Next Article in Journal
Ornithine Aminotransferase, an Important Glutamate-Metabolizing Enzyme at the Crossroads of Multiple Metabolic Pathways
Previous Article in Journal
Glutamine-Glutamate Cycle Flux Is Similar in Cultured Astrocytes and Brain and Both Glutamate Production and Oxidation Are Mainly Catalyzed by Aspartate Aminotransferase
Article Menu

Export Article

Open AccessArticle
Biology 2017, 6(1), 19;

Epiphytic Terrestrial Algae (Trebouxia sp.) as a Biomarker Using the Free-Air-Carbon Dioxide-Enrichment (FACE) System

School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
School of Environmental and Natural Resources, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
Author to whom correspondence should be addressed.
Academic Editor: Chris O’Callaghan
Received: 15 July 2016 / Revised: 28 February 2017 / Accepted: 28 February 2017 / Published: 7 March 2017
Full-Text   |   PDF [1916 KB, uploaded 7 March 2017]   |  


The increasing concentration of CO2 in the atmosphere has caused significant environmental changes, particularly to the lower plants such as terrestrial algae and lichens that alter species composition, and therefore can contribute to changes in community landscape. A study to understand how increased CO2 in the atmosphere will affect algal density with minimal adjustment on its natural ecosystem, and the suitability of the algae to be considered as a biomarker, has been conducted. The current work was conducted in the Free-Air-Carbon Dioxide-Enrichment (FACE) system located in Universiti Kebangsaan Malaysia, Bangi, Malaysia. CO2 was injected through special valves located along the ring surrounding specimen trees where 10 × 10 cm quadrats were placed. A total of 16 quadrats were randomly placed on the bark of 16 trees located inside the FACE system. This system will allow data collection on the effect of increased CO2 without interfering or changing other parameters of the surrounding environment such as the wind speed, wind direction, humidity, and temperature. The initial density Trebouxia sp. was pre-determined on 1 March 2015, and the final density was taken slightly over a year later, on 15 March 2016. The exposure period of 380 days shed some light in understanding the effect of CO2 on these non-complex, short life cycle lower plants. The results from this research work showed that the density of algae is significantly higher after 380 days exposure to the CO2-enriched environment, at 408.5 ± 38.5 × 104 cells/cm2, compared to the control site at 176.5 ± 6.9 × 104 cells/cm2 (independent t-test, p < 0.001). The distance between the trees and the injector valves is negatively correlated. Quadrats located in the center of the circular ring recorded lower algal density compared to the ones closer to the CO2 injector. Quadrat 16, which was nearing the end of the CO2 valve injector, showed an exceptionally high algal density—2-fold higher than the average density at 796 ± 38.5 × 104 cells/cm2. In contrast, Quadrat 9, which was located in the center of the ring (lower CO2 concentration), recorded only 277 ± 38.5 × 104 cells/cm2, which further supports the previous claim. Based on the data obtained, this study provides useful data in understanding the positive effect of CO2 on algal density, in a natural environment, and suggests the use of epiphytic terrestrial algae as a biomarker. View Full-Text
Keywords: algae; air pollution; carbon dioxide; FACE; bio-indicator algae; air pollution; carbon dioxide; FACE; bio-indicator

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Ismail, A.; Marzuki, S.D.; Mohd Yusof, N.B.; Buyong, F.; Mohd Said, M.N.; Sigh, H.R.; Zulkifli, A.R. Epiphytic Terrestrial Algae (Trebouxia sp.) as a Biomarker Using the Free-Air-Carbon Dioxide-Enrichment (FACE) System. Biology 2017, 6, 19.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Biology EISSN 2079-7737 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top