Next Article in Journal / Special Issue
Electrochemical Characterisation of Bio-Bottle-Voltaic (BBV) Systems Operated with Algae and Built with Recycled Materials
Previous Article in Journal / Special Issue
Applications of Microalgal Biotechnology for Disease Control in Aquaculture
Open AccessArticle

Characterization of Chlorella sorokiniana, UTEX 1230

1
Unit 12, Ball Mill Top Business Park, Hallow, Worcester WR2 6PD, UK
2
Department of Environmental Engineering, University College London, Gower Street, London WC1E 6BT, UK
3
Department of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
*
Authors to whom correspondence should be addressed.
Biology 2018, 7(2), 25; https://doi.org/10.3390/biology7020025
Received: 1 March 2018 / Revised: 8 April 2018 / Accepted: 10 April 2018 / Published: 13 April 2018
(This article belongs to the Special Issue Microalgal Biotechnology)
This paper characterizes the strain Chlorella sorokiniana UTEX 1230 within a laboratory setting using a 1 L bubble column. The findings show that productivity can be trebled under mixotrophic conditions (from 0.2 g·L−1·d−1 to 0.66 g·L−1·d−1) with the addition of sodium acetate. The results also indicate that both the growth rate and final yield increase with the cultivation temperature, with most parameters showing an optimum in the range of 30–35 °C. The maximum specific growth rate was found to be in the region of 0.12 h−1 at a surface irradiance between 100–500 µE·m−2·s−1. This high growth rate makes the strain particularly suited to the rapid production of biomass, suitable for either whole cell bioprocessing or bioremediation. However, the relatively low lipid productivity (9.2 mg·L−1·d−1) confirms previous findings which would indicate poor applicability for biodiesel production. The strain shows greater promise in wastewater treatment applications with removal rates of nitrogen and phosphorus in the region of 37 and 30 mg·L−1·d−1 respectively. Furthermore, the findings show that a fed-batch strategy to inorganic nutrient loading can increase the final yield by around 50% compared to a conventional batch run. This is particularly interesting as fed-batch production techniques are rarely used within microalgal cultivation, so provide an interesting avenue for further investigation. Overall, the findings show that C. sorokiniana UTEX 1230 is a robust and fast-growing microalgal strain suitable both for the laboratory and scale-up. View Full-Text
Keywords: Chlorella sorokiniana; UTEX1230; productivity; yield; characterization Chlorella sorokiniana; UTEX1230; productivity; yield; characterization
Show Figures

Figure 1

MDPI and ACS Style

Lizzul, A.M.; Lekuona-Amundarain, A.; Purton, S.; Campos, L.C. Characterization of Chlorella sorokiniana, UTEX 1230. Biology 2018, 7, 25. https://doi.org/10.3390/biology7020025

AMA Style

Lizzul AM, Lekuona-Amundarain A, Purton S, Campos LC. Characterization of Chlorella sorokiniana, UTEX 1230. Biology. 2018; 7(2):25. https://doi.org/10.3390/biology7020025

Chicago/Turabian Style

Lizzul, Alessandro M.; Lekuona-Amundarain, Aitor; Purton, Saul; Campos, Luiza C. 2018. "Characterization of Chlorella sorokiniana, UTEX 1230" Biology 7, no. 2: 25. https://doi.org/10.3390/biology7020025

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop