Allostery-Driven Substrate Gating in the Chlorothalonil Dehalogenase from Pseudomonas sp. CTN-3
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. All-Atomistic Molecular Dynamics (MD)
2.2. Trajectory Analysis
2.3. Visual Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Chd | chlorothalonil dehalogenase |
| TPN | 2,4,5,6-tetrachloroisophthalonitrile |
| 4-OH-TPN | 4-hydroxytrichloroisophthalonitrile |
| MBL | metallo-β-lactamase |
| TBP | trigonal bipyramid |
| MD | molecular dynamics simulations |
| MSM | Markov state model |
| COM | centers of mass |
| PCA | principal component analysis |
| TICA | time-lagged independent component analysis |
| ITS | Implied timescales |
| PCCA++ | Perron Cluster |
| MFPT | Mean first passage time |
| TPT | transition path theory |
| BaNDyT | Bayesian network modeling of molecular dynamics trajectories |
| DAG | directed acyclic graphs |
References
- Pimviriyakul, P.; Wongnate, T.; Tinikul, R.; Chaiyen, P. Microbial degradation of halogenated aromatics: Molecular mechanisms and enzymatic reactions. Microb. Biotechnol. 2020, 13, 67–86. [Google Scholar] [CrossRef] [PubMed]
- Arora, P.K.; Sasikala, C.; Ramana, C.V. Degradation of chlorinated nitroaromatic compounds. Appl. Microbiol. Biotechnol. 2012, 93, 2265–2277. [Google Scholar] [CrossRef]
- Chen, H.; Wang, H.; Wang, T.; Huang, S.; Zang, X.; Li, S.; Jiang, J.I. Identification of the Metal Center of Chlorothalonil Hydrolytic Dehalogenase and Enhancement of Catalytic Efficiency by Directed Evolution. J. Appl. Environ. Biotech. 2016, 1, 30–37. [Google Scholar] [CrossRef]
- Meng, C.; He, Q.; Huang, J.-W.; Cao, Q.; Yan, X.; Li, S.-P.; Jiang, J.-D. Degradation of chlorothalonil through a hydrolytic dehalogenase secreted from Bacillus subtilis WB800. Int. Biodeterior. Biodegrad. 2015, 104, 97–104. [Google Scholar] [CrossRef]
- Van Scoy, A.R.; Tjeerdema, R.S. Environmental Fate and Toxicology of Chlorothalonil. In Reviews of Environmental Contamination and Toxicology Volume 232; Whitacre, D.M., Ed.; Springer International Publishing: Cham, Switzerland, 2014; pp. 89–105. [Google Scholar]
- De Jong, R.M.; Dijkstra, B.W. Structure and mechanism of bacterial dehalogenases: Different ways to cleave a carbon–halogen bond. Curr. Opin. Struct. Biol. 2003, 13, 722–730. [Google Scholar] [CrossRef]
- Mowery-Evans, M.; Benzie, E.; Ansari, N.; Melville, M.; Domaille, D.; Holz, R.C. Degradation of Atrazine to Cyanuric Acid by an Enzymatic Biomaterial Cascade. Catalysts 2025, 15, 1055. [Google Scholar] [CrossRef]
- Mowery-Evans, M.; Diviesti, K.; Holz, R.C. Degradation of Chlorothalonil by Catalytic Biomaterials. Catalysts 2024, 14, 805. [Google Scholar] [CrossRef]
- Diviesti, K.; Russell-Parks, G.A.; Trewyn, B.G.; Holz, R.C. Atrazine Degradation Using Immobilized Triazine Hydrolase from Arthrobacter aurescens TC1 in Mesoporous Silica Nanomaterials. ACS Environ. Au 2023, 3, 361–369. [Google Scholar] [CrossRef]
- Diviesti, K.; Holz, R.C. Catalytic Biomaterials for Atrazine Degradation. Catalysts 2023, 13, 140. [Google Scholar] [CrossRef]
- Wang, G.; Li, R.; Li, S.; Jiang, J. A Novel Hydrolytic Dehalogenase for the Chlorinated Aromatic Compound Chlorothalonil. J. Bacteriol. 2010, 192, 2737–2745. [Google Scholar] [CrossRef]
- Jin, X.; Cui, N.; Zhou, W.; Khorram, M.S.; Wang, D.; Yu, Y. Soil genotoxicity induced by successive applications of chlorothalonil under greenhouse conditions. Environ. Toxicol. Chem. 2014, 33, 1043–1047. [Google Scholar] [CrossRef]
- Kumar Singh, B.; Walker, A.; Wright, D.J. Persistence of Chlorpyrifos, Fenamiphos, Chlorothalonil, and Pendimethalin in Soil and Their Effects on Soil Microbial Characteristics. Bull. Environ. Contam. Toxicol. 2002, 69, 181–188. [Google Scholar] [CrossRef]
- Kazos, E.A.; Nanos, C.G.; Stalikas, C.D.; Konidari, C.N. Simultaneous determination of chlorothalonil and its metabolite 4-hydroxychlorothalonil in greenhouse air: Dissipation process of chlorothalonil. Chemosphere 2008, 72, 1413–1419. [Google Scholar] [CrossRef]
- Chaves, A.; Shea, D.; Cope, W.G. Environmental fate of chlorothalonil in a Costa Rican banana plantation. Chemosphere 2007, 69, 1166–1174. [Google Scholar] [CrossRef]
- Mozzachio, A.M.; Rusiecki, J.A.; Hoppin, J.A.; Mahajan, R.; Patel, R.; Beane-Freeman, L.; Alavanja, M.C.R. Chlorothalonil exposure and cancer incidence among pesticide applicator participants in the agricultural health study. Environ. Res. 2008, 108, 400–403. [Google Scholar] [CrossRef]
- Rydz, E.; Larsen, K.; Peters, C.E. Estimating Exposure to Three Commonly Used, Potentially Carcinogenic Pesticides (Chlorolathonil, 2,4-D, and Glyphosate) Among Agricultural Workers in Canada. Ann. Work. Expo. Health 2020, 65, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Sandstrom, M.W.; Nowell, L.H.; Mahler, B.J.; Van Metre, P.C. New-generation pesticides are prevalent in California’s Central Coast streams. Sci. Total Environ. 2022, 806, 150683. [Google Scholar] [CrossRef]
- Kiefer, K.; Bader, T.; Minas, N.; Salhi, E.; Janssen, E.M.L.; von Gunten, U.; Hollender, J. Chlorothalonil transformation products in drinking water resources: Widespread and challenging to abate. Water Res. 2020, 183, 116066. [Google Scholar] [CrossRef] [PubMed]
- Catlin, D.S.; Yang, X.; Bennett, B.; Holz, R.C.; Liu, D. Structural basis for the hydrolytic dehalogenation of the fungicide chlorothalonil. J. Biol. Chem. 2020, 295, 8668–8677. [Google Scholar] [CrossRef] [PubMed]
- Gerlich, G.; Miller, C.; Yang, X.; Diviesti, K.; Bennett, B.; Klein-Seetharaman, J.; Holz, R.C. Catalytic role of histidine-114 in the hydrolytic dehalogenation of chlorothalonil by Pseudomonas sp. CTN-3. J. Biol. Inorg. Chem. 2024, 29, 427–439. [Google Scholar] [CrossRef]
- Yang, X.; Diviesti, K.; Miller, C.; Bennett, B.; Holz, R.C. Insights into the catalytic mechanism of the chlorothalonil dehalogenase from Pseudomonas sp. CTN-3. Front. Chem. Biol. 2023, 2, 1105607. [Google Scholar] [CrossRef]
- Hilser, V.J.; Wrabl, J.O.; Motlagh, H.N. Structural and Energetic Basis of Allostery. Annu. Rev. Biophys. 2012, 41, 585–609. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M.R.; Smith, J.C.; Kasson, P.M.; van der Spoel, D.; et al. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 2013, 29, 845–854. [Google Scholar] [CrossRef]
- Lemkul, J. From Proteins to Perturbed Hamiltonians: A Suite of Tutorials for the GROMACS-2018 Molecular Simulation Package [Article v1.0]. Living J. Comput. Mol. Sci. 2018, 1, 5068. [Google Scholar] [CrossRef]
- Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 2010, 31, 671–690. [Google Scholar] [CrossRef] [PubMed]
- Röhrig, U.F.; Goullieux, M.; Bugnon, M.; Zoete, V. Attracting Cavities 2.0: Improving the Flexibility and Robustness for Small-Molecule Docking. J. Chem. Inf. Model. 2023, 63, 3925–3940. [Google Scholar] [CrossRef]
- Grosdidier, A.; Zoete, V.; Michielin, O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 2011, 39, W270–W277. [Google Scholar] [CrossRef]
- Michaud-Agrawal, N.; Denning, E.J.; Woolf, T.B.; Beckstein, O. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 2011, 32, 2319–2327. [Google Scholar] [CrossRef] [PubMed]
- Gowers, R.J.; Linke, M.; Barnoud, J.; Reddy, T.J.E.; Melo, M.N.; Seyler, S.L.; Domański, J.; Dotson, D.L.; Buchoux, S.; Kenney, I.M.; et al. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. In Proceedings of the 15th Python in Science Conference, Austin, TX, USA, 11–17 July 2016. [Google Scholar]
- Maciejewski, M.W.; Schuyler, A.D.; Gryk, M.R.; Moraru, I.I.; Romero, P.R.; Ulrich, E.L.; Eghbalnia, H.R.; Livny, M.; Delaglio, F.; Hoch, J.C. NMRbox: A Resource for Biomolecular NMR Computation. Biophys. J. 2017, 112, 1529–1534. [Google Scholar] [CrossRef] [PubMed]
- Scherer, M.K.; Trendelkamp-Schroer, B.; Paul, F.; Pérez-Hernández, G.; Hoffmann, M.; Plattner, N.; Wehmeyer, C.; Prinz, J.-H.; Noé, F. PyEMMA 2: A Software Package for Estimation, Validation, and Analysis of Markov Models. J. Chem. Theory Comput. 2015, 11, 5525–5542. [Google Scholar] [CrossRef]
- Mukhaleva, E.; Manookian, B.; Chen, H.; Sivaraj, I.R.; Ma, N.; Wei, W.; Urbaniak, K.; Gogoshin, G.; Bhattacharya, S.; Vaidehi, N.; et al. BaNDyT: Bayesian Network Modeling of Molecular Dynamics Trajectories. J. Chem. Inf. Model. 2025, 65, 1278–1288. [Google Scholar] [CrossRef]
- Otasek, D.; Morris, J.H.; Bouças, J.; Pico, A.R.; Demchak, B. Cytoscape Automation: Empowering workflow-based network analysis. Genome Biol. 2019, 20, 185. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Harris, T.K.; Mildvan, A.S. High-Precision Measurement of Hydrogen Bond Lengths in Proteins by Nuclear Magnetic Resonance Methods. Proteins Struct. Funct. Bioinform. 1999, 35, 275–282. [Google Scholar] [CrossRef]
- Yang, X.; Bennett, B.; Holz, R.C. Insights into the Catalytic Mechanism of a Bacterial Hydrolytic Dehalogenase that Degrades the Fungicide Chlorothalonil. J. Biol. Chem. 2019, 264, 13411–13420. [Google Scholar] [CrossRef]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Gerlich, G.; Klein-Seetharaman, J.; Holz, R.C. Allostery-Driven Substrate Gating in the Chlorothalonil Dehalogenase from Pseudomonas sp. CTN-3. Biology 2026, 15, 20. https://doi.org/10.3390/biology15010020
Gerlich G, Klein-Seetharaman J, Holz RC. Allostery-Driven Substrate Gating in the Chlorothalonil Dehalogenase from Pseudomonas sp. CTN-3. Biology. 2026; 15(1):20. https://doi.org/10.3390/biology15010020
Chicago/Turabian StyleGerlich, Grayson, Judith Klein-Seetharaman, and Richard C. Holz. 2026. "Allostery-Driven Substrate Gating in the Chlorothalonil Dehalogenase from Pseudomonas sp. CTN-3" Biology 15, no. 1: 20. https://doi.org/10.3390/biology15010020
APA StyleGerlich, G., Klein-Seetharaman, J., & Holz, R. C. (2026). Allostery-Driven Substrate Gating in the Chlorothalonil Dehalogenase from Pseudomonas sp. CTN-3. Biology, 15(1), 20. https://doi.org/10.3390/biology15010020

