In Vitro Antidiabetic, Anti-Obesity and Antioxidant Analysis of Ocimum basilicum Aerial Biomass and in Silico Molecular Docking Simulations with Alpha-Amylase and Lipase Enzymes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals Used
2.2. Collection of the Plant Material
2.3. Preparation of Extracts
2.4. Extraction of Essential Oil by Hydro-Distillation Method
2.5. Determination of α-Amylase Inhibitory Activity
2.6. Determination of Lipase Inhibitory Activity
2.7. Digestive System Simulation Studies for α-Amylase Inhibitory Activity
2.8. DPPH Radical Scavenging Assay
2.9. Determination of Total Phenolic Content
2.10. Determination of Total Flavonoid Content
2.11. Identification of Chemical Compounds by GC-MS
2.12. Molecular Docking Analysis and Molecular Dynamics Simulations
2.13. Statistical Analysis
3. Results and Discussion
3.1. Extraction Yield
3.2. Alpha-Amylase Inhibitory Activity
3.3. Lipase Inhibitory Activity
3.4. Effect of Gastric Juice on α-Amylase Inhibitory Activity
3.5. DPPH Free Radical Scavenging Activity
3.6. Total Phenolic and Total Flavonoid Contents
3.7. Identification of Chemical Compounds
3.8. Molecular Modeling Interpretations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Diabetes; World Health Organization: Geneva, Switzerland, 2019.
- Serrano, M.; Bouaid, A.; Martínez, M.; Aracil, J. Oxidation stability of biodiesel from different feedstocks: Influence of commercial additives and purification step. Fuel 2013, 113, 50–58. [Google Scholar] [CrossRef]
- Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.; Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Investig. 2017, 114, 1752–1761. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity: Implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes. Res. Clin. Pract. 2013, 7, e330–e341. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The traditional medicine and modern medicine from natural products. Molecules 2016, 21, 559. [Google Scholar] [CrossRef] [Green Version]
- Nassar, M.A.; El-Segai, M.U.; Mohamed, S.N. Botanical Studies on Ocimum basilicum L.(Lamiaceae). Res. J. Agric. Biol. Sci. 2013, 9, 150–163. [Google Scholar]
- Beatovic, D.; Krstic-Milosevic, D.; Trifunovic, S.; Siljegovic, J.; Glamoclija, J.; Ristic, M.; Jelacic, S. Chemical composition, antioxidant and antimicrobial activities of the essential oils of twelve Ocimum basilicum L. cultivars grown in Serbia. Rec. Nat. Prod. 2015, 9, 62–75. [Google Scholar]
- Khair-ul-Bariyah, S.; Ahmed, D.; Ikram, M. Ocimum basilicum: A review on phytochemical and pharmacological studies. Pak. J. Chem. 2012, 2, 78–85. [Google Scholar] [CrossRef]
- Chenni, M.; El Abed, D.; Rakotomanomana, N.; Fernandez, X.; Chemat, F. Comparative study of essential oils extracted from Egyptian basil leaves (Ocimum basilicum L.) using hydro-distillation and solvent-free microwave extraction. Molecules 2016, 21, 113. [Google Scholar] [CrossRef] [Green Version]
- Khair-ul-Bariyah, S.; Ahmed, D.; Aujla, M.I. Comparative Analysis of Ocimum basilicum and Ocimum sanctum: Extraction Techniques and Urease and alpha-Amylase inhibition. Pak. J. Chem. 2012, 2, 134–141. [Google Scholar] [CrossRef]
- Khair-ul-Bariyah, S. Comparison of the Physical Characteristics and GC/MS of the Essential Oils of Ocimum basilicum and Ocimum sanctum. Int. J. Sci. Res. Knowl. 2013, 1, 363–372. [Google Scholar] [CrossRef]
- Irondi, E.A.; Agboola, S.O.; Oboh, G.; Boligon, A.A. Inhibitory effect of leaves extracts of Ocimum basilicum and Ocimum gratissimum on two key enzymes involved in obesity and hypertension in vitro. J. Intercult. Ethnopharmacol. 2016, 5, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Ferdous, S.; Mirza, M.U.; Saeed, U. Docking studies reveal phytochemicals as the long searched anticancer drugs for breast cancer. Int. J. Comput. Appl. 2013, 67, 1–5. [Google Scholar] [CrossRef]
- Hira Iftikhar, S.R. Molecular docking studies of flavonoids for their inhibition pattern against β-catenin and pharmacophore model generation from experimentally known flavonoids to fabricate more potent inhibitors for Wnt signaling pathway. Pharmacogn. Mag. 2014, 10, S264. [Google Scholar]
- De Ruyck, J.; Brysbaert, G.; Blossey, R.; Lensink, M.F. Molecular docking as a popular tool in drug design, an in silico travel. Adv. Appl. Bioinform. Chem. AABC 2016, 9, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yousuf, Z.; Iman, K.; Iftikhar, N.; Mirza, M.U. Structure-based virtual screening and molecular docking for the identification of potential multi-targeted inhibitors against breast cancer. Breast Cancer Targets Ther. 2017, 9, 447–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, B.; Ali Ashfaq, U.; Usman Mirza, M. Medicinal plant phytochemicals and their inhibitory activities against pancreatic lipase: Molecular docking combined with molecular dynamics simulation approach. Nat. Prod. Res. 2018, 32, 1123–1129. [Google Scholar] [CrossRef]
- Ganesan, A.; Coote, M.L.; Barakat, K. Molecular dynamics-driven drug discovery: Leaping forward with confidence. Drug Discov. Today 2017, 22, 249–269. [Google Scholar] [CrossRef]
- Śledź, P.; Caflisch, A. Protein structure-based drug design: From docking to molecular dynamics. Curr. Opin. Struct. Biol. 2018, 48, 93–102. [Google Scholar] [CrossRef]
- Durrani, F.G.; Gul, R.; Mirza, M.U.; Kaderbhai, N.N.; Froeyen, M.; Saleem, M. Mutagenesis of DsbAss is Crucial for the Signal Recognition Particle Mechanism in Escherichia coli: Insights from Molecular Dynamics Simulations. Biomolecules 2019, 9, 133. [Google Scholar] [CrossRef] [Green Version]
- Mirza, M.U.; Rafique, S.; Ali, A.; Munir, M.; Ikram, N.; Manan, A.; Salo-Ahen, O.M.; Idrees, M. Towards peptide vaccines against Zika virus: Immunoinformatics combined with molecular dynamics simulations to predict antigenic epitopes of Zika viral proteins. Sci. Rep. 2016, 6, 37313. [Google Scholar] [CrossRef] [PubMed]
- Mirza, M.U.; Vanmeert, M.; Froeyen, M.; Ali, A.; Rafique, S.; Idrees, M. In silico structural elucidation of RNA-dependent RNA polymerase towards the identification of potential Crimean-Congo Hemorrhagic Fever Virus inhibitors. Sci. Rep. 2019, 9, 6809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikram, N.; Mirza, M.U.; Vanmeert, M.; Froeyen, M.; Salo-Ahen, O.M.; Tahir, M.; Qazi, A.; Ahmad, S. Inhibition of Oncogenic Kinases: An In Vitro Validated Computational Approach Identified Potential Multi-Target Anticancer Compounds. Biomolecules 2019, 9, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeed, R.; Ahmed, D. Bioactive compounds from Carissa opaca roots and xanthine oxidase and alpha-amylase inhibitory activities of their methanolic extract and its fractions in different solvents. Pharmacogn. Res. 2015, 7, 295–301. [Google Scholar]
- Maqsood, M.; Ahmed, D.; Atique, I.; Malik, W. Lipase inhibitory activity of Lagenaria siceraria fruit as a strategy to treat obesity. Asian Pac. J. Trop. Med. 2017, 10, 305–310. [Google Scholar] [CrossRef]
- Pinto, J.; Spínola, V.; Llorent-Martínez, E.J.; Fernández-de Córdova, M.L.; Molina-García, L.; Castilho, P.C. Polyphenolic profile and antioxidant activities of Madeiran elderberry (Sambucus lanceolata) as affected by simulated in vitro digestion. Food Res. Int. 2017, 100, 404–410. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.-E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Ahmed, D.; Fatima, K.; Saeed, R. Analysis of phenolic and flavonoid contents, and the anti-oxidative potential and lipid peroxidation inhibitory activity of methanolic extract of Carissa opaca roots and its fractions in different solvents. Antioxidants 2014, 3, 671–683. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Mirza, M.U.; Mirza, A.H.; Ghori, N.U.; Ferdous, S. Glycyrrhetinic acid and E.resveratroloside act as potential plant derived compounds against dopamine receptor D3 for Parkinson’s disease: A pharmacoinformatics study. Drug Des. Dev. Ther. 2015, 9, 187–198. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Handoko, S.D.; Ouyang, X.; Su, C.T.; Kwoh, C.K.; Ong, Y.S. QuickVina: accelerating AutoDock Vina using gradient-based heuristics for global optimization. IEEE/ACM Trans. Comput. Biol. Bioinform. 2012, 9, 1266–1272. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Case, D.A.; Cheatham, T.E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005, 26, 1668–1688. [Google Scholar] [CrossRef] [Green Version]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef] [Green Version]
- Roe, D.R.; Cheatham, T.E., 3rd. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013, 9, 3084–3095. [Google Scholar] [CrossRef]
- Hou, T.; Wang, J.; Li, Y.; Wang, W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J. Chem. Inf. Model. 2010, 51, 69–82. [Google Scholar] [CrossRef]
- Gilles, C.; Astier, J.P.; Marchis-Mouren, G.; Cambillau, C.; Payan, F. Crystal structure of pig pancreatic α-amylase isoenzyme II, in complex with the carbohydrate inhibitor acarbose. Eur. J. Biochem. 1996, 238, 561–569. [Google Scholar] [CrossRef]
- Janecek, S.; Svensson, B.; Henrissat, B. Domain evolution in the α-amylase family. J. Mol. Evol. 1997, 45, 322–331. [Google Scholar] [CrossRef]
- Winkler, F.; d’Arcy, A.; Hunziker, W. Structure of human pancreatic lipase. Nature 1990, 343, 771–774. [Google Scholar] [CrossRef]
- Ademiluyi, A.O.; Oyeleye, S.I.; Oboh, G. Biological activities, antioxidant properties and phytoconstituents of essential oil from sweet basil (Ocimum basilicum L.) leaves. Comp. Clin. Pathol. 2016, 25, 169–176. [Google Scholar] [CrossRef]
- Malapermal, V.; Botha, I.; Krishna, S.B.N.; Mbatha, J.N. Enhancing antidiabetic and antimicrobial performance of Ocimum basilicum, and Ocimum sanctum (L.) using silver nanoparticles. Saudi J. Biol. Sci. 2017, 24, 1294–1305. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Schaich, K. Re-evaluation of the 2, 2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay for antioxidant activity. J. Agric. Food Chem. 2014, 62, 4251–4260. [Google Scholar] [CrossRef] [PubMed]
- Zheljazkov, V.D.; Callahan, A.; Cantrell, C.L. Yield and oil composition of 38 basil (Ocimum basilicum L.) accessions grown in Mississippi. J. Agric. Food Chem. 2007, 56, 241–245. [Google Scholar] [CrossRef]
- Fatope, M.O.; Marwah, R.G.; Al Hadhrami, N.M.; Onifade, A.K.; Williams, J.R. Identification of the Chemotypes of Ocimum forskolei and Ocimum basilicum by NMR Spectroscopy. Chem. Biodivers. 2008, 5, 2457–2463. [Google Scholar] [CrossRef]
- Tshilanda, D.D.; Babady, P.B.; Onyamboko, D.N.V.; Tshiongo, C.M.T.; Tshibangu, D.S.-T.; Tsalu, P.V.; Mpiana, P.T. Chemo-type of essential oil of Ocimum basilicum L. from DR Congo and relative in vitro antioxidant potential to the polarity of crude extracts. Asian Pac. J. Trop. Biomed. 2016, 6, 1022–1028. [Google Scholar] [CrossRef]
- Mirza, M.U.; Vanmeert, M.; Ali, A.; Iman, K.; Froeyen, M.; Idrees, M. Perspectives towards antiviral drug discovery against Ebola virus. J. Med. Virol. 2018. [Google Scholar] [CrossRef]
- Hermoso, J.; Pignol, D.; Kerfelec, B.; Crenon, I.; Chapus, C.; Fontecilla-Camps, J.C. Lipase activation by nonionic detergents the crystal structure of the porcine lipase-colipase-tetraethylene glycol monooctyl ether complex. J. Biol. Chem. 1996, 271, 18007–18016. [Google Scholar] [CrossRef] [Green Version]
Solutions for Gastric Juice | Amount |
---|---|
Distilled water | 250 mL |
NaCl | 1.375 g |
NaHCO3 | 0.53 g |
NH4Cl | 0.153 g |
Urea | 0.045 g |
Concentrated HCl | 3.26 mL |
CaCl2·H2O | 0.20 g |
KCl | 0.41 g |
NaH2PO4 | 0.133 g |
Peak | RT (min) | Compound Name | Relative Percentage (%) |
---|---|---|---|
1 | 8.688 | Eucalyptol | 0.367 |
2 | 9.095 | 3,7-Dimethyl-1,3,6-octatriene, | 0.989 |
3 | 10.506 | 3,7-Dimethyl-1,6-octadien-3-ol (linalool) | 36.880 |
4 | 11.126 | Camphor | 1.394 |
5 | 12.264 | Estragole (methyl chavicol) | 54.989 |
6 | 14.915 | Cyclohexane, 1-ethenyl-1-methyl-2,4-bis(1-methylethenyl)-, [1S-(1α,2β,4β)]- (β-Elemene) | 0.301 |
7 | 15.339 | Caryophyllene | 0.395 |
8 | 15.535 | Azulene,1,2,3,4,5,6,7,8-octahydro-1,4-dimethyl-7-(1-methylethenyl)-,[1S-(1α,4α,7 α)]- (α-Guajene) | 0.210 |
9 | 16.155 | 1,6-Cyclodecadiene, 1-methyl-5-methylene-8-(1-methylethyl)-,[s-(E,E)]- (D-Germacrene) | 0.850 |
10 | 16.342 | γ-Elemene | 0.178 |
11 | 16.444 | Azulene, 1,2,3,5,6,7,8,8a-octahydro-1,4-dimethyl-7-(1-methylethyenyl)-,[1S-(1α,7 α,8aβ)]- (α-Bulnesene) | 0.204 |
12 | 17.463 | Caryophyllene Oxide | 0.110 |
13 | 17.820 | Carotol | 0.316 |
14 | 18.160 | Napthalene, 1,2,3,4, 4a,5,6,8a-octahydro-7-methyl-4-methyelene-1-(1-methylethyl)-, (1α,4aα,8aα)- (γ-cadinene) | 2.409 |
Peak | RT (min) | Compound Name | Relative Percentage (%) |
---|---|---|---|
1 | 7.394 | Bicyclo[3.1.1]heptane,6,6-dimethyl-2-methylene-, (1S)- | 0.221 |
2 | 7.768 | β-Myrcene | 0.413 |
3 | 8.736 | Eucalyptol | 2.980 |
4 | 9.153 | 1,3,6-Octatriene, 3,7-dimethyl-, (Z)- (Z-Ocimene) | 3.879 |
5 | 10.597 | 3,7-dimethyl-1,6-octadien-3-ol (Linalool) | 42.229 |
6 | 11.226 | Camphor | 2.093 |
7 | 12.279 | Estragole | 38.022 |
8 | 13.468 | Acetic acid, 1,7,7-trimethyl-bicyclo[2.2.1]hept-2-yl ester | 0.266 |
9 | 14.938 | Cyclohexane, 1-ethenyl-1-methyl-2,4-bis(1-methylethenyl)-,[1S-(1α,2β,4β)]- | 0.241 |
10 | 15.133 | Benzene, 1,2-dimethyoxy-4-(2-propenyl)- | 0.380 |
11 | 15.380 | Caryophyllene | 1.238 |
12 | 15.507 | Bicyclo[3.1.1]hept-2-ene,2,6-dimethyl-6-(4-methyl-3-pentenyl)- (α-Bergamotene) | 1.348 |
13 | 16.170 | 1,6-Cyclodecadiene, 1-methyl-5-methylene-8-(1-methylethyl)-,[s-(E,E)]- | 0.960 |
14 | 16.357 | γ-Elemene | 0.273 |
15 | 16.578 | Napthalene, 1,2,3,4, 4a,5,6,8a-octahydro-7-methyl-4-methyelene-1-(1-methylethyl)-, (1α,4aβ,8aα)- | 0.870 |
16 | 17.818 | Cubenol | 0.494 |
17 | 18.183 | Napthalene, 1,2,3,4, 4a,5,6,8a-octahydro-7-methyl-4-methyelene-1-(1-methylethyl)-, (1α,4aα,8aα)- (γ-Cadinene) | 4.089 |
Peak | RT (min) | Compound Name | Relative Percentage (%) |
---|---|---|---|
1 | 10.560 | 3,7-dimethyl-1,6-Octadien-3-ol (Linalool) | 23.244 |
2 | 12.242 | Estragole | 41.618 |
3 | 14.833 | Cyclohexane, 1-ethenyl-1-methyl-2,4-bis(1-methylethenyl)- | 0.325 |
4 | 15.003 | Cyclohexane, 1-ethenyl-1-methyl-2,4-bis(1-methylethenyl)-,[1S-(1α,2β,4β)]- (β-Elemene) | 5.585 |
5 | 15.394 | Caryophyllene | 2.263 |
6 | 15.521 | Bicyclo[3.1.1]hept-2-ene,2,6-dimethyl-6-(4-methyl-3-pentenyl)- (α-Bergamotene) | 1.191 |
7 | 15.581 | Azulene,1,2,3,4,5,6,7,8-octahydro-1,4-dimethyl-7-(1-methylethenyl)-,[1S- (1α,4α,7α)]- | 0.691 |
8 | 15.827 | Caryophyllene | 0.527 |
9 | 15.938 | 1H-Cyclopenta[1,3]cyclopropa[1,2]benzene,octahydro-7-methyl-3-methylene-4-(1-methylethyl)-,[3aS-(3a α,3b.β,4β,7 α,7aS)]- | 0.345 |
10 | 16.218 | 1,6-Cyclodecadiene, 1-methyl-5-methylene-8-(1-methylethyl)-,[S-(E,E)]- (D-Germacrene) | 4.069 |
11 | 16.371 | Azulene, 1,2,3,3a,4,5,6,7-octahydro-1,4-dimethyl-7-(1-methylethyenyl)-,[1R-(1α,3aβ,4α,7β)]- | 0.460 |
12 | 16.473 | Azulene,1,2,3,5,6,7,8,8a-octahydro-1,4-dimethyl-7-(1-methylethenyl)-,[1S-(1α,7α,8aβ)]- | 1.039 |
13 | 16.609 | Naphthalene, 1,2,3,4, 4a,5,6,8a-octahydro-7-methyl-4-methyelene-1-(1-methylethyl)-, (1α, 4aβ,8aα )- (γ-Cadinene) | 2.301 |
14 | 17.475 | Caryophyllene Oxide | 0.511 |
15 | 17.849 | Cubenol | 0.789 |
16 | 18.231 | 1-Napthalenol, 1,2,3,4, 4a,7,8,8a-octahydro-1,6-dimethyl-4-(1-methylethenyl)-,[1S-(1α,4α,4aβ,8aβ)]- (delta-Cadinol) | 6.776 |
17 | 18.342 | α-Cadinol | 0.434 |
18 | 22.827 | Phytol | 0.753 |
19 | 23.278 | 8,11,14-Eicosatrienoic acid,(Z,Z,Z)- | 0.579 |
Peak | RT (min) | Compound Name | Relative Percentage (%) |
---|---|---|---|
1 | 10.322 | 3,7-Dimethyl-1,6-octadien-3-ol (Linalool) | 17.623 |
2 | 12.217 | Estragole | 64.623 |
3 | 14.910 | Cyclohexane, 1-ethenyl-1-methyl-2,4-bis(1-methylethenyl)-,[1S-(1α,2β,4β)]- (β-Elemene) | 0.996 |
4 | 15.335 | Caryophyllene | 1.646 |
5 | 15.479 | Bicyclo[3.1.1]hept-2-ene,2,6-dimethyl-6-(4-methyl-3-pentenyl)- (α-Bergamotene) | 2.848 |
6 | 16.142 | 1,6-Cyclodecadiene, 1-methyl-5-methylene-8-(1-methylethyl)-,[S-(E,E)]- | 1.102 |
7 | 16.549 | Naphthalene, 1,2,3,4, 4a,5,6,8a-octahydro-7-methyl-4-methylene-1-(1-methylethyl)-, (1α, 4aβ,8aα)- (γ-Cadinene) | 1.508 |
8 | 18.138 | Cadinol | 3.474 |
9 | 22.785 | Phytol | 2.652 |
10 | 28.409 | Squalene | 2.472 |
11 | 30.133 | Heptacosane | 0.780 |
12 | 31.578 | Hexatriacontane | 0.732 |
Contributions | PPA (kcal/mol) | PPL (kcal/mol) | ||
---|---|---|---|---|
estragole | linalool | estragole | linalool | |
ΔEele | –6.53 | –4.66 | –5.04 | –4.12 |
ΔEvdw | –19.41 | –18.58 | –15.41 | –14.54 |
ΔEMM | –25.94 | –23.24 | –20.45 | –18.66 |
ΔGp | 8.86 | 10.5 | 8.48 | 6.54 |
ΔGnp | –3.26 | –4.01 | –3.92 | –1.62 |
ΔGsol | 5.6 | 6.49 | 4.56 | 4.92 |
ΔGtol | –20.34 | –16.75 | –15.89 | –13.74 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noor, Z.I.; Ahmed, D.; Rehman, H.M.; Qamar, M.T.; Froeyen, M.; Ahmad, S.; Mirza, M.U. In Vitro Antidiabetic, Anti-Obesity and Antioxidant Analysis of Ocimum basilicum Aerial Biomass and in Silico Molecular Docking Simulations with Alpha-Amylase and Lipase Enzymes. Biology 2019, 8, 92. https://doi.org/10.3390/biology8040092
Noor ZI, Ahmed D, Rehman HM, Qamar MT, Froeyen M, Ahmad S, Mirza MU. In Vitro Antidiabetic, Anti-Obesity and Antioxidant Analysis of Ocimum basilicum Aerial Biomass and in Silico Molecular Docking Simulations with Alpha-Amylase and Lipase Enzymes. Biology. 2019; 8(4):92. https://doi.org/10.3390/biology8040092
Chicago/Turabian StyleNoor, Zoy I, Dildar Ahmed, Hafiz Muzzammel Rehman, Muhammad Tariq Qamar, Matheus Froeyen, Sarfraz Ahmad, and Muhammad Usman Mirza. 2019. "In Vitro Antidiabetic, Anti-Obesity and Antioxidant Analysis of Ocimum basilicum Aerial Biomass and in Silico Molecular Docking Simulations with Alpha-Amylase and Lipase Enzymes" Biology 8, no. 4: 92. https://doi.org/10.3390/biology8040092
APA StyleNoor, Z. I., Ahmed, D., Rehman, H. M., Qamar, M. T., Froeyen, M., Ahmad, S., & Mirza, M. U. (2019). In Vitro Antidiabetic, Anti-Obesity and Antioxidant Analysis of Ocimum basilicum Aerial Biomass and in Silico Molecular Docking Simulations with Alpha-Amylase and Lipase Enzymes. Biology, 8(4), 92. https://doi.org/10.3390/biology8040092