Analysis of the Effects of Prey, Competitors, and Human Activity on the Spatiotemporal Distribution of the Wolverine (Gulo gulo) in a Boreal Region of Heilongjiang Province, China
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection, Covariates, and Modeling Selection
2.3. Statistical Analysis
2.3.1. Temporal Distribution
2.3.2. Occupancy Model
2.3.3. Species Distribution Model
3. Results
3.1. Climate-Mediated Temporal Pattern Shifts and Temporal Overlap of Wolverines with Prey, Competitors, and Human Activity
3.2. Wolverine Occupancy
3.3. Spatial Distribution Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, W.; Li, X.; Onditi, K.O.; Wang, H.; Song, W.; Hu, Z.; Pu, C.; Pu, M.; Xiong, Y.; Yang, S.; et al. Spatiotemporal distribution patterns of large and medium-sized mammals in a biodiversity hotspot: Implications for conservation. Biol. Conserv. 2024, 301, 110863. [Google Scholar] [CrossRef]
- Calhoun, J.B. Diel Activity Rhythms of the Rodents, Microtus ochrogaster and Sigmodon hispidus hispidus. Ecology 1945, 26, 251–273. [Google Scholar] [CrossRef]
- Terman, C.R. Some Dynamics of Spatial Distribution within Seminatural Populations of Prairie Deermice. Ecology 1961, 42, 288–302. [Google Scholar] [CrossRef]
- Ewart, H.E.; Pasqualotto, N.; Paolino, R.M.; Jensen, K.; Chiarello, A.G. Effects of anthropogenic disturbance and land cover protection on the behavioural patterns and abundance of Brazilian mammals. Glob. Ecol. Conserv. 2024, 50, e02839. [Google Scholar] [CrossRef]
- Nakabayashi, M.; Kanamori, T.; Matsukawa, A.; Tangah, J.; Tuuga, A.; Malim, P.T.; Bernard, H.; Ahmad, A.H.; Matsuda, I.; Hanya, G. Temporal activity patterns suggesting niche partitioning of sympatric carnivores in Borneo, Malaysia. Sci. Rep. 2021, 11, 19819. [Google Scholar] [CrossRef]
- Jayasekara, E.G.D.P.; Mahaulpatha, D. Modeling the habitat suitability for sympatric small and medium sized felids and investigating the spatiotemporal niche overlapping in Maduru Oya National Park, Sri Lanka. J. Wildl. Biodivers. 2022, 6, 31–56. [Google Scholar]
- Ramesh, T.; Kalle, R.; Sankar, K.; Qureshi, Q. Role of body size in activity budgets of mammals in the Western Ghats of India. J. Trop. Ecol. 2015, 31, 315–323. [Google Scholar] [CrossRef]
- Grimsby, A.C.; Pedersen, Å.Ø.; Ehrich, D.; Mosbacher, J.B.; Paulsen, I.M.G.; Brockmann, F.K.; Ravolainen, V. Spatiotemporal distribution of Arctic herbivores in spring: Potential for competition? Glob. Ecol. Conserv. 2023, 45, e02521. [Google Scholar] [CrossRef]
- Rehan, M.; Hassan, A.; Zeb, S.; Ullah, S.; Ahmad, F.; Bohnett, E.; Bosso, L.; Fida, T.; Kabir, M. Application of species distribution models to estimate and manage the Asiatic black bear (Ursus thibetanus) habitat in the Hindu Kush Mountains, Pakistan. Eur. J. Wildl. Res. 2024, 70, 62. [Google Scholar] [CrossRef]
- Jamali, F.; Amininasab, S.M.; Taleshi, H.; Madadi, H. Using an ensemble modeling to predict the potential distribution and habitat suitability of caracal (Caracal caracal) in southwestern Iran. Glob. Ecol. Conserv. 2024, 52, e02968. [Google Scholar] [CrossRef]
- Kearney, M.; Porter, W. Mechanistic niche modelling: Combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 2009, 12, 334–350. [Google Scholar] [CrossRef]
- Krasnov, B.R.; Stanko, M.; Morand, S. Are ectoparasite communities structured? Species co-occurrence, temporal variation and null models. J. Anim. Ecol. 2006, 75, 1330–1339. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- MacKenzie, D.I.; Bailey, L.L. Assessing the fit of site-occupancy models. J. Agric. Biol. Environ. Stat. 2004, 9, 300–318. [Google Scholar] [CrossRef]
- Yackulic, C.B.; Chandler, R.; Zipkin, E.F.; Royle, J.A.; Nichols, J.D.; Campbell Grant, E.H.; Veran, S. Presence-only modelling using MAXENT: When can we trust the inferences? Methods Ecol. Evol. 2013, 4, 236–243. [Google Scholar] [CrossRef]
- Feng, X.; Peterson, A.T.; Aguirre-López, L.J.; Burger, J.R.; Chen, X.; Papeş, M. Rethinking ecological niches and geographic distributions in face of pervasive human influence in the Anthropocene. Biol. Rev. 2024, 99, 1481–1503. [Google Scholar] [CrossRef] [PubMed]
- Gashchak, S.; Barnett, C.L.; Beresford, N.A.; Paskevych, S.; Wood, M.D. Estimating the population density of Eurasian lynx in the Ukrainian part of the Chornobyl Exclusion Zone using camera trap footage. Theriol. Ukr. 2022, 23, 47–65. [Google Scholar] [CrossRef]
- Singer, L.; Wietlisbach, X.; Hickisch, R.; Schoell, E.M.; Leuenberger, C.; Van den Broek, A.; Désalme, M.; Driesen, K.; Lyly, M.; Marucco, F.; et al. The spatial distribution and temporal trends of livestock damages caused by wolves in Europe. Biol. Conserv. 2023, 282, 110039. [Google Scholar] [CrossRef]
- Bison, M.; Yoccoz, N.G.; Carlson, B.Z.; Bayle, A.; Delestrade, A. Camera traps reveal seasonal variation in activity and occupancy of the Alpine mountain hare Lepus timidus varronis. Wildl. Biol. 2024, 2024, e01186. [Google Scholar] [CrossRef]
- Jahren, T.; Odden, M.; Linnell, J.D.C.; Panzacchi, M. The impact of human land use and landscape productivity on population dynamics of red fox in southeastern Norway. Mammal Res. 2020, 65, 503–516. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Liu, K.; Zhang, C.; Gao, H.; Lu, M.; Nie, Y. The synergistic impact of socioeconomic and landscape factors on spatial patterns of human-wildlife conflicts. Biol. Conserv. 2024, 290, 110431. [Google Scholar] [CrossRef]
- Ladle, A.; Avgar, T.; Wheatley, M.; Stenhouse, G.B.; Nielsen, S.E.; Boyce, M.S. Grizzly bear response to spatio-temporal variability in human recreational activity. J. Appl. Ecol. 2019, 56, 375–386. [Google Scholar] [CrossRef]
- Roder, S.; Biollaz, F.; Mettaz, S.; Zimmermann, F.; Manz, R.; Kéry, M.; Vignali, S.; Fumagalli, L.; Arlettaz, R.; Braunisch, V. Deer density drives habitat use of establishing wolves in the Western European Alps. J. Appl. Ecol. 2020, 57, 995–1008. [Google Scholar] [CrossRef]
- Davis, R.S.; Yarnell, R.W.; Gentle, L.K.; Uzal, A.; Mgoola, W.O.; Stone, E.L. Prey availability and intraguild competition regulate the spatiotemporal dynamics of a modified large carnivore guild. Ecol. Evol. 2021, 11, 7890–7904. [Google Scholar] [CrossRef] [PubMed]
- Farmer, M.J.; Allen, M.L.; Olson, E.R.; Van Stappen, J.; Van Deelen, T.R. Anthropogenic activity and structures have varying effects on the activity of carnivores in a protected area in Wisconsin, United States. Biodivers. Conserv. 2022, 31, 3163–3178. [Google Scholar] [CrossRef]
- Quintero, S.; Abrahams, M.I.; Beirne, C.; Blake, J.; Carvalho Jr, E.; Costa, H.C.M.; de Paula, M.J.; Endo, W.; Haugaasen, T.; Lima, M.G.M.; et al. Effects of human-induced habitat changes on site-use patterns in large Amazonian Forest mammals. Biol. Conserv. 2023, 279, 109904. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, S.; Zhang, M. Update on the status of wolverines in China. J. For. Res. 2017, 28, 425–429. [Google Scholar] [CrossRef]
- Krejsa, D.M.; Talbot, S.L.; Sage, G.K.; Sonsthagen, S.A.; Jung, T.S.; Magoun, A.J.; Cook, J.A. Dynamic landscapes in northwestern North America structured populations of wolverines (Gulo gulo). J. Mammal. 2021, 102, 891–908. [Google Scholar] [CrossRef]
- Fisher, J.T.; Murray, S.; Barrueto, M.; Carroll, K.; Clevenger, A.P.; Hausleitner, D.; Harrower, W.; Heim, N.; Heinemeyer, K.; Jacob, A.L.; et al. Wolverines (Gulo gulo) in a changing landscape and warming climate: A decadal synthesis of global conservation ecology research. Glob. Ecol. Conserv. 2022, 34, e02019. [Google Scholar] [CrossRef]
- Scrafford, M.A.; Boyce, M.S. Temporal patterns of wolverine (Gulo gulo luscus) foraging in the boreal forest. J. Mammal. 2018, 99, 693–701. [Google Scholar] [CrossRef]
- Aubry, K.B.; Raley, C.M.; Shirk, A.J.; McKelvey, K.S.; Copeland, J.P. Climatic conditions limit wolverine distribution in the Cascade Range of southwestern North America. Can. J. Zool. 2023, 101, 95–113. [Google Scholar] [CrossRef]
- Jung, T.S.; Peers, M.J.L.; Drummond, R.; Taylor, S.D. Dining with a glutton: An intraguild interaction between scavenging wolverine (Gulo gulo) and lynx (Lynx canadensis). Ecosphere 2023, 14, e4491. [Google Scholar] [CrossRef]
- van der Veen, B.; Mattisson, J.; Zimmermann, B.; Odden, J.; Persson, J. Refrigeration or anti-theft? Food-caching behavior of wolverines (Gulo gulo) in Scandinavia. Behav. Ecol. Sociobiol. 2020, 74, 52. [Google Scholar] [CrossRef]
- Kortello, A.; Hausleitner, D.; Mowat, G. Mechanisms influencing the winter distribution of wolverine Gulo gulo luscus in the southern Columbia Mountains, Canada. Wildl. Biol. 2019, 2019, 1–13. [Google Scholar] [CrossRef]
- Ray, J.C.; Poley, L.G.; Magoun, A.J.; Chetkiewicz, C.-L.B.; Southee, F.M.; Dawson, F.N.; Chenier, C. Modelling broad-scale wolverine occupancy in a remote boreal region using multi-year aerial survey data. J. Biogeogr. 2018, 45, 1478–1489. [Google Scholar] [CrossRef]
- Zhu, S. Wolverine (Gulo gulo) Winter Habitat Use and Evaluation Based on the Analysis of the Movement Behavior and Diet. Ph.D. Thesis, Northeast Forestry University, Harbin, China, 2015. (In Chinese). [Google Scholar]
- Liu, X.; Ma, M.; Xu, F.; Xiong, J.; Zhu, S.; Cui, S.; Jiang, Z.; Zhang, T.; Guo, H.; Tuoliuhan, E. A preliminary study of wolverine in Altay, Xinjiang. Acta Theriol. Sin. 2018, 38, 519–524. (In Chinese) [Google Scholar] [CrossRef]
- Scrafford, M.A.; Avgar, T.; Heeres, R.; Boyce, M.S. Roads elicit negative movement and habitat-selection responses by wolverines (Gulo gulo luscus). Behav. Ecol. 2018, 29, 534–542. [Google Scholar] [CrossRef]
- Carroll, K.A.; Hansen, A.J.; Inman, R.M.; Lawrence, R.L. Evaluating the importance of wolverine habitat predictors using a machine learning method. J. Mammal. 2021, 102, 1466–1472. [Google Scholar] [CrossRef]
- Bailey, L.L.; Hines, J.E.; Nichols, J.D.; MacKenzie, D.I. Sampling design trade-offs in occupancy studies with imperfect detection: Examples and software. Ecol. Appl. 2007, 17, 281–290. [Google Scholar] [CrossRef]
- Leroux, S.J. On the prevalence of uninformative parameters in statistical models applying model selection in applied ecology. PLoS ONE 2019, 14, e0206711. [Google Scholar] [CrossRef]
- Felton, A.M.; Wam, H.K.; Borowski, Z.; Granhus, A.; Juvany, L.; Matala, J.; Melin, M.; Wallgren, M.; Mårell, A. Climate change and deer in boreal and temperate regions: From physiology to population dynamics and species distributions. Glob. Change Biol. 2024, 30, e17505. [Google Scholar] [CrossRef] [PubMed]
- Lashley, M.A.; Cove, M.V.; Chitwood, M.C.; Penido, G.; Gardner, B.; DePerno, C.S.; Moorman, C.E. Estimating wildlife activity curves: Comparison of methods and sample size. Sci. Rep. 2018, 8, 4173. [Google Scholar] [CrossRef] [PubMed]
- Monterroso, P.; Alves, P.C.; Ferreras, P. Catch Me If You Can: Diel Activity Patterns of Mammalian Prey and Predators. Ethology 2013, 119, 1044–1056. [Google Scholar] [CrossRef]
- Linkie, M.; Ridout, M.S. Assessing tiger-prey interactions in Sumatran rainforests. J. Zool. 2011, 284, 224–229. [Google Scholar] [CrossRef]
- Ridout, M.S.; Linkie, M. Estimating overlap of daily activity patterns from camera trap data. J. Agric. Biol. Environ. Stat. 2009, 14, 322–337. [Google Scholar] [CrossRef]
- Liu, X.; Wu, P.; Songer, M.; Cai, Q.; He, X.; Zhu, Y.; Shao, X. Monitoring wildlife abundance and diversity with infra-red camera traps in Guanyinshan Nature Reserve of Shaanxi Province, China. Ecol. Indic. 2013, 33, 121–128. [Google Scholar] [CrossRef]
- Gómez, H.; Wallace, R.B.; Ayala, G.; Tejada, R. Dry season activity periods of some Amazonian mammals. Stud. Neotrop. Fauna Environ. 2005, 40, 91–95. [Google Scholar] [CrossRef]
- Dixneuf, C.; Peiris, P.; Nummi, P.; Sundell, J. Vernal pools enhance local vertebrate activity and diversity in a boreal landscape. Glob. Ecol. Conserv. 2021, 31, e01858. [Google Scholar] [CrossRef]
- Meredith, M.; Ridout, M. Overlap, version 0.3.7; R Package for Estimating Coefficients of Overlapping in Animal Activity Patterns; Foundation for Statistical Computing: Vienna, Austria, 2023. Available online: https://CRAN.R-project.org/package=overlap (accessed on 4 November 2024).
- Rowcliffe, M. Activity, version 1.3.1; R Package for Animal Activity Statistics; Foundation for Statistical Computing: Vienna, Austria, 2023. Available online: https://CRAN.R-project.org/package=activity (accessed on 6 November 2024).
- R Core Team. R, version 4.3.2; A Language and Environment for Statistical Computing; Foundation for Statistical Computing: Vienna, Austria, 2023. Available online: https://www.R-project.org/ (accessed on 30 March 2024).
- Li, S.; Mcshea, W.J.; Wang, D.; Shao, L.; Shi, X. The use of infrared-triggered cameras for surveying phasianids in Sichuan Province, China. IBIS 2010, 152, 299–309. [Google Scholar] [CrossRef]
- Banjade, M.; Jeong, Y.-H.; Jin, S.-D.; Son, S.H.; Kunwar, A.; Park, S.-M.; Lee, J.-W.; Choi, S.-H.; Oh, H.-S. Spatiotemporal overlap between Siberian roe deer (Capreolus pygargus tianschanicus) and sympatric mammalian species on Jeju Island, South Korea. Mammalia 2023, 87, 101–109. [Google Scholar] [CrossRef]
- MacKenzie, D.I.; Bailey, L.L.; Nichols, J.D. Investigating species co-occurrence patterns when species are detected imperfectly. J. Anim. Ecol. 2004, 73, 546–555. [Google Scholar] [CrossRef]
- Steenweg, R.; Whittington, J.; Hebblewhite, M.; Forshner, A.; Johnston, B.; Petersen, D.; Shepherd, B.; Lukacs, P.M. Camera-based occupancy monitoring at large scales: Power to detect trends in grizzly bears across the Canadian Rockies. Biol. Conserv. 2016, 201, 192–200. [Google Scholar] [CrossRef]
- Rozhnov, V.V.; Pshegusov, R.H.; Hernandez-Blanco, J.A.; Chistopolova, M.D.; Pkhitikov, A.B.; Trepet, S.A.; Dronova, N.A.; Naidenko, S.V.; Yachmennikova, A.A. MaxEnt Modeling for Predicting Suitable Habitats in the North Caucasus (Russian Part) for Persian Leopard (P. p. ciscaucasica) Based on GPS Data from Collared and Released Animals. Izv. Atmos. Ocean. Phys. 2020, 56, 1090–1106. [Google Scholar] [CrossRef]
- Paterson, J.E.; Bortolotti, L.E.; Kowal, P.D.; Pidwerbesky, A.J.; Devries, J.H. Predicting the effects of land cover change on biodiversity in Prairie Canada using species distribution models. Biol. Conserv. 2024, 298, 110754. [Google Scholar] [CrossRef]
- Li, Q.; Qi, J.; Peng, J.; Qu, L.; Xu, Q.; Wenzel, C.; Zhang, M. Habitat accessibility and snares impact large cats and their prey in Northeast Tiger and Leopard National Park, China. Biol. Conserv. 2024, 289, 110414. [Google Scholar] [CrossRef]
- Ordiz, A.; Sæbø, S.; Kindberg, J.; Swenson, J.E.; Støen, O.-G. Seasonality and human disturbance alter brown bear activity patterns: Implications for circumpolar carnivore conservation? Anim. Conserv. 2017, 20, 51–60. [Google Scholar] [CrossRef]
- Thiel, A.; Evans, A.L.; Fuchs, B.; Arnemo, J.M.; Aronsson, M.; Persson, J. Effects of reproduction and environmental factors on body temperature and activity patterns of wolverines. Front. Zool. 2019, 16, 21. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, B.; Fan, D.; Li, S. Temporal Response of Mesocarnivores to Human Activity and Infrastructure in Taihang Mountains, Central North China: Shifts in Activity Patterns and Their Overlap. Animals 2023, 13, 688. [Google Scholar] [CrossRef]
- Inman, R.M.; Magoun, A.J.; Persson, J.; Mattisson, J. The wolverine’s niche: Linking reproductive chronology, caching, competition, and climate. J. Mammal. 2012, 93, 634–644. [Google Scholar] [CrossRef]
- Laundré, J.W.; Hernández, L.; Medina, P.L.; Campanella, A.; López-Portillo, J.; González-Romero, A.; Grajales-Tam, K.M.; Burke, A.M.; Gronemeyer, P.; Browning, D.M. The landscape of fear: The missing link to understand top-down and bottom-up controls of prey abundance? Ecology 2014, 95, 1141–1152. [Google Scholar] [CrossRef]
- Bassing, S.B.; Ho, C.; Gardner, B. Anthropogenic activities influence spatiotemporal patterns of predator-prey interactions. Glob. Ecol. Conserv. 2024, 53, e03017. [Google Scholar] [CrossRef]
- Charnov, E.L. Optimal foraging, the marginal value theorem. Theor. Popul. Biol. 1976, 9, 129–136. [Google Scholar] [CrossRef]
- Lima, S.L.; Bednekoff, P.A. Temporal Variation in Danger Drives Antipredator Behavior: The Predation Risk Allocation Hypothesis. Am. Nat. 1999, 153, 649–659. [Google Scholar] [CrossRef]
- Vallejo-Vargas, A.F.; Sheil, D.; Semper-Pascual, A.; Beaudrot, L.; Ahumada, J.A.; Akampurira, E.; Bitariho, R.; Espinosa, S.; Estienne, V.; Jansen, P.A.; et al. Consistent diel activity patterns of forest mammals among tropical regions. Nat. Commun. 2022, 13, 7102. [Google Scholar] [CrossRef]
- Saisamorn, A.; Duengkae, P.; Pattanavibool, A.; Duangchantrasiri, S.; Simcharoen, A.; Smith, J.L.D. Spatial and temporal analysis of leopards (Panthera pardus), their prey and tigers (Panthera tigris) in Huai Kha Khaeng Wildlife Sanctuary, Thailand. Folia Oecol. 2019, 46, 73–82. [Google Scholar] [CrossRef]
- Glass, T.W.; Breed, G.A.; Robards, M.D.; Williams, C.T.; Kielland, K. Trade-off between predation risk and behavioural thermoregulation drives resting behaviour in a cold-adapted mesocarnivore. Anim. Behav. 2021, 175, 163–174. [Google Scholar] [CrossRef]
- Gaynor, K.M.; Hojnowski, C.E.; Carter, N.H.; Brashares, J.S. The influence of human disturbance on wildlife nocturnality. Science 2018, 360, 1232–1235. [Google Scholar] [CrossRef]
- Millien, V.; Truchon, F.; St-Laurent, M.-H. White-tailed deer limit their spatio-temporal overlap with hikers in a protected area. Sci. Rep. 2024, 14, 32143. [Google Scholar] [CrossRef]
- Pattekar, S.S.; Gubbi, S.; Struebig, M.J.; Benson, J.F. Response of dholes to prey availability and human disturbance in space and time in Southern India. Biol. Conserv. 2024, 297, 110750. [Google Scholar] [CrossRef]
- Hamdallah, S.A.A.; Arafa, A.A. Stability analysis of Filippov prey–predator model with fear effect and prey refuge. J. Appl. Math. Comput. 2024, 70, 73–102. [Google Scholar] [CrossRef]
- Lee, S.X.T.; Amir, Z.; Moore, J.H.; Gaynor, K.M.; Luskin, M.S. Effects of human disturbances on wildlife behaviour and consequences for predator-prey overlap in Southeast Asia. Nat. Commun. 2024, 15, 1521. [Google Scholar] [CrossRef] [PubMed]
- May, R.; van Dijk, J.; Landa, A.; Andersen, R.; Andersen, R. Spatio-temporal ranging behaviour and its relevance to foraging strategies in wide-ranging wolverines. Ecol. Model. 2010, 221, 936–943. [Google Scholar] [CrossRef]
- Brown, G.S.; DeWitt, P.D.; Dawson, N.; Landriault, L. Threshold responses in wildlife communities and evidence for biodiversity indicators of sustainable resource management. Ecol. Indic. 2021, 133, 108371. [Google Scholar] [CrossRef]
- Scrafford, M.A.; Avgar, T.; Abercrombie, B.; Tigner, J.; Boyce, M.S. Wolverine habitat selection in response to anthropogenic disturbance in the western Canadian boreal forest. For. Ecol. Manag. 2017, 395, 27–36. [Google Scholar] [CrossRef]
- Barrueto, M.; Forshner, A.; Whittington, J.; Clevenger, A.P.; Musiani, M. Protection status, human disturbance, snow cover and trapping drive density of a declining wolverine population in the Canadian Rocky Mountains. Sci. Rep. 2022, 12, 17412. [Google Scholar] [CrossRef] [PubMed]
- Baillie-David, K.; Volpe, J.P.; Burton, A.C.; Fisher, J.T. Grey wolves (Canis lupus) shift selection of anthropogenic landscape features following predator control in the Nearctic boreal forest. Biol. Conserv. 2024, 296, 110677. [Google Scholar] [CrossRef]
- Mattisson, J.; Persson, J.; Andrén, H.; Segerström, P. Temporal and spatial interactions between an obligate predator, the Eurasian lynx (Lynx lynx), and a facultative scavenger, the wolverine (Gulo gulo). Can. J. Zool. 2011, 89, 79–89. [Google Scholar] [CrossRef]
- Wallace, C.F.; Golla, J.M.; Allen, M.L. Direct observations of a wolverine scavenging at an active gray wolf kill site. Northeast. Nat. 2021, 102, 157–160. [Google Scholar] [CrossRef]
- Liu, S.; Qi, J.; Gu, J.; Long, Z.; Ma, J.; Jiang, G. What factors relate with the activity synchronization intensity among big cats and their ungulate prey in Northeast China? Glob. Ecol. Conserv. 2021, 32, e01899. [Google Scholar] [CrossRef]
- Wang, Y.; Allen, M.L.; Wilmers, C.C. Mesopredator spatial and temporal responses to large predators and human development in the Santa Cruz Mountains of California. Biol. Conserv. 2015, 190, 23–33. [Google Scholar] [CrossRef]
- Suraci, J.P.; Clinchy, M.; Zanette, L.Y.; Wilmers, C.C. Fear of humans as apex predators has landscape-scale impacts from mountain lions to mice. Ecol. Lett. 2019, 22, 1578–1586. [Google Scholar] [CrossRef] [PubMed]
- Kyaw, P.P.; Macdonald, D.W.; Penjor, U.; Htun, S.; Naing, H.; Burnham, D.; Kaszta, Ż.; Cushman, S.A. Investigating Carnivore Guild Structure: Spatial and Temporal Relationships amongst Threatened Felids in Myanmar. ISPRS Int. J. Geo-Inf. 2021, 10, 808. [Google Scholar] [CrossRef]
Covariate | Description | Model Parameter | Species | Model |
---|---|---|---|---|
Human (HRAI) | Relative abundance index (RAI) of human | ψ | S1 | M1 |
Forest trail (DFT) | Distance from camera location to forest trail | ψ | S1, S2, S3 | M1, M2 |
Prey (A) | RAI of Prey | ψ | S1 | M1 |
Competitor (B) | RAI of Competitor | ψ | S1 | M1 |
River (DR) | Distance from camera location to river | ψ | S1, S2, S3 | M1, M2 |
Deciduous broadleaf forest (DBF) | The vegetation type at the camera location is deciduous broadleaf forest | p, ψ | S1 | M1 |
Deciduous coniferous forest (DCF) | The vegetation type at the camera location is deciduous coniferous forest | p, ψ | S1 | M1 |
Elevation (EL) | The elevation at which the infrared camera is located | ψ | S1, S2, S3 | M1, M2 |
Slope (SL) | The slope of which the infrared camera is located | ψ | S1, S2, S3 | M1, M2 |
Aspect (AS) | The aspect of which the infrared camera is located | S1, S2, S3 | M2 | |
Settlement (DS) | Distance from camera location to settlement | S1, S2, S3 | M2 | |
Main road (DMR) | Distance from camera location to main road | S1, S2, S3 | M2 | |
Deciduous broadleaf forest (DBF2) | Distance from camera location to broadleaved deciduous forest | S1, S2, S3 | M2 | |
Deciduous coniferous forest (DCF2) | Distance from camera location to deciduous coniferous forest | S1, S2, S3 | M2 | |
Evergreen coniferous forest (ECF) | Distance from camera location to evergreen coniferous forest | S1, S2, S3 | M2 | |
Mixed broadleaf–conifer forest (MBCF) | Distance from camera location to mixed broadleaf–conifer forest | S1, S2, S3 | M2 | |
Wetland (WET) | Distance from camera location to wetland | S1, S2, S3 | M2 | |
Farmland (FA) | Distance from camera location to farmland | S1, S2, S3 | M2 | |
Grassland (GR) | Distance from camera location to grassland | S1, S2, S3 | M2 |
Model | AIC | ∆AIC | AICwt | No. Par | −2L |
---|---|---|---|---|---|
ψ (HUM + A + B + DFT + DBF + DCF + SL + DR), p ( ) | 539.67 | 0 | 0.2213 | 9 | 521.67 |
ψ (HUM + A + B + DFT + DBF + DCF + SL + EL), p ( ) | 540.18 | 0.51 | 0.1715 | 9 | 522.18 |
ψ (HUM + A + B + DFT + DBF + DCF + SL), p ( ) | 540.57 | 0.90 | 0.1411 | 8 | 524.57 |
ψ (HUM + A + B + DFT + DBF + DCF + DR), p ( ) | 540.65 | 0.98 | 0.1356 | 8 | 524.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Wang, X.; Liu, B.; Zhou, R.; Ju, D.; Ji, X.; Wang, Q.; Liu, L.; Liu, X.; Zhang, Z. Analysis of the Effects of Prey, Competitors, and Human Activity on the Spatiotemporal Distribution of the Wolverine (Gulo gulo) in a Boreal Region of Heilongjiang Province, China. Biology 2025, 14, 1165. https://doi.org/10.3390/biology14091165
Ma Y, Wang X, Liu B, Zhou R, Ju D, Ji X, Wang Q, Liu L, Liu X, Zhang Z. Analysis of the Effects of Prey, Competitors, and Human Activity on the Spatiotemporal Distribution of the Wolverine (Gulo gulo) in a Boreal Region of Heilongjiang Province, China. Biology. 2025; 14(9):1165. https://doi.org/10.3390/biology14091165
Chicago/Turabian StyleMa, Yuhan, Xinxue Wang, Binglian Liu, Ruibo Zhou, Dan Ju, Xuyang Ji, Qifan Wang, Lei Liu, Xinxin Liu, and Zidong Zhang. 2025. "Analysis of the Effects of Prey, Competitors, and Human Activity on the Spatiotemporal Distribution of the Wolverine (Gulo gulo) in a Boreal Region of Heilongjiang Province, China" Biology 14, no. 9: 1165. https://doi.org/10.3390/biology14091165
APA StyleMa, Y., Wang, X., Liu, B., Zhou, R., Ju, D., Ji, X., Wang, Q., Liu, L., Liu, X., & Zhang, Z. (2025). Analysis of the Effects of Prey, Competitors, and Human Activity on the Spatiotemporal Distribution of the Wolverine (Gulo gulo) in a Boreal Region of Heilongjiang Province, China. Biology, 14(9), 1165. https://doi.org/10.3390/biology14091165