed Step count | 0.063 0.066 | 0.073 0.051 | 0.043 0.89 * | 0.066 0.052 |
miR-206 | Gait speed Step count | 0.046 0.071 * | 0.061 0.058 | 0.083 * 0.128 * | 0.066 0.109 * |
Healthy Controls | COPD | Asthma | Pulmonary TB | ||
---|---|---|---|---|---|
Dkk-3 | 8-isoprostanes Plasma CRP Creatine kinase | 0.073 0.059 0.031 | 0.103 * 0.086 0.061 | 0.073 0.063 0.083 | 0.096 * 0.105 * 0.141 * |
CAF22 | 8-isoprostanes Plasma CRP Creatine kinase | 0.064 0.083 0.129 * | 0.055 0.122 * 0.184 * | 0.074 0.116 * 0.163 * | 0.092 * 0.051 0.138 * |
miR-21 | 8-isoprostanes Plasma CRP Creatine kinase | 0.114 * 0.094 * 0.239 ** | 0.071 0.169 * 0.107 * | 0.131 * 0.183 * 0.162 * | 0.057 0.138 * 0.174 * |
miR-34a | 8-isoprostanes Plasma CRP Creatine kinase | 0.133 * 0.196 * 0.021 | 0.147 * 0.203 ** 0.069 | 0.112 * 0.158 * 0.081 * | 0.052 0.103 * 0.088 * |
miR-133 | 8-isoprostanes Plasma CRP Creatine kinase | 0.129 * 0.116 * 0.107 * | 0.181 ** 0.085 * 0.129 * | 0.108 * 0.104 * 0.156 ** | 0.144 * 0.096 * 0.084 * |
miR-206 | 8-isoprostanes Plasma CRP Creatine kinase | 0.097 * 0.133 * 0.169 * | 0.134 * 0.173 ** 0.158 * | 0.085 * 0.078 * 0.147 * | 0.139 * 0.088 * 0.121 * |
CAF22 | miR-21 | miR-34a | miR-133 | miR-206 | |
---|---|---|---|---|---|
Dkk-3 |
|
|
|
|
|
CAF22 |
|
|
|
| |
miR-21 |
|
|
| ||
miR-34a |
|
| |||
miR-133 |
|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qaisar, R.; Karim, A.; Muhammad, T.; Shah, I. Circulating Biomarkers of Accelerated Sarcopenia in Respiratory Diseases. Biology 2020, 9, 322. https://doi.org/10.3390/biology9100322
Qaisar R, Karim A, Muhammad T, Shah I. Circulating Biomarkers of Accelerated Sarcopenia in Respiratory Diseases. Biology. 2020; 9(10):322. https://doi.org/10.3390/biology9100322
Chicago/Turabian StyleQaisar, Rizwan, Asima Karim, Tahir Muhammad, and Islam Shah. 2020. "Circulating Biomarkers of Accelerated Sarcopenia in Respiratory Diseases" Biology 9, no. 10: 322. https://doi.org/10.3390/biology9100322
APA StyleQaisar, R., Karim, A., Muhammad, T., & Shah, I. (2020). Circulating Biomarkers of Accelerated Sarcopenia in Respiratory Diseases. Biology, 9(10), 322. https://doi.org/10.3390/biology9100322