The Bacterial Community Characteristics of Hippophae rhamnoides Subsp. sinensis Rousi in Different Distribution Areas of the Qinghai–Tibet Plateau and Their Responses to Habitat Factors
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of Chinese Seabuckthorn Sampling Sites
2.2. Rhizosphere Soil Sample Collection from Chinese Seabuckthorn
2.3. China Seabuckthorn Rhizosphere Soil Bacterial DNA Extraction, PCR Amplification, and High-Throughput Sequencing
2.4. Data Analysis
3. Results
3.1. Sequencing Quality and Venn Analysis of Rhizosphere Soil Bacteria in Chinese Seabuckthorn
3.2. Abundance Changes in Bacterial Phyla and Genera in the Rhizosphere Soil of Chinese Seabuckthorn
3.3. LEfSe Analysis of Rhizosphere Soil Bacteria in Chinese Seabuckthorn
3.4. Diversity Changes in Rhizosphere Soil Bacteria of Chinese Seabuckthorn
3.4.1. α-Diversity Changes in Rhizosphere Soil Bacteria of Chinese Seabuckthorn
3.4.2. Beta Diversity Changes in Rhizosphere Soil Bacteria of Chinese Seabuckthorn
3.5. Co-Occurrence Network Analysis of Rhizosphere Soil Bacteria in Chinese Seabuckthorn
3.6. PICRUSt Functional Analysis of Rhizosphere Soil Bacteria in Chinese Seabuckthorn
3.7. UPGMA Clustering of Rhizosphere Soil Bacteria in Chinese Seabuckthorn
3.8. Coupling Relationship Between Rhizosphere Soil Bacterial Communities and Habitat Factors in Chinese Seabuckthorn
3.8.1. Mantel Test Analysis Between Bacterial Community Structure and Habitat Factors
3.8.2. RDA Between Bacterial Community Structure and Habitat Factors
4. Discussion
4.1. Compositional Structural Variation Characteristics of Rhizosphere Soil Bacterial Communities in Chinese Seabuckthorn Across Twelve Different Habitats
4.2. Coupling Relationship Between Rhizosphere Soil Bacterial Community Structure and Habitat Factors in Chinese Seabuckthorn
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, S.Y.; Ye, G.S.; Liu, W.J.; Liu, R.Q.; Liu, Z.H.; Ma, Y.H. Environmental factors drive the biogeographic pattern of Hippophae rhamnoides Root endophytic fungal diversity in the arid regions of northwest China. J. Fungi 2024, 10, 679. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.J.; Guo, Y.F.; Yue, Y.J.; Hao, L.F.; Qi, W.; Gao, R.H.; Dong, X.Y. Morphological traits and water–nutrient utilization efficiency of Hippophae rhamnoides fine roots under different stubble heights in arsenic sandstone area, Inner Mongolia. Plants 2025, 14, 1329. [Google Scholar] [CrossRef] [PubMed]
- Li, X.W.; Sun, K.; Li, Y.H. Variation in leaf nitrogen and phosphorus stoichiometry in the nitrogen-fixing Chinese sea-buckthorn (Hippophae rhamnoides L. subsp. sinensis Rousi) across northern China. Ecol. Res. 2014, 29, 723–731. [Google Scholar] [CrossRef]
- Su, Y.; Li, S.X.; Jiang, H.; Duan, B.L.; Liu, M.Y.; Zhang, Y.B. Sex-specific physiological and growth responses to elevated temperature and CO2 concentration in Chinese seabuckthorn (Hippophae rhamnoides subsp. sinensis Rousi). Acta Physiol. Plant. 2023, 45, 53. [Google Scholar] [CrossRef]
- Ling, N.; Guo, C.Q.; Tian, H.Y.; Wang, Z.H.; Wang, Q.Y.; Gao, M.Z.; Ji, C.F. Visualized analysis of research status and development trend of Hippophae rhamnoides polysaccharides based on bibliometrics. Chin. Herb. Med. 2024, 55, 7047–7061. [Google Scholar] [CrossRef]
- Yuan, T.; Ren, W.B.; Zhang, J.T.; Mahmood, M.; Jia, Z.Y.; Zhang, S.H.; Wang, M.; Liang, S.; Yuan, F.; Liu, Y.L. Synergistic effect of grassland plants and beneficial rhizosphere bacteria helps plants cope with overgrazing stress. BMC Plant Biol. 2025, 25, 614. [Google Scholar] [CrossRef]
- Jiang, X.; Niu, K.C. Effects of grass mixed-sowing on soil microbial diversity on the Qingzang (Tibetan) Plateau. Acta Phytoecol. 2021, 45, 539–551. [Google Scholar] [CrossRef]
- Mohan, J.; Negi, N.; Bharti, B.; Kumar, A.; Arya, R. Azotobacter as a possible bio-fertilizer for managing soil and plant health: A review. J. Adv. Biol. Biotechnol. 2024, 27, 143–152. [Google Scholar] [CrossRef]
- Wang, X.Y.; Bao, X.G.; Zhang, F.; Tan, B.B.; Wang, Y.Y.; Zhong, P.F. Characteristies of bacterial community and soil enzyme activity in rhizosphere soil of desert plant Reaumuria Soongorica. Acta Grassl. 2024, 32, 3764–3773. [Google Scholar] [CrossRef]
- Yang, H.; Yu, X.J.; Song, J.C.; Wu, J.H. Artemisia smithii patches form fertile islands and lead to heterogeneity of soil bacteria and fungi within and around the patches in alpine meadows of the Qinghai-Tibetan Plateau. Front. Plant Sci. 2024, 15, 1411839. [Google Scholar] [CrossRef]
- Chen, K.Y.; Xing, S.; Shi, H.L.; Tang, Y.; Yang, M.X.; Gu, Q.; Li, Y.M.; Ji, B.M.; Zhang, J. Long-term fencing can’t benefit plant and microbial network stability of alpine meadow and alpine steppe in Three-River-Source National Park. Sci. Total Environ. 2023, 902, 166076. [Google Scholar] [CrossRef]
- Yang, X.J.; Liu, S.N.; Deng, B.Y.; Liang, Y.Y. Differences in the rhizosphere microbial communities of Glyptostrobus pensilis in different geographical distributions. J. For. Environ. 2025, 45, 1–10. [Google Scholar] [CrossRef]
- Zhao, J.C.; Sa, X.M.; Li, M.; Dai, Z.L.; Sun, X.; Wang, H. Effect of organic fertilizer and microbial agent formulation on inter-root soil bacterial community diversity in cabernet sauvignon’ grapes. J. Northwest Agric. 2024, 33, 2134–2145. [Google Scholar] [CrossRef]
- Lu, Y.H.; Geng, G.G.; Wang, L.H.; Qiao, F. Physical and chemical properties and microbial community characteristics of the rhizosphere soil of Lamiophlomis rotata distributed in different regions of the Qinghai–Tibet Plateau. Grassl. Sci. 2025, 42, 561–576. [Google Scholar] [CrossRef]
- Sadowska, Y.; Słupski, J. The effect of the harvest date on the possibility of harvesting by shaking, chemical composition, color, and antioxidant properties of common sea buckthorn fruit (Hippophae rhamnoides L.). Agronomy 2025, 15, 1184. [Google Scholar] [CrossRef]
- Riley, D.; Barber, S.A. Bicarbonate accumulation and pH changes at the soybean (Glycine max (L.) Merr.) root-soil interface. Soil Sci. Soc. Am. J. 1969, 33, 905–908. [Google Scholar] [CrossRef]
- Bao, S.D. Soil Agrochemical Analysis, 3rd ed.; China Agricultural Press: Beijing, China, 2000; pp. 25–100. [Google Scholar]
- Zhao, Z.F.; Qiu, X.Y.; Yin, J.; Zhao, R.Z.; Yang, Q.Q. Effect of fluoride pollution on the bacterial community in the water-soil system of the Qingshui River Basin in Ningxia. J. Lake Sci. 2025, 38, 1–15. [Google Scholar] [CrossRef]
- Wang, R.; Liu, H.L.; Zhu, A.M.; Wang, Y.X.; Ren, Z.H.; Korea, B.D. Effects of stocking rates on soil bacteria and carbon and nitrogen content of Artemisia frigida at different rhizosphere distances. Acta Agrestia Sin. 2024, 32, 386–395. [Google Scholar] [CrossRef]
- Yuan, Y.; Yao, W.T.; Wu, Y.Q.; Wang, R.; Yu, Z.Y.; Huo, J.W.; Li, X.J.; Tang, K. Composition of flavonoids and nutritional evaluation in leaves of different sea-buckthorn germplasm resources. Food Sci. Amp Nutr. 2025, 13, e70013. [Google Scholar] [CrossRef] [PubMed]
- Li, X.P.; Xiao, R.X.; Tao, Y.F. Enhancing plant stress resilience and agricultural sustainability through rhizosphere microbiome optimization. Plant Soil 2025, 1–13, prepublish. [Google Scholar] [CrossRef]
- Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; Putten, W.H. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 2013, 11, 789–799. [Google Scholar] [CrossRef]
- Ma, F.L.; Wang, Y.Q.; Hao, Y.; Duan, J.C.; Liu, F.F.; Xi, L.Q.; Han, L. Effects of altitude gradient on plant and soil microbial community structure and diversity in the middle part of the northern slope of the Kunlun Mountains, China. Acta Phytoecol. 2025, 49, 732–747. [Google Scholar] [CrossRef]
- Qi, H.J.; Guo, Y.F.; Yao, Y.F.; Qi, W.; Bu, F.J.; Wang, H.Y. Response of microbial community of rhizosphere soil to stumping of Hippophae rhamnoides in the arsenic sandstone area. Soil Bull. 2024, 55, 437–447. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, J.P.; Wang, Y.T.; Zhang, Y.; Zhao, Y.X.; Luo, X. Effeets of short-term precipitation changes on soil microbial communities indesert grasslands. Acta Ecol. Sin. 2025, 45, 64–79. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhang, R.; Wei, P.C.; Li, M.Q. Effects of water stress under different mulch covers on soilmicrobial structure and yield in silage maize. Agric. Res. Arid Areas 2024, 42, 167–178. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Cao, Y.R.; Sun, M.S.; Wang, L.C.; Yang, H.Q. Phenological shifts drive rhizosphere microbial community dynamics in Subtropical woody bamboo (Chimonobambusa utilis (Keng) P. C. Keng): pH and total phosphorus as main drivers. Rhizosphere 2025, 34, 101072. [Google Scholar] [CrossRef]
- Lou, Y.; Wang, Y.N.; Liu, H.; Zhang, Z.L. Differences in production area affect bacterial and fungal community structure in panax notoginseng rhizosphere. Eurasia J. Sci. Technol. 2025, 7, 24–33. [Google Scholar] [CrossRef]
- Li, Y.L.; Wang, Y.G.; Liu, Y.P.; Chen, Y.Y.; Yang, S.G. Altitude distribution patterns and driving factors of rhizosphere soil microbial diversity in the mountainous and hilly region of southwest, China. Agronomy 2024, 14, 2441. [Google Scholar] [CrossRef]
- Xie, C.S.; Wu, Y.T.; Wu, Z.H.; Cao, H.; Huang, X.H.; Cui, F.; Meng, S.; Chen, J. Bacillus velezensis TCS001 enhances the resistance of hickory to Phytophthora cinnamomi and reshapes the rhizosphere microbial community. Agriculture 2025, 15, 193. [Google Scholar] [CrossRef]
- Dai, Y.M.; Cui, Y.; Xiao, Q.C.; Ping, M.L.; Zhang, Y.M.; Hu, S.G.; Chen, H.; Li, X.Y.; Chen, J. Environment disturbances influence bacterial diversity, structure and co-occurrence network in the Digitaria sanguinalis rhizosphere. Physiol. Mol. Plant Pathol. 2025, 138, 102716. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Dong, Y.D.; Chen, X.; Zhang, G.Z.; Liang, C.L.; Zhou, Y.X.; Huang, Z.Y.; Shi, L.P.; Chen, S.L.; Dong, L.L.; et al. Ecological niche imprints the structure and network of microbial communities in Lonicera japonica Thunb. Plant Soil 2025, 1–15, prepublish. [Google Scholar] [CrossRef]
- Gao, P.; Ye, G.S.; Guo, S.Y.; Ma, Y.H.; Zhang, Y.Y.; Sun, S.X.; Guo, L.; San, H.Y.; Liu, W.J.; Ren, Q.C.; et al. Environmental factors drive the changes of bacterial structure and functional diversity in rhizosphere soil of Hippophae rhamnoides subsp. sinensis Rousi in arid regions of northwest China. Microorganisms 2025, 13, 1860. [Google Scholar] [CrossRef]
- Wang, A.L.; Ma, R.; Ma, Y.J.; Lyu, Y.X. Prediction of soil bacterial community structure and function in minqin desert-oasis ecotone artificial Haloxylon ammodendron forest. Huanjing Kexue 2024, 45, 508–519. [Google Scholar] [CrossRef] [PubMed]
- Li, X.W.; Li, X.L.; Shi, Y.; Zhao, S.J.; Liu, J.I.; Lin, Y.Y.; Li, C.; Zhang, C.H. Effects of microtopography on soil microbial communities in alpine meadows on the Qinghai-Tibetan Plateau. Catena 2024, 239, 107945. [Google Scholar] [CrossRef]
- Wang, X.M.; Yan, B.G.; Wang, Y.Y.; Huang, T.Z.; Wang, L.D.; Bai, R.X. Characteristics of bacterial communities in the roots of Albizia albiflora and Leucaena leucocephala. Acta Ecol. Sin. 2025, 45, 3279–3292. [Google Scholar] [CrossRef]
- Huang, S.M.; Zhou, L.; Jia, W.J.; Cui, M.L.; Liang, S.; Qu, Y. Soil bacterial community diversity and PICRUSt function prediction of Meconopsis integrifolia at different altitudes. J. Southwest Agric. 2025, 38, 785–795. [Google Scholar] [CrossRef]
- Liu, J.J.; Sui, Y.Y.; Yu, Z.H.; Shi, Y.; Chu, H.Y.; Jin, j.; Liu, X.B.; Wang, G.H. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China. Soil Biol. Biochem. 2014, 70, 113–122. [Google Scholar] [CrossRef]
- Gao, P.; Li, X.H.; Li, C.Y.; Chai, Y.; Wang, C.H.; Ma, J.J.; Yuan, Y.; Li, X.L.; Zhang, J. Response of soil microbial community composition to topography in the yellow river source basin. Environ. Sci. 2025, 43, 1–19. [Google Scholar] [CrossRef]
- Ma, X.D. Assembly, turnover and function of rhizosphere microbial communities of seven zonal stipaspecies in inner mongolia steppe. Inn. Mong. Univ. 2023, 144–150. [Google Scholar] [CrossRef]
- Zuo, Y.W. Study on Rhizosphere Soil Microbial Diversity and Community Structure of Endangered Plant Thuja sutchuenensis. Southwest Univ. 2022, 87–95. [Google Scholar] [CrossRef]
- Wang, N.; Cheng, J.H.; Liu, Y.H.; Xu, Q.C.; Zhu, C.; Ling, N.; Guo, J.J.; Li, R.; Huang, W.; Guo, S.W.; et al. Relative importance of altitude shifts with plant and microbial diversity to soil multifunctionality in grasslands of north-western China. Plant Soil 2024, 504, 545–560. [Google Scholar] [CrossRef]
- Li, M.S.; Sui, X.; Zhang, T.; Zeng, X.N.; Mu, L.Q.; Cue, X.Y.; Han, S.J.; Dai, G.H.; Cheng, Z.C.; Wang, W.H. The soil bacterial community and diversities of Deyeuxia angustifolia population along different altitude in changbai mountains, Northeastern China. Int. J. Agric. Biol. 2020, 24, 59–67. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, P.; Ye, G.; Ma, Y. The Bacterial Community Characteristics of Hippophae rhamnoides Subsp. sinensis Rousi in Different Distribution Areas of the Qinghai–Tibet Plateau and Their Responses to Habitat Factors. Biology 2025, 14, 1304. https://doi.org/10.3390/biology14091304
Gao P, Ye G, Ma Y. The Bacterial Community Characteristics of Hippophae rhamnoides Subsp. sinensis Rousi in Different Distribution Areas of the Qinghai–Tibet Plateau and Their Responses to Habitat Factors. Biology. 2025; 14(9):1304. https://doi.org/10.3390/biology14091304
Chicago/Turabian StyleGao, Pei, Guisheng Ye, and Yuhua Ma. 2025. "The Bacterial Community Characteristics of Hippophae rhamnoides Subsp. sinensis Rousi in Different Distribution Areas of the Qinghai–Tibet Plateau and Their Responses to Habitat Factors" Biology 14, no. 9: 1304. https://doi.org/10.3390/biology14091304
APA StyleGao, P., Ye, G., & Ma, Y. (2025). The Bacterial Community Characteristics of Hippophae rhamnoides Subsp. sinensis Rousi in Different Distribution Areas of the Qinghai–Tibet Plateau and Their Responses to Habitat Factors. Biology, 14(9), 1304. https://doi.org/10.3390/biology14091304