Physiological and Transcriptomic Responses of the Freshwater Hydrozoan Craspedacusta sowerbii to Acute Antibiotic and Cadmium Exposure
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Pharmaceutical Management and Biosafety
2.2. Cultivation of C. sowerbii and Morphological Observation
2.3. Sample Preparation for RNA-Seq Analysis
2.4. Bioinformatics Analysis Pipeline
2.5. Differential Expression Analysis
3. Results
3.1. The Symptoms and Features of C. sowerbii Under Water Pollution
3.2. Transcriptomic Variations of C. sowerbii Under Water Pollution
3.3. Metabolic Pathway Alterations in C. sowerbii in Response to Water Pollution
3.4. Alterations in Gene Expression Profiles of C. sowerbii in Response to Water Pollution
4. Discussion
4.1. Similarities and Differences of C. sowerbii Under Different Water Pollution Treatments
4.2. Adaptation and Evolution of Aquatic Life Under the Stress of Water Pollution
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van Vliet, M.T.H.; Thorslund, J.; Strokal, M.; Hofstra, N.; Flörke, M.; Ehalt Macedo, H.; Nkwasa, A.; Tang, T.; Kaushal, S.S.; Kumar, R.; et al. Global river water quality under climate change and hydroclimatic extremes. Nat. Rev. Earth Environ. 2023, 4, 687–702. [Google Scholar] [CrossRef]
- Manca, F.; Benedetti-Cecchi, L.; Bradshaw, C.J.A.; Cabeza, M.; Gustafsson, C.; Norkko, A.M.; Roslin, T.V.; Thomas, D.N.; White, L.; Strona, G. Projected loss of brown macroalgae and seagrasses with global environmental change. Nat. Commun. 2024, 15, 5344. [Google Scholar] [CrossRef] [PubMed]
- Kaijser, W.; Musiol, M.; Schneider, A.R.; Prati, S.; Brauer, V.S.; Bayer, R.; Birk, S.; Brauns, M.; Dunne, L.; Enss, J.; et al. Meta-analysis-derived estimates of stressor–response associations for riverine organism groups. Nat. Ecol. Evol. 2025, 9, 2304–2321. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Wang, T.; Zhang, P.; Zhang, H.; Wang, H.; Wang, K.; Zhang, M.; Xu, J. Effects of multiple stressors on freshwater food webs: Evidence from a mesocosm experiment. Environ. Pollut. 2024, 348, 123819. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Kirsten, K.L.; Qadeer, A. Contaminants in the Water Environment: Significance from the Perspective of the Global Environment and Health. Water 2025, 17, 1257. [Google Scholar] [CrossRef]
- Yu, K.; Mohapatra, S.; Chen, Y.; Jiang, P.; Tong, X. Interactive Effects of Climate Change and Contaminants in Aquatic Ecosystems on Environmental-Human Health. Curr. Pollut. Rep. 2025, 11, 46. [Google Scholar] [CrossRef]
- Rajak, P.; Ganguly, A.; Nanda, S.; Mandi, M.; Ghanty, S.; Das, K.; Biswas, G.; Sarkar, S. 14-Toxic contaminants and their impacts on aquatic ecology and habitats. In Spatial Modeling of Environmental Pollution and Ecological Risk; Shit, P.K., Datta, D.K., Bera, B., Islam, A., Adhikary, P.P., Eds.; Woodhead Publishing: Sutton, UK, 2024; pp. 255–273. [Google Scholar]
- Madesh, S.; Gopi, S.; Sau, A.; Rajagopal, R.; Namasivayam, S.K.R.; Arockiaraj, J. Chemical contaminants and environmental stressors induced teratogenic effect in aquatic ecosystem—A comprehensive review. Toxicol. Rep. 2024, 13, 101819. [Google Scholar] [CrossRef]
- Jan, S.; Mishra, A.K.; Bhat, M.A.; Bhat, M.A.; Jan, A.T. Pollutants in aquatic system: A frontier perspective of emerging threat and strategies to solve the crisis for safe drinking water. Environ. Sci. Pollut. Res. 2023, 30, 113242–113279. [Google Scholar] [CrossRef]
- Arambawatta-Lekamge, S.H.; Pathiratne, A.; Rathnayake, I.V.N. Sensitivity of freshwater organisms to cadmium and copper at tropical temperature exposures: Derivation of tropical freshwater ecotoxicity thresholds using species sensitivity distribution analysis. Ecotoxicol. Environ. Saf. 2021, 211, 111891. [Google Scholar] [CrossRef]
- Wang, F.; Xiang, L.; Sze-Yin Leung, K.; Elsner, M.; Zhang, Y.; Guo, Y.; Pan, B.; Sun, H.; An, T.; Ying, G.; et al. Emerging contaminants: A One Health perspective. Innovation 2024, 5, 100612. [Google Scholar] [CrossRef]
- Bashir, I.; Lone, F.A.; Bhat, R.A.; Mir, S.A.; Dar, Z.A.; Dar, S.A. Concerns and Threats of Contamination on Aquatic Ecosystems. In Bioremediation and Biotechnology: Sustainable Approaches to Pollution Degradation; Hakeem, K.R., Bhat, R.A., Qadri, H., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–26. [Google Scholar]
- Schar, D.; Klein, E.Y.; Laxminarayan, R.; Gilbert, M.; Van Boeckel, T.P. Global trends in antimicrobial use in aquaculture. Sci. Rep. 2020, 10, 21878. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.K.; Paul, S.; Das, I.; Singha, E.R.; Giri, A. Global Warming and Emerging Contaminants: Impacts on Aquatic Organisms and Their Responses. Int. J. Environ. Res. 2025, 19, 186. [Google Scholar] [CrossRef]
- Grenni, P.; Ancona, V.; Barra Caracciolo, A. Ecological effects of antibiotics on natural ecosystems: A review. Microchem. J. 2018, 136, 25–39. [Google Scholar] [CrossRef]
- Xiong, J.-Q.; Govindwar, S.; Kurade, M.B.; Paeng, K.-J.; Roh, H.-S.; Khan, M.A.; Jeon, B.-H. Toxicity of sulfamethazine and sulfamethoxazole and their removal by a green microalga, Scenedesmus obliquus. Chemosphere 2019, 218, 551–558. [Google Scholar] [CrossRef]
- Zhang, H.; Quan, H.; Song, S.; Sun, L.; Lu, H. Comprehensive assessment of toxicity and environmental risk associated with sulfamethoxazole biodegradation in sulfur-mediated biological wastewater treatment. Water Res. 2023, 246, 120753. [Google Scholar] [CrossRef]
- Peng, P.; Yan, X.; Zhou, X.; Chen, L.; Li, X.; Miao, Y.; Zhao, F. Enhancing degradation of antibiotic-combined pollutants by a hybrid system containing advanced oxidation and microbial treatment, a review. J. Hazard. Mater. 2024, 480, 136300. [Google Scholar] [CrossRef]
- Studziński, W.; Gackowska, A.; Kudlek, E.; Przybyłek, M. Environmental and toxicological aspects of sulfamethoxazole photodegradation in the presence of oxidizing agents. Environ. Sci. Pollut. Res. 2025, 32, 4733–4753. [Google Scholar] [CrossRef]
- Bojarski, B.; Kot, B.; Witeska, M. Antibacterials in Aquatic Environment and Their Toxicity to Fish. Pharmaceuticals 2020, 13, 189. [Google Scholar] [CrossRef]
- Galasso, F.; Frank, A.B.; Foster, W.J. Heavy metal toxicity and its role as a major driver of past biodiversity crises. Commun. Earth Environ. 2025, 6, 780. [Google Scholar] [CrossRef]
- Haider, F.U.; Liqun, C.; Coulter, J.A.; Cheema, S.A.; Wu, J.; Zhang, R.; Wenjun, M.; Farooq, M. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol. Environ. Saf. 2021, 211, 111887. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Q.; Li, Y.; Bi, L.; Jin, L.; Peng, R. Toxic Effects of Cadmium on Fish. Toxics 2022, 10, 622. [Google Scholar] [CrossRef]
- Samarakoon, T.; Fujino, T.; Hagimori, M.; Saito, R. Cadmium uptake and oxidative-stress-induced DNA alterations in the freshwater cladoceran Moina macrocopa (Straus 1820) following consecutive short-term exposure assessments. Limnology 2023, 24, 9–23. [Google Scholar] [CrossRef]
- El-Sharkawy, M.; Alotaibi, M.O.; Li, J.; Du, D.; Mahmoud, E. Heavy Metal Pollution in Coastal Environments: Ecological Implications and Management Strategies: A Review. Sustainability 2025, 17, 701. [Google Scholar] [CrossRef]
- Yan, H.; Wang, Y.; Wu, M.; Li, Y.; Wang, W.; Zhang, D.; Guo, J.; Fohrer, N.; Li, B.L. Feeding Behavior and Ecological Significance of Craspedacusta sowerbii in a Freshwater Reservoir: Insights from Prey Composition and Trophic Interactions. Biology 2025, 14, 665. [Google Scholar] [CrossRef]
- Jankowski, T. The freshwater medusae of the world—A taxonomic and systematic literature study with some remarks on other inland water jellyfish. Hydrobiologia 2001, 462, 91–113. [Google Scholar] [CrossRef]
- Acker, T.S.; Muscat, A.M. The Ecology of Craspedacusta sowerbii Lankester, a Freshwater Hydrozoan. Am. Midl. Nat. 1976, 95, 323–336. [Google Scholar] [CrossRef]
- Lüskow, F.; Väinölä, R.; Lehtiniemi, M.; von Numers, M.; Pakhomov, E.A. Evidence for non-indigenous freshwater jellyfish Craspedacusta sowerbii spreading in Finland. Hydrobiologia 2025, 852, 5299–5312. [Google Scholar] [CrossRef]
- Gießler, S.; Strauss, T.; Schachtl, K.; Jankowski, T.; Klotz, R.; Stibor, H. Trophic Positions of Polyp and Medusa Stages of the Freshwater Jellyfish Craspedacusta sowerbii Based on Stable Isotope Analysis. Biology 2023, 12, 814. [Google Scholar] [CrossRef] [PubMed]
- Marchessaux, G.; Lüskow, F.; Sarà, G.; Pakhomov, E.A. Predicting the current and future global distribution of the invasive freshwater hydrozoan Craspedacusta sowerbii. Sci. Rep. 2021, 11, 23099. [Google Scholar] [CrossRef]
- Marchessaux, G.; Bejean, M. From frustules to medusae: A new culture system for the study of the invasive hydrozoan Craspedacusta sowerbii in the laboratory. Invertebr. Biol. 2020, 139, e12308. [Google Scholar] [CrossRef]
- Folino-Rorem, N.C.; Reid, M.; Peard, T. Culturing the freshwater hydromedusa, Craspedacusta sowerbii under controlled laboratory conditions. Invertebr. Reprod. Dev. 2016, 60, 17–27. [Google Scholar] [CrossRef]
- Winata, K.; Zhu, J.A.; Hanselman, K.M.; Zerbe, E.; Langguth, J.; Folino-Rorem, N.; Cartwright, P. Life Cycle Transitions in the Freshwater Jellyfish Craspedacusta sowerbii. Biology 2024, 13, 1069. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Pan, X.F.; Wang, X.A.; Jiang, W.S.; Liu, Q.; Yang, J.X. Effects of osmotic pressure, temperature and stocking density on survival and sexual reproduction of Craspedacusta sowerbii. Dongwuxue Yanjiu 2016, 37, 90–95. [Google Scholar] [CrossRef]
- Lüskow, F.; Polgári, B.; Stibor, H.; Schachtl, K.; Abonyi, A. Light increases surface occurrence of the freshwater jellyfish Craspedacusta sowerbii via positive phototaxis. Hydrobiologia 2025, 853, 647–656. [Google Scholar] [CrossRef]
- Luk, C.Y.L. The Chinese Freshwater Jellyfish Unbound: Evolution, Nomenclature, and Bioinvasion of Craspedacusta sowerbii, 1880–1941. Hist. Stud. Nat. Sci. 2024, 54, 493–520. [Google Scholar] [CrossRef]
- Gasith, A.; Gafny, S.; Hershkovitz, Y.; Goldstein, H.; Galil, B. The invasive freshwater medusa Craspedacusta sowerbii Lankester, 1880 (Hydrozoa: Olindiidae) in Israel. Aquat. Invasions 2011, 6, S147–S152. [Google Scholar] [CrossRef]
- Caputo, L.; Fuentes, R.; Woelfl, S.; Castañeda, L.E.; Cárdenas, L. Phenotypic plasticity of clonal populations of the freshwater jellyfish Craspedacusta sowerbii (Lankester, 1880) in Southern Hemisphere lakes (Chile) and the potential role of the zooplankton diet. Austral Ecol. 2021, 46, 1192–1197. [Google Scholar] [CrossRef]
- Lüskow, F.; Boersma, M.; López-González, P.J.; Pakhomov, E.A. Genetic variability, biomass parameters, elemental composition and energy content of the non-indigenous hydromedusa Craspedacusta sowerbii in North America. J. Plankton Res. 2022, 45, 82–98. [Google Scholar] [CrossRef]
- Lüskow, F.; López-González, P.J.; Pakhomov, E.A. Freshwater jellyfish in northern temperate lakes: Craspedacusta sowerbii in British Columbia, Canada. Aquat. Biol. 2021, 30, 69–84. [Google Scholar] [CrossRef]
- Marchessaux, G.; Bejean, M. Growth and ingestion rates of the freshwater jellyfish Craspedacusta sowerbii. J. Plankton Res. 2020, 42, 783–786. [Google Scholar] [CrossRef]
- Sreeram, M.P.; Prasad, R.; Sreekumar, K.M.; Raju, A.K.; Augustina, T.A.X.; Lüskow, F.; Saravanan, R. Post-flooding blooms of the non-indigenous freshwater jellyfish Craspedacusta sowerbii Lankester, 1880 in Kollam District of Kerala, India. J. Plankton Res. 2024, 47, fbae069. [Google Scholar] [CrossRef]
- Lucas, K.; Colin, S.P.; Costello, J.H.; Katija, K.; Klos, E. Fluid Interactions That Enable Stealth Predation by the Upstream-Foraging Hydromedusa Craspedacusta sowerbyi. Biol. Bull. 2013, 225, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Xie, Y.; Li, J. Toxic effects and molecular mechanisms of sulfamethoxazole on Scenedesmus obliquus. Ecotoxicol. Environ. Saf. 2022, 232, 113258. [Google Scholar] [CrossRef] [PubMed]
- Diogo, B.S.; Rodrigues, S.; Golovko, O.; Antunes, S.C. From bacteria to fish: Ecotoxicological insights into sulfamethoxazole and trimethoprim. Environ. Sci. Pollut. Res. 2024, 31, 52233–52252. [Google Scholar] [CrossRef] [PubMed]
- Felis, E.; Kalka, J.; Sochacki, A.; Kowalska, K.; Bajkacz, S.; Harnisz, M.; Korzeniewska, E. Antimicrobial pharmaceuticals in the aquatic environment—Occurrence and environmental implications. Eur. J. Pharmacol. 2020, 866, 172813. [Google Scholar] [CrossRef]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The Effects of Cadmium Toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef]
- Zhou, J.; Yun, X.; Wang, J.; Li, Q.; Wang, Y.; Zhang, W.; Fan, Z. Biological toxicity of sulfamethoxazole in aquatic ecosystem on adult zebrafish (Danio rerio). Sci. Rep. 2024, 14, 9401. [Google Scholar] [CrossRef]
- Lin, T.; Yu, S.; Chen, Y.; Chen, W. Integrated biomarker responses in zebrafish exposed to sulfonamides. Environ. Toxicol. Pharmacol. 2014, 38, 444–452. [Google Scholar] [CrossRef]
- Roy, D.; Mitra, A.; Sen, B.M.; Homechaudhuri, S. Biochemical Responses in Zebra Fish (Danio rerio) on Acute Cadmium Exposure Under Temperature Variations. Proc. Zool. Soc. 2024, 77, 164–172. [Google Scholar] [CrossRef]
- Yuan, W.; Liang, Y.; Xia, X.; Xie, Y.; Lan, S.; Li, X. Protection of Danio rerio from cadmium (Cd2+) toxicity using biological iron sulfide composites. Ecotoxicol. Environ. Saf. 2018, 161, 231–236. [Google Scholar] [CrossRef]
- Tang, K.; Cao, X.; Geng, X.; Huang, W.; Liu, H.; Yan, Z.; Wu, Z.; Yang, C.; Tang, J.; Zhou, Z. Microbiome dysbiosis and decreased survival in coral larvae exposed to environmentally relevant concentrations of nanoplastics and sulfamethoxazole. J. Hazard. Mater. 2025, 499, 140297. [Google Scholar] [CrossRef] [PubMed]
- Nykolay, A.; Shahid, A. Immortal Hydra as a Model Organism for Metal Toxicity Studies. Sci. McMaster Undergrad. Sci. J. 2019, 1, 2–8. [Google Scholar] [CrossRef]
- Murugadas, A.; Mahamuni, D.; Nirmaladevi, S.D.; Thamaraiselvi, K.; Thirumurugan, R.; Akbarsha, M.A. Hydra as an alternative model organism for toxicity testing: Study using the endocrine disrupting chemical Bisphenol A. Biocatal. Agric. Biotechnol. 2019, 17, 680–684. [Google Scholar] [CrossRef]
- Howe, P.L.; Reichelt-Brushett, A.J.; Clark, M.W. Effects of Cd, Co, Cu, Ni and Zn on asexual reproduction and early development of the tropical sea anemone Aiptasia pulchella. Ecotoxicology 2014, 23, 1593–1606. [Google Scholar] [CrossRef]
- Wu, X.; Liao, H.; Zhang, X.; Ma, Z.; Fu, Z. Unraveling the Impact of Microplastic–Tetracycline Composite Pollution on the Moon Jellyfish Aurelia aurita: Insights from Its Microbiome. Microorganisms 2025, 13, 882. [Google Scholar] [CrossRef]
- Xu, W.; Ahmed, W.; Mahmood, M.; Li, W.; Mehmood, S. Physiological and biochemical responses of soft coral Sarcophyton trocheliophorum to doxycycline hydrochloride exposure. Sci. Rep. 2023, 13, 17665. [Google Scholar] [CrossRef]
- Elran, R.; Raam, M.; Kraus, R.; Brekhman, V.; Sher, N.; Plaschkes, I.; Chalifa-Caspi, V.; Lotan, T. Early and late response of Nematostella vectensis transcriptome to heavy metals. Mol. Ecol. 2014, 23, 4722–4736. [Google Scholar] [CrossRef]
- Morabito, R.; Dossena, S.; La Spada, G.; Marino, A. Heavy metals affect nematocysts discharge response and biological activity of crude venom in the jellyfish Pelagia noctiluca (Cnidaria, Scyphozoa). Cell. Physiol. Biochem. 2014, 34, 244–254. [Google Scholar] [CrossRef]
- Gao, C.-H.; Cao, H.; Ju, F.; Xiao, K.-Q.; Cai, P.; Wu, Y.; Huang, Q. Emergent transcriptional adaption facilitates convergent succession within a synthetic community. ISME Commun. 2021, 1, 46. [Google Scholar] [CrossRef]
- Wang, H.; Xu, Y.; Zhang, Z.; Zhang, G.; Tan, C.; Ye, L. Development and application of transcriptomics technologies in plant science. Crop. Des. 2024, 3, 100057. [Google Scholar] [CrossRef]
- Jing, L.; Wang, H.; Xia, S.; Shao, Q. Wnt/Ca(2+) signaling: Dichotomous roles in regulating tumor progress (Review). Oncol. Lett. 2025, 30, 399. [Google Scholar] [CrossRef]
- Sanchez-Collado, J.; Lopez, J.J.; Jardin, I.; Salido, G.M.; Rosado, J.A. Cross-Talk Between the Adenylyl Cyclase/cAMP Pathway and Ca2+ Homeostasis. In Reviews of Physiology, Biochemistry and Pharmacology; Pedersen, S.H.F., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 73–116. [Google Scholar]
- Schmidt, M.F.; Gan, Z.Y.; Komander, D.; Dewson, G. Ubiquitin signalling in neurodegeneration: Mechanisms and therapeutic opportunities. Cell Death Differ. 2021, 28, 570–590. [Google Scholar] [CrossRef]
- Dantuma, N.P.; Bott, L.C. The ubiquitin-proteasome system in neurodegenerative diseases: Precipitating factor, yet part of the solution. Front. Mol. Neurosci. 2014, 7, 70. [Google Scholar] [CrossRef]
- Ajoolabady, A.; Pratico, D.; Bahijri, S.; Tuomilehto, J.; Uversky, V.N.; Ren, J. Hallmarks of cellular senescence: Biology, mechanisms, regulations. Exp. Mol. Med. 2025, 57, 1482–1491. [Google Scholar] [CrossRef] [PubMed]
- Minchin, D.; Caffrey, J.M.; Haberlin, D.; Germaine, D.; Walsh, C.; Boelens, R.; Doyle, T.K. First observations of the freshwater jellyfish Craspedacusta sowerbii Lankester, 1880 in Ireland coincides with unusually high water temperatures. Bioinvasions Rec. 2016, 5, 67–74. [Google Scholar] [CrossRef]
- Schifani, E.; Viviano, A.; Viviano, R.; Naselli-Flores, L.; Marrone, F. Different lineages of freshwater jellyfishes (Cnidaria, Olindiidae, Craspedacusta) invading Europe: Another piece of the puzzle from Sicily, Italy. Limnology 2019, 20, 143–151. [Google Scholar] [CrossRef]
- Seçer, B. New locality records of invasive freshwater jellyfish Craspedacusta sowerbii (Lankester, 1880) in Türkiye. Limnol. Freshw. Biol. 2025, 2025, 298–301. [Google Scholar] [CrossRef]
- Moore, J.P.; Green, H.C.; Stewart, D.J.; Lüskow, F.; Wilder, M.L. Invasive freshwater jellyfish (Craspedacusta cf. sowerbii) in the Hudson River basin, NYS: Comparisons of detection methods. Hydrobiologia 2025, 852, 5275–5297. [Google Scholar] [CrossRef]







| Group | 1 h | 2 h | 6 h | 12 h | 24 h |
|---|---|---|---|---|---|
| CK | 42.3 ± 8.1 | 43.9 ± 5.6 | 45.5 ± 6.0 | 43.1 ± 7.2 | 43.5 ± 6.4 |
| SMZ | 43.9 ± 10.8 | 41.7 ± 13.8 | 40.4 ± 12.3 | 41.8 ± 7.5 | 23.4 ± 8.7 ** |
| Cd | 42.7 ± 6.9 | 20.1 ± 8.3 ** | 4.3 ± 5.0 ** | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yan, H.; Wang, Y.; He, Y.; Wang, J.; Wu, M.; Shi, J.; Guo, J.; Shi, S.; Fohrer, N.; Qin, J.; et al. Physiological and Transcriptomic Responses of the Freshwater Hydrozoan Craspedacusta sowerbii to Acute Antibiotic and Cadmium Exposure. Biology 2026, 15, 193. https://doi.org/10.3390/biology15020193
Yan H, Wang Y, He Y, Wang J, Wu M, Shi J, Guo J, Shi S, Fohrer N, Qin J, et al. Physiological and Transcriptomic Responses of the Freshwater Hydrozoan Craspedacusta sowerbii to Acute Antibiotic and Cadmium Exposure. Biology. 2026; 15(2):193. https://doi.org/10.3390/biology15020193
Chicago/Turabian StyleYan, Hailong, Yu Wang, Yufan He, Jinglong Wang, Mengyao Wu, Jianing Shi, Jingjing Guo, Shang Shi, Nicola Fohrer, Jianguang Qin, and et al. 2026. "Physiological and Transcriptomic Responses of the Freshwater Hydrozoan Craspedacusta sowerbii to Acute Antibiotic and Cadmium Exposure" Biology 15, no. 2: 193. https://doi.org/10.3390/biology15020193
APA StyleYan, H., Wang, Y., He, Y., Wang, J., Wu, M., Shi, J., Guo, J., Shi, S., Fohrer, N., Qin, J., & Li, Y. (2026). Physiological and Transcriptomic Responses of the Freshwater Hydrozoan Craspedacusta sowerbii to Acute Antibiotic and Cadmium Exposure. Biology, 15(2), 193. https://doi.org/10.3390/biology15020193

