Next Article in Journal
Consequences of Haemorrhagic Smolt Syndrome (HSS) for the Immune Status of Atlantic salmon (Salmo salar L.) (Case Study)
Previous Article in Journal
Transcriptome Analysis of Wheat Roots Reveals a Differential Regulation of Stress Responses Related to Arbuscular Mycorrhizal Fungi and Soil Disturbance
Open AccessArticle

The Gametic Non-Lethal Gene Gal on Chromosome 5 Is Indispensable for the Transmission of the Co-Induced Semidwarfing Gene d60 in Rice

1
Laboratory of Genetics and Genome Engineering, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
2
Laboratory of Breeding, Faculty of Agriculture, Kyoto University, Kyoto 606, Japan
*
Author to whom correspondence should be addressed.
Biology 2019, 8(4), 94; https://doi.org/10.3390/biology8040094
Received: 2 September 2019 / Revised: 30 September 2019 / Accepted: 11 October 2019 / Published: 17 December 2019
(This article belongs to the Section Genetics and Genomics)
The gametic lethal gene gal in combination with the semidwarfing gene d60 causes complementary lethality in rice. Here, we attempted to ascertain the existence of gal and clarify male gamete abortion caused by d60 and gal. Through the F2 to F4 generations derived from the cross between D60gal-homozygous and d60Gal-homozygous, progenies of the partial sterile plants (D60d60Galgal) were segregated in a ratio of 1 semidwarf (1 d60d60GalGal):2 tall and quarter sterile (2 D60d60Galgal):6 tall (2 D60d60GalGal:1 D60D60GalGal:2 D60D60Galgal:1 D60D60galgal), which is skewed from the Mendelian ratio of 1 semidwarf:3 tall. However, the F4 generation was derived from fertile and tall heterozygous F2 plants (D60d60GalGal), which were segregated in the Mendelian ratio of 1[semidwarf (d60d60GalGal)]:2[1 semidwarf:3 tall (D60d60GalGal)]:1[tall (D60D60GalGal)]. The backcrossing of D60Gal-homozygous tall F4 plants with Hokuriku 100 resulted in fertile BCF1 and BCF2 segregated in a ratio of 1 semidwarf:3 tall, proving that d60 is inherited as a single recessive gene in the D60d60GalGal genetic background (i.e., in the absence of gal). Further, gal was localized on chromosome 5, which is evident from the deviated segregation of d1 as 1:8 and linkage with simple sequence repeat (SSR) markers. Next-generation sequencing identified the candidate SNP responsible for Gal. In F1 and sterile F2, at the binucleate stage, partial pollen discontinued development. Degraded pollen lost vegetative nuclei, but second pollen mitosis raising two generative nuclei was observed. Thus, our study describes a novel genetic model for a reproductive barrier. This is the first report on such a complementary lethal gene, whose mutation allows the transmission of a co-induced valuable semidwarfing gene d60. View Full-Text
Keywords: rice; complementary gamete lethal; non-Mendelian ratio; mapping; NGS; pollen development; pollen second mitosis rice; complementary gamete lethal; non-Mendelian ratio; mapping; NGS; pollen development; pollen second mitosis
Show Figures

Figure 1

MDPI and ACS Style

Tomita, M.; Tanisaka, T. The Gametic Non-Lethal Gene Gal on Chromosome 5 Is Indispensable for the Transmission of the Co-Induced Semidwarfing Gene d60 in Rice. Biology 2019, 8, 94.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop