Biology 2018, 7(2), 35; https://doi.org/10.3390/biology7020035
Sensitivity of Yeast Mutants Deficient in Mitochondrial or Vacuolar ABC Transporters to Pathogenesis-Related Protein TcPR-10 of Theobroma cacao
Departamento de Ciências Biológicas, Laboratório de Biologia de Fungos, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz (UESC), Rodovia Jorge Amado, km 16, Ilhéus, Bahia, CEP 42665-000, Brazil
†
Current address: Faculdade Estácio de Feira De Santana, Av. Getúlio Vargas, 3522, Feira de Santana, CEP 44077-005, Brazil.
*
Author to whom correspondence should be addressed.
Received: 27 August 2017 / Revised: 24 October 2017 / Accepted: 1 November 2017 / Published: 13 June 2018
Abstract
Pathogenesis-related proteins (PRs) are induced in plants after infection by pathogens and/or abiotic stress. Among these proteins, the family 10 (PR-10) influences the biosynthesis of secondary metabolites and shows antimicrobial ribonuclease activity. TcPR-10p (Pathogenesis-related Protein 10 of Theobroma cacao) was isolated from resistant and susceptible Moniliophthora perniciosa cacao cultivars. Cell survival with Saccharomyces cerevisiae mutant lines deficient in ATP-binding cassette (ABC) transporter proteins indicated the influence on resistance to TcPR-10p. Proteins of the ABC transport type are considered important in the process of resistance to antimicrobials and toxins. Thus, the objective of this work was to observe the sensitivity of ABC transporter yeast mutants in the presence of the TcPR-10p. Chronic exposure of S. cerevisiae mitochondrial (BYatm1Δ and BYmdl1Δ) and vacuole (BYnft1Δ, BYvmr1Δ, BYybt1Δ, BYycf1Δ and BYbpt1Δ) ABC transporter mutants to TcPR-10p (3 μg/mL, 0, 6, 12 and 24 h) was performed. Two TcPR-10p sensitive strains (BYmdl1Δ and BYnft1Δ) were submitted to a fluorescence test with the fluorogenic dihydroethidium (DHE), to visualize the presence of oxidative stress in the cells. Oxidative stress-increased sensitivity was confirmed by flow cytometry indicating induced cell death either via apoptosis or necrosis. This yeast data combined with previous data of literature (of M. perniciosa sensitivity to TcPR-10p) show that increased sensitivity to TcPR-10p in these mutants could be due to the TcPR10p-generated higher levels of intracellular reactive oxygen species (ROS), leading to increased cell death either via necrosis or apoptosis. View Full-TextKeywords:
Saccharomyces cerevisiae; ABC transporters; pathogenesis related protein; PR-10; oxidative stress
▼
Figures
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article
MDPI and ACS Style
Barreto, L.R.; Barreto, T.; Melo, S.; Pungartnik, C.; Brendel, M. Sensitivity of Yeast Mutants Deficient in Mitochondrial or Vacuolar ABC Transporters to Pathogenesis-Related Protein TcPR-10 of Theobroma cacao. Biology 2018, 7, 35.
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.