Reference Genes for Expression Analyses by qRT-PCR in Propsilocerus akamusi (Diptera: Chironomidae)
Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Sample Acquisition and Cultivation
2.2. Sample Processing
2.3. RNA Extraction (Vazyme Kit)
2.4. cDNA Synthesis
2.5. Primer Design and Validation
2.6. RT-qPCR
2.7. COI Gene PCR and Sequencing
2.8. Date Analysis
2.9. Selection of Candidate Reference Genes and Primer Design
3. Results
3.1. The Expression Levels of 15 Candidate Reference Genes
3.2. Analysis of the Expression Stability of 15 Reference Genes in Different Body Parts of Adults
3.3. Analysis of the Expression Stability of 15 Reference Genes Across Different Developmental Stages
3.4. Analysis of the Expression Stability of 15 Reference Genes Under Different Temperature Treatments
3.5. Analysis of the Expression Stability of 15 Reference Genes Under Treatments with Heavy Metals and Pesticides
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.; Xu, W.; Peng, K.; Zou, L.; Li, Y.; Chen, Y.; Cai, Y.; Gong, Z. The complete mitochondrial genome of Propsilocerus akamusi (Diptera, Chironomidae). Mitochondrial DNA Part B Resour. 2019, 4, 3983–3984. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.; Buikema, A., Jr.; Cairns, J., Jr. Chironomidae Toxicity Tests—Biological Background and Procedures. In Aquatic Invertebrate Bioassays; ASTM International: West Conshohocken, PA, USA, 1980; pp. 70–80. [Google Scholar]
- Sun, X.; Liu, W.; Li, R.; Zhao, C.; Pan, L.; Yan, C. A chromosome level genome assembly of Propsilocerus akamusi to understand its response to heavy metal exposure. Mol. Ecol. Resour. 2021, 21, 1996–2012. [Google Scholar] [CrossRef]
- Liu, W.; Chang, T.; Zhao, K.; Sun, X.; Qiao, H.; Yan, C.; Wang, Y. Genome-wide annotation of cuticular protein genes in non-biting midge Propsilocerus akamusi and transcriptome analysis of their response to heavy metal pollution. Int. J. Biol. Macromol. 2022, 223 Pt A, 555–566. [Google Scholar] [CrossRef]
- Vander Zanden, M.J.; Vadeboncoeur, Y. Fishes as integrators of benthic and pelagic food webs in lakes. Ecology 2002, 83, 2152–2161. [Google Scholar] [CrossRef]
- Zhao, L.; Zhu, Y.; Wang, M.; Han, Y.; Xu, J.; Feng, W.; Zheng, X. Enolase, a cadmium resistance related protein from hyperaccumulator plant Phytolacca americana, increase the tolerance of Escherichia coli to cadmium stress. Int. J. Phytoremediat. 2023, 25, 562–571. [Google Scholar] [CrossRef]
- Sun, Z.; Han, A.; Gao, J.; Zhou, Y.; Bu, H.; Mao, J.; Chen, W.; Yan, C.; Sun, J. Detrimental effects of thiamethoxam on the physiological status, gut microbiota, and gut metabolomics profile of Propsilocerus akamusi chironomid larvae (Diptera: Chironomidae). Aquat. Toxicol. 2025, 283, 107367. [Google Scholar] [CrossRef]
- Sun, X.; Liu, W.; Peng, Y.; Meng, L.; Zhang, J.; Pan, Y.; Wang, D.; Zhu, J.; Wang, C.; Yan, C. Genome-wide analyses of Glutathione S-transferase gene family and expression profiling under deltamethrin exposure in non-biting midge Propsilocerus akamusi. Comp. Biochem. Physiol. Part D Genom. Proteom. 2023, 46, 101081. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhao, K.; Zhou, A.; Wang, X.; Ge, X.; Qiao, H.; Sun, X.; Yan, C.; Wang, Y. Genome-wide annotation and comparative analysis revealed conserved cuticular protein evolution among non-biting midges with varied environmental adaptability. Comp. Biochem. Physiol. Part D Genom. Proteom. 2024, 51, 101248. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Sun, X.; Sun, W.; Zhou, A.; Li, R.; Wang, B.; Li, X.; Yan, C. Genome-wide analyses of ATP-Binding Cassette (ABC) transporter gene family and its expression profile related to deltamethrin tolerance in non-biting midge Propsilocerus akamusi. Aquat. Toxicol. 2021, 239, 105940. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, Y.; Xu, H.; Yan, C. Genome-Wide Identification of P450 Genes in Chironomid Propsilocerus akamusi Reveals Candidate Genes Involved in Gut Microbiota-Mediated Detoxification of Chlorpyrifos. Insects 2022, 13, 765. [Google Scholar] [CrossRef]
- Sun, X.; Peng, Y.; Zhu, J.; Pan, Y.; Wang, D.; Meng, L.; Liu, W.; Yan, C. Tissue-specific transcriptome analysis in Propsilocerus akamusi provides novel insights into the regulatory mechanisms under deltamethrin exposure. Comp. Biochem. Physiol. Part D Genom. Proteom. 2025, 56, 101542. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, Research0034. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Garson, J.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.; et al. The need for transparency and good practices in the qPCR literature. Nat. Methods 2013, 10, 1063–1067. [Google Scholar] [CrossRef] [PubMed]
- Kalushkov, P.; Hodek, I. The effects of thirteen species of aphids on some life history parameters of the ladybird. Biocontrol 2004, 49, 21–32. [Google Scholar] [CrossRef]
- Lü, J.; Yang, C.; Zhang, Y.; Pan, H. Selection of Reference Genes for the Normalization of RT-qPCR Data in Gene Expression Studies in Insects: A Systematic Review. Front. Physiol. 2018, 9, 1560. [Google Scholar] [CrossRef]
- Ponton, F.; Chapuis, M.P.; Pernice, M.; Sword, G.A.; Simpson, S.J. Evaluation of potential reference genes for reverse transcription-qPCR studies of physiological responses in Drosophila melanogaster. J. Insect Physiol. 2011, 57, 840–850. [Google Scholar] [CrossRef] [PubMed]
- de Jonge, H.J.; Fehrmann, R.S.; de Bont, E.S.; Hofstra, R.M.; Gerbens, F.; Kamps, W.A.; de Vries, E.G.; van der Zee, A.G.; te Meerman, G.J.; ter Elst, A. Evidence based selection of housekeeping genes. PLoS ONE 2007, 2, e898. [Google Scholar] [CrossRef]
- Yang, C.; Pan, H.; Liu, Y.; Zhou, X. Temperature and Development Impacts on Housekeeping Gene Expression in Cowpea Aphid, Aphis craccivora (Hemiptera: Aphidiae). PLoS ONE 2015, 10, e0130593. [Google Scholar] [CrossRef]
- Fu, W.; Xie, W.; Zhang, Z.; Wang, S.; Wu, Q.; Liu, Y.; Zhou, X.; Zhou, X.; Zhang, Y. Exploring valid reference genes for quantitative real-time PCR analysis in Plutella xylostella (Lepidoptera: Plutellidae). Int. J. Biol. Sci. 2013, 9, 792–802. [Google Scholar] [CrossRef]
- Yu, S.H.; Yang, P.; Sun, T.; Qi, Q.; Wang, X.Q.; Xu, D.L.; Chen, X.M. Identification and evaluation of reference genes in the Chinese white wax scale insect Ericerus pela. SpringerPlus 2016, 5, 791. [Google Scholar] [CrossRef]
- Choudhury, A.; Verma, S.; Muthamilarasan, M.; Rajam, M.V. Identification of suitable reference genes for expression profiling studies using qRT-PCR in an important insect pest, Maruca vitrata. Mol. Biol. Rep. 2021, 48, 7477–7485. [Google Scholar] [CrossRef]
- Wang, X.; Kong, X.; Liu, S.; Huang, H.; Chen, Z.; Xu, Y. Selection of Reference Genes for Quantitative Real-Time PCR in Chrysoperla nipponensis (Neuroptera: Chrysopidae) Under Tissues in Reproduction and Diapause. J. Insect Sci. 2020, 20, ieaa079. [Google Scholar] [CrossRef]
- Kozera, B.; Rapacz, M. Reference genes in real-time PCR. J. Appl. Genet. 2013, 54, 391–406. [Google Scholar] [CrossRef]
- Dundas, J.; Ling, M. Reference genes for measuring mRNA expression. Theory Biosci. Theor. Den Biowiss. 2012, 131, 215–223. [Google Scholar] [CrossRef]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper--Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.L.; Jensen, J.L.; Ørntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef]
- Xie, F.; Xiao, P.; Chen, D.; Xu, L.; Zhang, B. miRDeepFinder: A miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol. 2012, 80, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, C.; Li, H.; Liu, J.P. GAPDH: A common enzyme with uncommon functions. Clin. Exp. Pharmacol. Physiol. 2012, 39, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Steffensen, K.E.; Dawson, J.F. Actin’s C-terminus coordinates actin structural changes and functions. Cytoskeleton 2023, 80, 313–329. [Google Scholar] [CrossRef]
- Binarová, P.; Tuszynski, J. Tubulin: Structure, Functions and Roles in Disease. Cells 2019, 8, 1294. [Google Scholar] [CrossRef]
- Korobeinikova, A.V.; Garber, M.B.; Gongadze, G.M. Ribosomal proteins: Structure, function, and evolution. Biochem. Biokhimiia 2012, 77, 562–574. [Google Scholar] [CrossRef]
- Xu, B.; Liu, L.; Song, G. Functions and Regulation of Translation Elongation Factors. Front. Mol. Biosci. 2021, 8, 816398. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Liu, Y.; Liao, M.; Yang, Y.; Bai, Y.; Li, N.; Li, S.; Luan, Y.; Chen, N. Evaluation of Reference Genes for Transcriptional Profiling in Two Cockroach Models. Genes 2021, 12, 1880. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Lv, Y.N.; Zeng, M.; Jia, P.Y.; Lu, H.N.; Zhu, Y.B.; Li, S.; Cui, Y.Y.; Luan, Y.X. Selection of Reference Genes for Normalization of Gene Expression in Thermobia domestica (Insecta: Zygentoma: Lepismatidae). Genes 2020, 12, 21. [Google Scholar] [CrossRef]
- Pan, Y.N.; Zhao, R.N.; Fu, D.; Yu, C.; Pan, C.N.; Zhou, W.; Chen, W.L. Assessment of Suitable Reference Genes for qRT-PCR Normalization in Eocanthecona furcellata (Wolff). Insects 2022, 13, 773. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, J.; Chen, G.; Ma, C.; Chen, H.; Gao, X.; Tian, Z.; Cui, S.; Tian, Z.; Guo, J.; et al. Identification and Validation of Reference Genes for Quantitative Gene Expression Analysis in Ophraella communa. Front. Physiol. 2020, 11, 355. [Google Scholar] [CrossRef]
- Zhou, C.; Sun, J.; Zheng, Z.; Weng, J.; Atyah, M.; Zhou, Q.; Chen, W.; Zhang, Y.; Huang, J.; Yin, Y.; et al. High RPS11 level in hepatocellular carcinoma associates with poor prognosis after curative resection. Ann. Transl. Med. 2020, 8, 466. [Google Scholar] [CrossRef]
- Bai, S.; Wang, X.; Guo, M.; Cheng, G.; Khan, A.; Yao, W.; Gao, Y.; Li, J. Selection and Evaluation of Reference Genes for Quantitative Real-Time PCR in Tomato (Solanum lycopersicum L.) Inoculated with Oidium neolycopersici. Agronomy 2022, 12, 3171. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, Y.; Xu, K.; Wang, Y.; Yang, W. Selection and Validation of Reference Genes for Gene Expression Analysis in Tuta absoluta Meyrick (Lepidoptera: Gelechiidae). Insects 2021, 12, 589. [Google Scholar] [CrossRef]
- Kong, D.; Shi, D.; Wang, C.; Zhai, R.; Lyu, L.; He, Y.; Wang, D. Identification and Validation of Reference Genes for Expression Analysis Using qRT-PCR in Cimex hemipterus (Hemiptera: Cimicidae). Insects 2022, 13, 784. [Google Scholar] [CrossRef]
- Boye, E.; Grallert, B. eIF2α phosphorylation and the regulation of translation. Curr. Genet. 2020, 66, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Back, S.H. Roles of the Translation Initiation Factor eIF2α Phosphorylation in Cell Structure and Function. Cell Struct. Funct. 2020, 45, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Meng, J.Y.; Ruan, H.Y.; Yang, C.L.; Zhang, C.Y. Expression stability of candidate RT-qPCR housekeeping genes in Spodoptera frugiperda (Lepidoptera: Noctuidae). Arch. Insect Biochem. Physiol. 2021, 108, e21831. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.H.; Peng, L.J.; Zhang, Y.X.; Zeng, H.R.; Yu, H.F.; Jin, L.; Li, G.Q. Reference Genes for Expression Analyses by qRT-PCR in Phthorimaea operculella (Lepidoptera: Gelechiidae). Insects 2022, 13, 140. [Google Scholar] [CrossRef]
- Li, X.; Gong, P.; Wang, B.; Wang, C.; Li, M.; Zhang, Y.; Li, X.; Gao, H.; Ju, J.; Zhu, X. Selection and validation of experimental condition-specific reference genes for qRT-PCR in Metopolophium dirhodum (Walker) (Hemiptera: Aphididae). Sci. Rep. 2020, 10, 21951. [Google Scholar] [CrossRef]
Gene Name | Primer Sequences (5′-3′) | Length (bp) | Slope | R2 | Efficiency |
---|---|---|---|---|---|
EF1 | F-AACCACCATACTCTGAAACTCG R-AATCAAGCATTTGCCATCAG | 212 | −3.310 | 0.998 | 100.05% |
ACTIN | F-CCGTCTTCCCATCCATCGT R-ATGTTCCTCTGGGGCGACAC | 218 | −3.310 | 0.995 | 100.05% |
α-TUB | F-CATTTGGTGGTGGAACAGG R-GCTATGTGTGGTCAGAACGG | 161 | −2.800 | 0.993 | 127.58% |
RPL32 | F-AGGCATTCATTCGCCATCA R-CATCAGAACCTCCAGTTCACG | 215 | −3.587 | 0.997 | 90.01% |
RPL13 | F-TCCAAATGCCCACTTCCA R-GCCTTCAATTCAGCCAATGA | 222 | −3.548 | 0.998 | 91.36% |
RPL8 | F-ACTTCCGTGACCCATACCG R-CCTGATGTTCTTGCCAACTTAC | 208 | −3.440 | 0.989 | 95.30% |
RPS17 | F-CACTCGCTTGACATTGGATT R-ACCACGAACTTGGGAGTGAC | 142 | −3.520 | 0.999 | 91.29% |
GAPDH | F-ACTGTTCATGCCACCACAGC R-TAACTTTGCCGACAGCCTTG | 133 | −3.376 | 0.998 | 97.79% |
RPL4 | F-TGGCGTAGATGGCACAGAC R-TCGGAAACAACCAATGGAAG | 146 | −3.550 | 0.999 | 91.29% |
RPL27 | F-TGACGGCACATCGGATAAAC R-AACGCTGTAACGTGTTGGCA | 172 | −3.623 | 0.997 | 88.81% |
RPS20 | F-TCGTATTGTCTTGACGGCAT R-GGAAACGATCCCAGGTCTTA | 182 | −3.282 | 0.988 | 101.69% |
β-TUB | F-GTCTTTGGACAATCGGGAGC R-GATCGGGATATTCCTCACGG | 214 | −3.490 | 0.998 | 93.43% |
EIF-2α | F-AAATACGAAACGGACGAGCAG R-GCACGAATTTTGACAGCCTG | 218 | −3.285 | 0.986 | 101.56% |
RPS3 | F-TTCATCATGGAATCTGGTGC R-TCCTTGACGCAACAGAACG | 168 | −3.251 | 0.997 | 103.05% |
RPS11 | F-CATCCGCCGTGACTACTTG R-CCAGCGACTTTGTTGACCTT | 189 | −3.301 | 0.998 | 100.88% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Tang, Y.; Shao, Z.; Nie, J.; Bai, X.; Nie, Z.; Liu, C.; Zhang, Y.; Yan, C.; Wang, Y. Reference Genes for Expression Analyses by qRT-PCR in Propsilocerus akamusi (Diptera: Chironomidae). Biology 2025, 14, 1158. https://doi.org/10.3390/biology14091158
Liu W, Tang Y, Shao Z, Nie J, Bai X, Nie Z, Liu C, Zhang Y, Yan C, Wang Y. Reference Genes for Expression Analyses by qRT-PCR in Propsilocerus akamusi (Diptera: Chironomidae). Biology. 2025; 14(9):1158. https://doi.org/10.3390/biology14091158
Chicago/Turabian StyleLiu, Wenbin, Yaning Tang, Ziming Shao, Jiaxin Nie, Xue Bai, Zhe Nie, Chunmian Liu, Yajin Zhang, Chuncai Yan, and Yiwen Wang. 2025. "Reference Genes for Expression Analyses by qRT-PCR in Propsilocerus akamusi (Diptera: Chironomidae)" Biology 14, no. 9: 1158. https://doi.org/10.3390/biology14091158
APA StyleLiu, W., Tang, Y., Shao, Z., Nie, J., Bai, X., Nie, Z., Liu, C., Zhang, Y., Yan, C., & Wang, Y. (2025). Reference Genes for Expression Analyses by qRT-PCR in Propsilocerus akamusi (Diptera: Chironomidae). Biology, 14(9), 1158. https://doi.org/10.3390/biology14091158