The Sublethal Effects of Neonicotinoids on Honeybees
Simple Summary
Abstract
1. Introduction and Definitions
2. General Biochemistry and Physiology
2.1. Overview of Neonicotinoids
2.2. Structure and Receptor Selectivity of Neonicotinoids
2.2.1. Neural Targets and Functional Disruption
2.2.2. Receptor Subtypes and Molecular Mechanisms
2.3. Disruption of Neurotransmission and Signaling Pathway
2.4. Environmental Influences on Gene Expression
2.5. Caste-Based Differences in Susceptibility Within Apis mellifera
3. Effect of Neonicotinoids on the Development of Honey Bees
Reproductive Toxicity in Queens and Drones
4. Effects on Adult Longevity
4.1. Neonicotinoid-Induced Cellular Damage and Aging
4.2. Impact on Worker Bee Survival Rates
5. Behavioral Effects of Neonicotinoids on Honey Bees
5.1. Neural Basis and Impairment of Learning and Memory
5.2. Navigation, Foraging Behavior, and Flight Dysfunction
5.3. Disruption of Circadian Rhythms and Social Communication
6. Colony-Level Consequences and Ecological Implications
Reduced Colony Growth and Population Decline
7. Mitigation Strategies and Future Perspective
7.1. Reducing Honeybee Exposure to Neonicotinoids
7.2. Integrated Pest Management (IPM) and Sustainable Agriculture
7.3. Emerging Mitigation Strategies
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IPM | Integrated Pest Management |
nAChRs | Nicotinic Acetylcholine Receptors |
EFSA | European Food Safety Authority |
CREB | cAMP Response Element-Binding Protein |
MAPK | Mitogen-Activated Protein Kinase |
VGLUTs | Vesicular Glutamate Transporters |
VGCCs | Voltage-Gated Calcium Channels |
P450s | Cytochrome P450 Monooxygenases |
PPO | Prophenoloxidase |
LD50 | Lethal Dose 50% |
LC50 | Lethal Concentration 50% |
CV | Conventional Gut Microbiota |
GD | Gut Microbiota Deficient |
CCD | Colony Collapse Disorder |
PI3K | Phosphoinositide 3-Kinase |
IAPV | Israeli Acute Paralysis Virus |
PER | Proboscis Extension Response |
ROS | Reactive Oxygen Species |
SOD | Superoxide Dismutase |
CAT | Catalase |
References
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef]
- Van der Sluijs, J.P.; Simon-Delso, N.; Goulson, D.; Maxim, L.; Bonmatin, J.-M.; Belzunces, L.P. Neonicotinoids, bee disorders and the sustainability of pollinator services. Curr. Opin. Environ. Sustain. 2013, 5, 293–305. [Google Scholar] [CrossRef]
- Tsvetkov, N.; Samson-Robert, O.; Sood, K.; Patel, H.S.; Malena, D.A.; Gajiwala, P.H.; Maciukiewicz, P.; Fournier, V.; Zayed, A. Chronic exposure to neonicotinoids reduces honey bee health near corn crops. Science 2017, 356, 1395–1397. [Google Scholar] [CrossRef]
- Goulson, D. An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 2013, 50, 977–987. [Google Scholar] [CrossRef]
- Tomizawa, M.; Casida, J.E. Neonicotinoid insecticide toxicology: Mechanisms of selective action. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 247–268. [Google Scholar] [CrossRef] [PubMed]
- Simon-Delso, N.; Amaral-Rogers, V.; Belzunces, L.P.; Bonmatin, J.-M.; Chagnon, M.; Downs, C.; Furlan, L.; Gibbons, D.W.; Giorio, C.; Girolami, V.; et al. Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 2015, 22, 5–34. [Google Scholar] [CrossRef] [PubMed]
- Bonmatin, J.-M.; Giorio, C.; Girolami, V.; Goulson, D.; Kreutzweiser, D.P.; Krupke, C.; Liess, M.; Long, E.; Marzaro, M.; Mitchell, E.A.D.; et al. Environmental fate and exposure; neonicotinoids and fipronil. Environ. Sci. Pollut. Res. 2015, 22, 35–67. [Google Scholar] [CrossRef]
- Desneux, N.; Decourtye, A.; Delpuech, J.-M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 2007, 52, 81–106. [Google Scholar] [CrossRef]
- Sanchez-Bayo, F.; Goka, K. Pesticide residues and bees—A risk assessment. PLoS ONE 2014, 9, e94482. [Google Scholar] [CrossRef]
- Stark, J.D.; Banks, J.E. Population-level effects of pesticides and other toxicants on arthropods. Annu. Rev. Entomol. 2003, 48, 505–519. [Google Scholar] [CrossRef]
- Cresswell, J.E. A meta-analysis of experiments testing the effects of a neonicotinoid insecticide (imidacloprid) on honey bees. Ecotoxicology 2011, 20, 149–157. [Google Scholar] [CrossRef]
- Henry, M.; Béguin, M.; Requier, F.; Rollin, O.; Odoux, J.-F.; Aupinel, P.; Aptel, J.; Tchamitchian, S.; Decourtye, A. A common pesticide decreases foraging success and survival in honey bees. Science 2012, 336, 348–350. [Google Scholar] [CrossRef]
- Tosi, S.; Nieh, J. Lethal and sublethal synergistic effects of a new systemic pesticide, flupyradifurone (Sivanto®), on honeybees. Proc. R. Soc. B 2019, 286, 20190433. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, W.; Wang, Y.; Li, X.; Lv, J.; Luo, J.; Yang, M. Insight of neonicotinoid insecticides: Exploring exposure, mechanisms in non-target organisms, and removal technologies. Pharmacol. Res. 2024, 209, 107415. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, K. Robust functional expression of insect nicotinic acetylcholine receptors provides new insights into neonicotinoid actions and new opportunities for pest and vector control. Pest Manag. Sci. 2021, 77, 3626–3630. [Google Scholar] [CrossRef]
- Houchat, J.-N.; Cartereau, A.; Le Mauff, A.; Taillebois, E.; Thany, S.H. An overview on the effect of neonicotinoid insecticides on mammalian cholinergic functions through the activation of neuronal nicotinic acetylcholine receptors. Int. J. Environ. Res. Public Health 2020, 17, 3222. [Google Scholar] [CrossRef] [PubMed]
- Borsuah, J.F.; Messer, T.; Snow, A.K.; Kowalski, R.M.; Kolok, A.S. Literature review: Global neonicotinoid insecticide occurrence in aquatic environments. Water 2020, 12, 3388. [Google Scholar] [CrossRef]
- Ngomane, N.C. Determination of Neonicotinoid Insecticides in Water, Soil and Sediment Samples: Acute and Chronic Risk Assessment; University of KwaZulu-Natal: Durban, South Africa, 2002. [Google Scholar]
- Almenhali, A.Z.; Eissa, S. Aptamer-based biosensors for the detection of neonicotinoid insecticides in environmental samples: A systematic review. Talanta 2024, 275, 126190. [Google Scholar] [CrossRef]
- Duchet, C.; Coutellec, M.-A.; Franquet, E.; Gauthier, L.; Valloton, D.; Vulliet, E.; Lagneau, C. Chronic toxicity of three formulations of neonicotinoid insecticides and their mixture on two daphniid species: Daphnia magna and Ceriodaphnia dubia. Aquat. Toxicol. 2023, 254, 106351. [Google Scholar] [CrossRef]
- Shareefdeen, Z.; Elkamel, A. Toxic and environmental effects of neonicotinoid based insecticides. Appl. Sci. 2024, 14, 3310. [Google Scholar] [CrossRef]
- Xiang, D.; Liu, Y.; Zhang, X.; Liu, X.; Liu, Y.; Guo, Q.; Song, H. The expression of soluble functional α7-nicotinic acetylcholine receptors in E. coli and its high-affinity binding to neonicotinoid pesticides. Pestic. Biochem. Physiol. 2020, 164, 237–241. [Google Scholar] [CrossRef]
- Bhutto, U.F.; Cooper, R. Pharmacological identification of cholinergic receptor subtypes in modulation of neural circuits in Drosophila melanogaster. FASEB J. 2019, 33 (Suppl. S1), 727.6. [Google Scholar] [CrossRef]
- Grünewald, B.; Siefert, P. Acetylcholine and its receptors in honeybees: Involvement in development and impairments by neonicotinoids. Insects 2019, 10, 420. [Google Scholar] [CrossRef]
- Takebayashi, M.; Nomura, M.; Matsuda, K.; Akamatsu, M.; Miyagawa, H. Impact of a worker bee thoracic ganglion RIC-3 variant on the actions of acetylcholine and neonicotinoids on nicotinic receptors in Apis mellifera. Pest Manag. Sci. 2025, 81, 2671–2677. [Google Scholar] [CrossRef]
- Wang, Z.M.; He, Y.X.; Xu, X.; Zhang, J.; Wang, S.P.; Zhou, Y.; Zhang, J.; Ma, E.B.; Li, S.G.; Qiu, X.H. The actions of neonicotinoid insecticides on nicotinic acetylcholine subunits Ldα1 and Ldα8 of Leptinotarsa decemlineata and assembled receptors. Insect Sci. 2022, 29, 1387–1400. [Google Scholar] [CrossRef]
- Kaaki, S.; El Kharbouch, F.; Tchouakui, M.; Iga, K.P.; Ngufor, C.; Wondji, C.S.; Kouznetsov, V.V.; Ozoemena, K.I.; Tane, P.; Wondji, M.J.; et al. The stoichiometry of the α4β2 neuronal nicotinic acetylcholine receptors determines the pharmacological properties of the neonicotinoids, and recently introduced butenolide and sulfoximine. NeuroToxicology 2025, 107, 1–10. [Google Scholar] [CrossRef]
- Lu, W.; Wei, D.; Yang, X.; Xu, X.; Shao, X.; Zhang, Y.; Zhang, J. Nicotinic acetylcholine receptor modulator insecticides act on diverse receptor subtypes with distinct subunit compositions. PloS Genet. 2022, 18, e1009920. [Google Scholar] [CrossRef]
- Yuan, G.-R.; Zhang, Y.-X.; Wang, J.-J.; Li, J.; Zeng, X.-N.; Li, X.-R.; Gao, X.-W. Knockdown of a nicotinic acetylcholine receptor subunit gene Bdorβ1 decreases susceptibility to oxa-bridged trans-instead of cis-nitromethylene neonicotinoid insecticides in Bactrocera dorsalis. J. Agric. Food Chem. 2022, 70, 13554–13562. [Google Scholar] [CrossRef] [PubMed]
- Komori, Y.; Tanaka, A.; Kohatsu, S.; Inagaki, H.K.; Asaoka, K.; Niwa, R.; Koto, A.; Yamamoto, D.; Itoh, T.Q.; Tanimura, T. Functional impact of subunit composition and compensation on Drosophila melanogaster nicotinic receptors–targets of neonicotinoids. PLoS Genet. 2023, 19, e1010522. [Google Scholar] [CrossRef]
- Shigetou, S.; Arao, T.; Tateno, C.; Asaoka, K.; Matsuda, K.; Komai, K. Modulation by neonicotinoids of honeybee α1/chicken β2 hybrid nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes. Pestic. Biochem. Physiol. 2020, 166, 104545. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, Y.; Wang, Y.; Wang, Z.; Yang, Z.; He, Y.; Zhou, Y. Computational insight on the binding and selectivity of target-subunit-dependent for neonicotinoid insecticides. J. Mol. Graph. Model. 2020, 98, 107586. [Google Scholar] [CrossRef]
- Hulcoop, A. A Search for Neonicotinoid Binding Sites in the Optic Lobes of Honeybees and Blowflies. Bachelor’s Thesis, Lund University, Lund, Sweden, 2019. [Google Scholar]
- Paoli, M.; Giurfa, M. Pesticides and pollinator brain: How do neonicotinoids affect the central nervous system of bees? Eur. J. Neurosci. 2024, 60, 5927–5948. [Google Scholar] [CrossRef] [PubMed]
- Schulz, J.; Tien, N.S.H.; Kadow, I.C.G.; Chiang, A.-S.; Schuster, S.; Rybak, J.; Jefferis, G.S.X.E.; Fiala, A.; Scheiner, R.; Grünewald, B. Exploring neonicotinoid effects on Drosophila: Insights into olfactory memory, neurotransmission, and synaptic connectivity. Front. Physiol. 2024, 15, 1363943. [Google Scholar] [CrossRef] [PubMed]
- Faro, L.R.; Takahashi, R.N.; Albuquerque, E.X.; Santos, A.P.; Ribeiro, A.M.; Pereira, M.E. Clothianidin. Clothianidin, a neonicotinoid insecticide, activates α4β2, α7 and muscarinic receptors to induce in vivo dopamine release from rat striatum. Toxicology 2019, 426, 152285. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Zhang, L.; Zhao, X.; Guo, X.; Zhang, J.; Xu, C. Toxicogenomics provides insights to toxicity pathways of neonicotinoids to aquatic insect, Chironomus dilutus. Environ. Pollut. 2020, 260, 114011. [Google Scholar] [CrossRef]
- Li, S.; Wang, H.; Zhang, X.; Li, Z.; Li, Y.; Zhang, J.; Zhang, W. Neonicotinoid insecticides triggers mitochondrial bioenergetic dysfunction via manipulating ROS-calcium influx pathway in the liver. Ecotoxicol. Environ. Saf. 2021, 224, 112690. [Google Scholar] [CrossRef]
- Chakravorty, A.; Chen, S.; Feng, S.; Wang, H.; Ma, J.; Hong, S.; Liu, Z.; Zhang, Y. Glutamatergic synapse dysfunction in Drosophila neuromuscular junctions can be rescued by proteostasis modulation. Front. Mol. Neurosci. 2022, 15, 842772. [Google Scholar] [CrossRef]
- Ashley, J.; Carrillo, R.A. The Drosophila Larval Neuromuscular Junction: Developmental Overview. Cold Spring Harb. Protoc. 2025, 2025, pdb-top108449. [Google Scholar] [CrossRef]
- Du, X.; Liu, Y.; Chen, Q.; Zhang, H.; Wang, Y.; Li, Z.; Yang, J.; Zhao, L.; Huang, X.; Sun, Y.; et al. Research progress on the role of type I vesicular glutamate transporter (VGLUT1) in nervous system diseases. Cell Biosci. 2020, 10, 26. [Google Scholar] [CrossRef]
- Liu, C.-H.; Zhang, X.; Wang, J.; Li, H.; Chen, S.; Zhou, Y.; Gao, Y.; Huang, Z.; Wu, P.; Fang, Y.; et al. Imidacloprid Impairs Glutamatergic Synaptic Plasticity and Desensitizes Mechanosensitive, Nociceptive, and Photogenic Response of Drosophila melanogaster by Mediating Oxidative Stress, Which Could Be Rescued by Osthole. Int. J. Mol. Sci. 2022, 23, 10181. [Google Scholar] [CrossRef]
- Singh, K.; Kumar, R.; Sharma, V.; Gupta, S.; Yadav, M.; Singh, R.; Khan, A.; Meena, A.; Das, S.; Prakash, P.; et al. Synthesis and evaluation of compound targeting α7 and β2 subunits in Nicotinic Acetylcholinergic receptor. Molecules 2023, 28, 8128. [Google Scholar] [CrossRef]
- Kudryavtsev, D.S.; Kryukova, E.V.; Chugunov, A.O.; Shelukhina, I.V.; Spirova, E.N.; Zhmak, M.N.; Andreeva, T.V.; Egorova, N.S.; Vassilevski, A.A.; Utkin, Y.N.; et al. Complex approach for analysis of snake venom α-neurotoxins binding to HAP, the high-affinity peptide. Sci. Rep. 2020, 10, 3861. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Li, Q.; Chen, M.; Zhao, W.; Wang, L.; Zhang, Y.; Tang, H.; Liu, F.; Zhou, J.; Huang, X.; et al. Discovering the Bioactive Compounds Binding to α1A-Adrenergic Receptor in Guizhi Fuling Formula and Revealing Their Interactions by Immobilizing the Receptor Through Colicin L7 DNase/Immunity Protein 7 Ultra-Affinity System. J. Sep. Sci. 2024, 47, e70053. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Perez, A. Ranking peptide binders by affinity with AlphaFold. Angew. Chem. Int. Ed. 2023, 62, e202213362. [Google Scholar] [CrossRef]
- Wu, X.; Li, H.; Chen, Z.; Zhang, W.; Zhou, Q.; Zhang, H.; Liu, J.; Gao, R.; Zhao, Y.; Huang, X.; et al. Computational Design of α-Conotoxins to Target Specific Nicotinic Acetylcholine Receptor Subtypes. Chem.–A Eur. J. 2024, 30, e202302909. [Google Scholar] [CrossRef]
- Christen, V.; Mittner, F.; Fent, K. Molecular effects of neonicotinoids in honey bees (Apis mellifera). Environ. Sci. Technol. 2016, 50, 4071–4081. [Google Scholar] [CrossRef]
- Matsuda, K.; Ihara, M.; Sattelle, D.B. Neonicotinoid insecticides: Molecular targets, resistance, and toxicity. Annu. Rev. Pharmacol. Toxicol. 2020, 60, 241–255. [Google Scholar] [CrossRef]
- Claudianos, C.; Ranson, H.; Johnson, R.M.; Biswas, S.; Schuler, M.A.; Berenbaum, M.R.; Feyereisen, R.; Oakeshott, J.G. A deficit of detoxification enzymes: Pesticide sensitivity and environmental response in the honeybee. Insect Mol. Biol. 2006, 15, 615–636. [Google Scholar] [CrossRef]
- Manjon, C.; Troczka, B.J.; Zaworra, M.; Beadle, K.; Randall, E.; Hertlein, G.; Singh, K.S.; Zimmer, C.T.; Homem, R.A.; Lueke, B.; et al. Unravelling the molecular determinants of bee sensitivity to neonicotinoid insecticides. Curr. Biol. 2018, 28, 1137–1143.e5. [Google Scholar] [CrossRef]
- Di Noi, A.; Blacquière, T.; Cornelissen, B.; Evans, J.D.; Gregorc, A.; Herbert, L.T.; Hernandez, J.; Lodesani, M.; McArt, S.H.; Meeus, I.; et al. Review on sublethal effects of environmental contaminants in honey bees (Apis mellifera), knowledge gaps and future perspectives. Int. J. Environ. Res. Public Health 2021, 18, 1863. [Google Scholar] [CrossRef] [PubMed]
- Suchail, S.; Guez, D.; Belzunces, L.P. Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera. Environ. Toxicol. Chem. 2001, 20, 2482–2486. [Google Scholar] [CrossRef]
- Motta, E.V.; Raymann, K.; Moran, N.A. Glyphosate perturbs the gut microbiota of honey bees. Proc. Natl. Acad. Sci.USA 2018, 115, 10305–10310. [Google Scholar] [CrossRef] [PubMed]
- Mao, W.; Schuler, M.A.; Berenbaum, M.R. A dietary phytochemical alters caste-associated gene expression in honey bees. Sci. Adv. 2015, 1, e1500795. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zheng, Y.; Chen, Y.; Wang, S.; Chen, Y.; Hu, F.; Shi, J.; Diao, Q.; Zhao, Y.; Wang, H.; et al. Honey bee (Apis mellifera) gut microbiota promotes host endogenous detoxification capability via regulation of P450 gene expression in the digestive tract. Microb. Biotechnol. 2020, 13, 1201–1212. [Google Scholar] [CrossRef] [PubMed]
- Barascou, L.; Alaux, C.; Conte, Y.L.; Decourtye, A.; Henry, M.; Henry, M.; Laurent, M.; Le Conte, Y.; Pioz, M.; Ribière-Chabert, M.; et al. Pollen nutrition fosters honeybee resistance to pesticides. R. Soc. Open Sci. 2021, 8, 210818. [Google Scholar] [CrossRef]
- Rand, E.E.d.; Smit, S.; Beukes, M.; Apostolides, Z.; Pirk, C.W.W.; Nicolson, S.W. Detoxification mechanisms of honey bees (Apis mellifera) resulting in tolerance of dietary nicotine. Sci. Rep. 2015, 5, 11779. [Google Scholar] [CrossRef]
- Arena, M.; Sgolastra, F. A meta-analysis comparing the sensitivity of bees to pesticides. Ecotoxicology 2014, 23, 324–334. [Google Scholar] [CrossRef]
- Kozii, I.V. Neonicotinoid Toxicity in Reproductive Honey Bee Castes. Ph.D. Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 2022. [Google Scholar]
- Wu-Smart, J.; Spivak, M. Sub-lethal effects of dietary neonicotinoid insecticide exposure on honey bee queen fecundity and colony development. Sci. Rep. 2016, 6, 32108. [Google Scholar] [CrossRef]
- Di Prisco, G.; Cavaliere, V.; Annoscia, D.; Varricchio, P.; Caprio, E.; Nazzi, F.; Gargiulo, G.; Pennacchio, F. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proc. Natl. Acad. Sci. USA 2013, 110, 18466–18471. [Google Scholar] [CrossRef]
- Brandt, A.; Gorenflo, A.; Siede, R.; Meixner, M.; Büchler, R. The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.). J. Insect Physiol. 2016, 86, 40–47. [Google Scholar] [CrossRef]
- Li, Z.; Li, M.; He, J.; Zhao, X.; Chaimanee, V.; Huang, W.-F.; Nie, H.; Zhao, Y.; Evans, J.D.; Hamilton, M.; et al. Differential physiological effects of neonicotinoid insecticides on honey bees: A comparison between Apis mellifera and Apis cerana. Pestic. Biochem. Physiol. 2017, 140, 1–8. [Google Scholar] [CrossRef]
- Dussaubat, C.; Brunet, J.-L.; Higes, M.; Colbourne, J.K.; Lopez, J.; Choi, J.-H.; Martin-Hernandez, R.; Botías, C.; Cousin, M.; McDonnell, C.; et al. Combined neonicotinoid pesticide and parasite stress alter honeybee queens’ physiology and survival. Sci. Rep. 2016, 6, 31430. [Google Scholar] [CrossRef]
- Annoscia, D.; Di Prisco, G.; Becchimanzi, A.; Caprio, E.; Frizzera, D.; Linguadoca, A.; Nazzi, F. Neonicotinoid Clothianidin reduces honey bee immune response and contributes to Varroa mite proliferation. Nat. Commun. 2020, 11, 5887. [Google Scholar] [CrossRef]
- Czerwinski, M.A.; Sadd, B.M. Detrimental interactions of neonicotinoid pesticide exposure and bumblebee immunity. J. Exp. Zool. Part A Ecol. Integr. Physiol. 2017, 327, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Chmiel, J.A.; Daisley, B.A.; Burton, J.P.; Reid, G. Deleterious effects of neonicotinoid pesticides on Drosophila melanogaster immune pathways. MBio 2019, 10, e01395-19. [Google Scholar] [CrossRef] [PubMed]
- Collison, E.J.; Hird, H.; Tyler, C.R.; Cresswell, J.E. Effects of neonicotinoid exposure on molecular and physiological indicators of honey bee immunocompetence. Apidologie 2018, 49, 196–208. [Google Scholar] [CrossRef]
- Pamminger, T.; Basley, K.; Goulson, D.; Hughes, W.O.H. Potential acetylcholine-based communication in honeybee haemocytes and its modulation by a neonicotinoid insecticide. PeerJ 2024, 12, e17978. [Google Scholar] [CrossRef]
- Morfin, N.; Goodwin, P.H.; Correa-Benitez, A.; Guzman-Novoa, E. Sublethal exposure to clothianidin during the larval stage causes long-term impairment of hygienic and foraging behaviours of honey bees. Apidologie 2019, 50, 595–605. [Google Scholar] [CrossRef]
- Ben Abdelkader, F.; Çakmak, İ.; Çakmak, S.S.; Nur, Z.; İncebıyık, E.; Aktar, A.; Erdost, H. Toxicity assessment of chronic exposure to common insecticides and bee medications on colony development and drones sperm parameters. Ecotoxicology 2021, 30, 806–817. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A.; Rangel, J. Exposure to pesticides during development negatively affects honey bee (Apis mellifera) drone sperm viability. PLoS ONE 2018, 13, e0208630. [Google Scholar] [CrossRef]
- Pereira, N.C.; Diniz, T.O.; Takasusuki, M.C.C.R. Sublethal effects of neonicotinoids in bees: A review. Sci. Electron. Arch. 2020, 13, 142–152. [Google Scholar] [CrossRef]
- Tavares, D.A.; Roat, T.C.; Carvalho, S.M.; Silva-Zacarin, E.C.M.; Malaspina, O. Exposure to thiamethoxam during the larval phase affects synapsin levels in the brain of the honey bee. Ecotoxicol. Environ. Saf. 2019, 169, 523–528. [Google Scholar] [CrossRef]
- Straub, L.; Villamar-Bouza, L.; Bruckner, S.; Chantawannakul, P.; Kolari, E.; Maitip, J.; Vidondo, B.; Neumann, P.; Williams, G.R. Negative effects of neonicotinoids on male honeybee survival, behaviour and physiology in the field. J. Appl. Ecol. 2021, 58, 2515–2528. [Google Scholar] [CrossRef]
- Williams, G.R.; Troxler, A.; Retschnig, G.; Roth, K.; Yañez, O.; Shutler, D.; Neumann, P.; Gauthier, L. Neonicotinoid pesticides severely affect honey bee queens. Sci. Rep. 2015, 5, 14621. [Google Scholar] [CrossRef] [PubMed]
- Milone, J.P.; Tarpy, D.R. Effects of developmental exposure to pesticides in wax and pollen on honey bee (Apis mellifera) queen reproductive phenotypes. Sci. Rep. 2021, 11, 1020. [Google Scholar] [CrossRef]
- Chaimanee, V.; Evans, J.D.; Chen, Y.; Jackson, C.; Pettis, J.S. Sperm viability and gene expression in honey bee queens (Apis mellifera) following exposure to the neonicotinoid insecticide imidacloprid and the organophosphate acaricide coumaphos. J. Insect Physiol. 2016, 89, 1–8. [Google Scholar] [CrossRef]
- Blacquière, T.; Smagghe, G.; van Gestel, C.A.M.; Mommaerts, V. Neonicotinoids in bees: A review on concentrations, side-effects and risk assessment. Ecotoxicology 2012, 21, 973–992. [Google Scholar] [CrossRef] [PubMed]
- Siviter, H.; Brown, M.J.F.; Leadbeater, E. Quantifying the impact of pesticides on learning and memory in bees. J. Appl. Ecol. 2018, 55, 2812–2821. [Google Scholar] [CrossRef] [PubMed]
- Moreira, D.R.; Bomfim, I.S.; Cardoso, P.C.; Silva, J.F.; de Oliveira, E.E.; dos Santos, R.L.; Guedes, R.N.C.; Martinez, L.C. Exposure of Apis mellifera (Hymenoptera: Apidae) colonies to imidacloprid impairs larval development, promotes oxidative stress in pupae, and induces changes in the midgut of adult bees. Biol. Res. 2025, 58, 5. [Google Scholar] [CrossRef]
- Sukkar, D.; Hristov, P.; Vasileva, B.; Georgieva, A.; Atanasov, V.; Mehterov, N.; Shumkova, R. Diverse alterations and correlations in antioxidant gene expression in honeybee (Apis mellifera) hemocytes interacting with microbial pathogen-associated molecular patterns and pesticide cocktails. Environ. Toxicol. Pharmacol. 2025, 114, 104649. [Google Scholar] [CrossRef]
- Khan, M.N.; Islam, S.; Siddiqui, M.H. Regulation of anaplerotic enzymes by melatonin enhances resilience to cadmium toxicity in Vigna radiata (L.) R. Wilczek. Plant Physiol. Biochem. 2025, 220, 109522. [Google Scholar] [CrossRef]
- Tian, Z.; Sun, L.; Zhang, X.; Liu, Y.; Wang, S.; Ma, F. Exogenous melatonin enhances heat tolerance in buckwheat seedlings by modulating physiological response mechanisms. Plant Physiol. Biochem. 2025, 220, 109487. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Chen, Q.; Wang, W.; Sun, H.; Zhao, Y.; Feng, X.; Wang, X.; Li, H. Melatonin promotes yield increase in wheat by regulating its antioxidant system and growth under drought stress. Biology 2025, 14, 94. [Google Scholar] [CrossRef]
- Li, W.-Q.; Gao, Y.; Wang, J.; Xu, Y.; Chen, B.; Ma, Q.; Liu, C.; Zhang, F. Melatonin enhances maize germination, growth, and salt tolerance by regulating reactive oxygen species accumulation and antioxidant systems. Plants 2025, 14, 296. [Google Scholar] [CrossRef]
- Tison, L.; Hahn, M.-L.; Holtz, S.; Rößner, A.; Greggers, U.; Bischoff, G.; Menzel, R. Honey bees’ behavior is impaired by chronic exposure to the neonicotinoid thiacloprid in the field. Environ. Sci. Technol. 2016, 50, 7218–7227. [Google Scholar] [CrossRef]
- Perry, C.J.; Søvik, E.; Myerscough, M.R.; Barron, A.B. Rapid behavioral maturation accelerates failure of stressed honey bee colonies. Proc. Natl. Acad. Sci. USA 2015, 112, 3427–3432. [Google Scholar] [CrossRef]
- Doublet, V.; Labarussias, M.; de Miranda, J.R.; Moritz, R.F.A.; Paxton, R.J. Bees under stress: Sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environ. Microbiol. 2015, 17, 969–983. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Blacquière, T.; Field, L.M.; Hails, R.S.; Petrokofsky, G.; Potts, S.G.; Raine, N.E.; Vanbergen, A.J.; McLean, A.R. A restatement of recent advances in the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proc. R. Soc. B Biol. Sci. 2015, 282, 20151821. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, Y.; Kohno, H.; Kubo, T. Possible functions of ecdysone signaling reiteratively used in the adult honey bee brain. Front. Bee Sci. 2023, 1, 1251714. [Google Scholar] [CrossRef]
- Habenstein, J.; Aumeier, K.; Hladik, A.; El Jundi, B.; Rössler, W. 3D atlas of cerebral neuropils with previously unknown demarcations in the honey bee brain. J. Comp. Neurol. 2023, 531, 1163–1183. [Google Scholar] [CrossRef] [PubMed]
- Cabirol, A.; Cope, A.J.; Barron, A.B.; Devaud, J.-M. Neural correlates for neonicotinoid-induced impairment of olfactory long-term memory. bioRxiv 2022. [Google Scholar] [CrossRef]
- Rükün, T.; Nygren, M.; Otti, O.; Brysch-Herzberg, M.; Crailsheim, K.; Schöning, C.; Härtel, S. Sub-lethal pesticide exposure interferes with honey bee memory of learnt colours. Sci. Total Environ. 2025, 962, 178460. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Chou, S.-Y.; Huang, L.-H.; Chiang, Y.-C.; Yang, E.-C. Honey bee foraging ability suppressed by imidacloprid can be ameliorated by adding adenosine. Environ. Pollut. 2023, 332, 121920. [Google Scholar] [CrossRef]
- Tasman, K.; Rands, S.A.; Hodge, J.J. The neonicotinoid insecticide imidacloprid disrupts bumblebee foraging rhythms and sleep. Iscience 2020, 23, 101827. [Google Scholar] [CrossRef] [PubMed]
- Williamson, S.M.; Wright, G.A. Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees. J. Exp. Biol. 2013, 216, 1799–1807. [Google Scholar] [CrossRef]
- Mustard, J.A.; Gott, A.; Scott, V.; Buehner, N.; Wright, G.A. Honeybees fail to discriminate floral scents in a complex learning task after consuming a neonicotinoid pesticide. J. Exp. Biol. 2020, 223, jeb217174. [Google Scholar] [CrossRef] [PubMed]
- Piiroinen, S.; Goulson, D. Chronic neonicotinoid pesticide exposure and parasite stress differentially affects learning in honeybees and bumblebees. Proc. R. Soc. B Biol. Sci. 2016, 283, 20160246. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.A.; Softley, S.; Earnshaw, H. Low doses of neonicotinoid pesticides in food rewards impair short-term olfactory memory in foraging-age honeybees. Sci. Rep. 2015, 5, 15322. [Google Scholar] [CrossRef]
- de Castro Lippi, I.C.; Boff, M.I.C.; Barbosa, R.M.; Francoy, T.M.; Catae, A.F.; Malaspina, O.; Roat, T.C. Intake of imidacloprid in lethal and sublethal doses alters gene expression in Apis mellifera bees. Sci. Total Environ. 2024, 940, 173393. [Google Scholar] [CrossRef]
- Favaro, R.; Bortolotti, L.; Goffi, A.; Maccagnani, B.; Cappa, F.; Braglia, C.; Nepi, M.; Barberis, M.; Albertazzi, S.; Giacomini, I.; et al. Impact of chronic exposure to two neonicotinoids on honey bee antennal responses to flower volatiles and pheromonal compounds. Front. Insect Sci. 2022, 2, 821145. [Google Scholar] [CrossRef]
- Ke, L.; Chen, X.; Dai, P.; Liu, Y.-J. Chronic larval exposure to thiacloprid impairs honeybee antennal selectivity, learning and memory performances. Front. Physiol. 2023, 14, 1114488. [Google Scholar] [CrossRef]
- Belzunces, L.P.; Tchamitchian, S.; Brunet, J.-L. Neural effects of insecticides in the honey bee. Apidologie 2012, 43, 348–370. [Google Scholar] [CrossRef]
- Kessler, S.C.; Tiedeken, E.J.; Simcock, K.L.; Derveau, S.; Mitchell, J.; Softley, S.; Stout, J.C.; Wright, G.A. Bees prefer foods containing neonicotinoid pesticides. Nature 2015, 521, 74–76. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.; Müller, T.; Spatz, A.-K.; Greggers, U.; Grünewald, B.; Menzel, R. Neonicotinoids interfere with specific components of navigation in honeybees. PLoS ONE 2014, 9, e91364. [Google Scholar] [CrossRef] [PubMed]
- Stanley, D.A.; Russell, A.L.; Morrison, S.J.; Rogers, C.; Raine, N.E. Investigating the impacts of field-realistic exposure to a neonicotinoid pesticide on bumblebee foraging, homing ability and colony growth. J. Appl. Ecol. 2016, 53, 1440–1449. [Google Scholar] [CrossRef]
- Tosi, S.; Burgio, G.; Nieh, J.C. A common neonicotinoid pesticide, thiamethoxam, impairs honey bee flight ability. Sci. Rep. 2017, 7, 1201. [Google Scholar] [CrossRef]
- Tackenberg, M.C.; Giannoni-Guzmán, M.A.; Sanchez-Perez, E.; Doll, C.A.; Agosto-Rivera, J.L.; Broadie, K.; Moore, D.; McMahon, D.G. Neonicotinoids disrupt circadian rhythms and sleep in honey bees. Sci. Rep. 2020, 10, 17929. [Google Scholar] [CrossRef] [PubMed]
- Bloch, G.; Bar-Shai, N.; Cytter, Y.; Green, R. Time is honey: Circadian clocks of bees and flowers and how their interactions may influence ecological communities. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160256. [Google Scholar] [CrossRef]
- Traynor, K.S.; Lamas, Z.S. Social disruption: Sublethal pesticides in pollen lead to Apis mellifera queen events and brood loss. Ecotoxicol. Environ. Saf. 2021, 214, 112105. [Google Scholar] [CrossRef]
- Eiri, D.M.; Nieh, J.C. A nicotinic acetylcholine receptor agonist affects honey bee sucrose responsiveness and decreases waggle dancing. J. Exp. Biol. 2012, 215, 2022–2029. [Google Scholar] [CrossRef]
- Zhang, Z.-Y.; Li, Z.; Huang, Q.; Yan, W.-Y.; Zhang, L.-Z.; Zeng, Z.-J. Honeybees (Apis mellifera) modulate dance communication in response to pollution by imidacloprid. J. Asia-Pac. Entomol. 2020, 23, 477–482. [Google Scholar] [CrossRef]
- Crall, J.D.; Raine, N.E. How do neonicotinoids affect social bees? Linking proximate mechanisms to ecological impacts, in Advances in insect physiology. In Advances in Insect Physiology; Elsevier: Amsterdam, The Netherlands, 2023; pp. 191–253. [Google Scholar]
- Li, A.; Yu, C.; Li, X.; Zhang, Y.; Sun, R.; Chen, D.; Zhao, H. Thiacloprid impairs honeybee worker learning and memory with inducing neuronal apoptosis and downregulating memory-related genes. Sci. Total Environ. 2023, 885, 163820. [Google Scholar] [CrossRef]
- Wang, M.; Guo, X.; Li, L.; Zhang, H.; Xu, Y.; Liu, W.; Chen, R.; Sun, J.; Zhou, Z. Reduced Honeybee Pollen Foraging under Neonicotinoid Exposure: Exploring Reproducible Individual and Colony Level Effects in the Field Using AI and Simulation. Environ. Sci. Technol. 2025, 59, 4883–4892. [Google Scholar] [CrossRef]
- Singla, A.; Gill, R.; Mehta, R.; Kumar, V.; Kaur, S.; Sharma, P.; Singh, R.; Dhaliwal, H.S.; Kumar, S. Influence of neonicotinoids on pollinators: A review. J. Apic. Res. 2021, 60, 19–32. [Google Scholar] [CrossRef]
- Fairbrother, A.; Purdy, J.; Anderson, T.; Fell, R. Risks of neonicotinoid insecticides to honeybees. Environ. Toxicol. Chem. 2014, 33, 719–731. [Google Scholar] [CrossRef]
- Abrol, D. Neonicotinoids-environmental risk assessment to natural Enemies and Pollinators. J. Palynol. 2022, 58, 23–62. [Google Scholar]
- Alburaki, M.; Boutin, S.; Mercier, P.L.; Loublier, Y.; Chagnon, M.; Derome, N. Neonicotinoid-coated Zea mays seeds indirectly affect honeybee performance and pathogen susceptibility in field trials. PLoS ONE 2015, 10, e0125790. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Yang, Y.; Li, Y.; Wang, X.; Liu, Z.; Wu, J. The effects of sublethal doses of imidacloprid and deltamethrin on honeybee foraging time and the brain transcriptome. J. Appl. Entomol. 2022, 146, 1169–1177. [Google Scholar] [CrossRef]
- Insolia, L.; Baracchi, D.; Bortolotti, L.; Gallina, A.; Manino, A.; Tosi, S.; Chiesa, F.; Lodesani, M.; Moritz, R.F.A. Honey bee colony loss linked to parasites, pesticides and extreme weather across the United States. Sci. Rep. 2022, 12, 20787. [Google Scholar] [CrossRef] [PubMed]
- Brhich, A.; Amhaouch, Z.; El Hassani, A.K.; Benjelloun, A.; Alaoui Ismaili, M.; El Ghadraoui, L. Evaluation of Pesticide Effects on Honeybee Health and Colony Collapse: Findings from a Beekeeper Survey in the Beni Mellal-Khenifra Region, Morocco. J. Environ. Earth Sci. 2025, 7, 89–100. [Google Scholar] [CrossRef]
- Grover, A.; Singh, R.; Bhagat, R.M.; Singh, K.; Sharma, R.K. Colony collapse disorder: A peril to apiculture. J. Appl. Nat. Sci. 2022, 14, 729–739. [Google Scholar] [CrossRef]
- Magal, P.; Webb, G.; Wu, Y. A spatial model of honey bee colony collapse due to pesticide contamination of foraging bees. J. Math. Biol. 2020, 80, 2363–2393. [Google Scholar] [CrossRef]
- Flores, J.M.; Gil-Lebrero, S.; Gámiz, V.; Rodríguez, I.; Ortiz, M.A.; Quiles, F.J.; Puerta, F. A three-year large scale study on the risk of honey bee colony exposure to blooming sunflowers grown from seeds treated with thiamethoxam and clothianidin neonicotinoids. Chemosphere 2021, 262, 127735. [Google Scholar] [CrossRef]
- Meikle, W.G.; Colin, T.; Adamczyk, J.J.; Weiss, M.; Barron, A.B. Traces of a neonicotinoid pesticide stimulate different honey bee colony activities, but do not increase colony size or longevity. Ecotoxicol. Environ. Saf. 2022, 231, 113202. [Google Scholar] [CrossRef] [PubMed]
- Straub, L.; Villamar-Bouza, L.; Bruckner, S.; Chantawannakul, P.; Gauthier, L.; Khongphinitbunjong, K.; Retschnig, G.; Troxler, A.; Vidondo, B.; Williams, G.R.; et al. Neonicotinoids and ectoparasitic mites synergistically impact honeybees. Sci. Rep. 2019, 9, 8159. [Google Scholar] [CrossRef] [PubMed]
- Tosi, S.; Burgio, G.; Nieh, J.C. Neonicotinoid pesticides and nutritional stress synergistically reduce survival in honey bees. Proc. R. Soc. B Biol. Sci. 2017, 284, 20171711. [Google Scholar] [CrossRef] [PubMed]
- Smagghe, G.; Blacquière, T.; Mommaerts, V. Neonicotinoids and Their Substitutes in Sustainable Pest Control; European Academies’ Science Advisory Council (EASAC): Vienna, Austria, 2023. [Google Scholar]
- Dara, S.K. Constraints and Challenges in Popularizing Biopesticides, in Biopesticides in Organic Farming; CRC Press: Boca Raton, FL, USA, 2021; pp. 349–354. [Google Scholar]
- Faria, M.; Luz, C.; Humber, R.A.; Mascarin, G.M. What would be representative temperatures for shelf-life studies with biopesticides in tropical countries? Estimates through long-term storage of biocontrol fungi and calculation of mean kinetic temperatures. Biocontrol 2022, 67, 213–224. [Google Scholar] [CrossRef]
- O’Callaghan, M.; Wilson, M.; Zydenbos, S. Biopesticides for New Zealand’s pests–opportunities and challenges’. N. Z. Plant Prot. 2015, 68, 443. [Google Scholar]
- Kandar, P. Phytochemicals and biopesticides: Development, current challenges and effects on human health and diseases. J. Biomed. Res 2021, 2, 3–15. [Google Scholar]
- Adnan, A.A.; Adepoju, A.A.; Ibrahim, M.H.; Adekunle, M.F.; Bello, Y.O.; Musa, R.I.; Umar, A.G.; Salihu, M.Y. Farmers Awareness and Acceptance of Biopesticides Application for Pest and Disease Management. AgroTech-Food Sci. Technol. Environ. 2024, 3, 77–88. [Google Scholar]
- Wilson, K.; Popham, H.J.R.; Hodgson, D.J.; Sait, S.M.; Cory, J.S. A novel formulation technology for baculoviruses protects biopesticide from degradation by ultraviolet radiation. Sci. Rep. 2020, 10, 13301. [Google Scholar] [CrossRef]
- Ndolo, D.; Macharia, J.; Nyamasyo, G.; Olubayo, F. Research and development of biopesticides: Challenges and prospects. Outlooks Pest Manag. 2019, 30, 267–276. [Google Scholar] [CrossRef]
- Kopparthi, A.V.S. Compatibility of biopesticides with insecticides in IPM. Indian J. Entomol. 2020, 82, 588–592. [Google Scholar] [CrossRef]
- Hladik, M.L.; Main, A.R.; Goulson, D. Environmental Risks and Challenges Associated with Neonicotinoid Insecticides; ACS Publications: Washington, WA, USA, 2018. [Google Scholar]
- Demortain, D. The science behind the ban: The outstanding impact of ecotoxicological research on the regulation of neonicotinoids. Curr. Opin. Insect Sci. 2021, 46, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Jactel, H.; Verheggen, F.; Thiéry, D.; Escobar-Gutiérrez, A.; Gachet, E.; Desneux, N. Alternatives to neonicotinoids. Environ. Int. 2019, 129, 423–429. [Google Scholar] [CrossRef]
- Lundin, O.; Rundlöf, M.; Smith, H.G.; Fries, I.; Bommarco, R. Neonicotinoid insecticides and their impacts on bees: A systematic review of research approaches and identification of knowledge gaps. PLoS ONE 2015, 10, e0136928. [Google Scholar] [CrossRef]
- Kurwadkar, S.; Evans, A. Neonicotinoids: Systemic Insecticides and Systematic Failure; Springer: Berlin/Heidelberg, Germany, 2016; pp. 745–748. [Google Scholar]
- Longing, S.D.; Cross, C.R.; Jones, G.D.; Wright, C.G.; Barnett, J.B. Exposure of foraging bees (Hymenoptera) to neonicotinoids in the US southern high plains. Environ. Entomol. 2020, 49, 528–535. [Google Scholar] [CrossRef]
- Wang, M.; Guo, X.; Xu, Y.; Li, L.; Zhou, Z.; Liu, W.; Chen, R. Honeybee pollen but not nectar foraging greatly reduced by neonicotinoids: Insights from AI and simulation. Comput. Electron. Agric. 2024, 221, 108966. [Google Scholar] [CrossRef]
- Main, A.R.; Webb, E.B.; Goyne, K.W.; Mengel, D.; Lerch, R.N. Beyond neonicotinoids–wild pollinators are exposed to a range of pesticides while foraging in agroecosystems. Sci. Total Environ. 2020, 742, 140436. [Google Scholar] [CrossRef]
- Lu, C.; Cheng, Q.; Zheng, S.; Wang, R.; Zeng, C.; Li, K. The Implications of Using Pollen and Nectar Foraged by Honeybees as the Biomarkers for Total Neonicotinoid Exposures; SSRN: Chongqing, China, 2023. [Google Scholar]
- Zhang, Y.; Wei, Q.; Liu, L.; Zhao, Y.; Feng, R.; Liu, Z.; Wang, X.; Li, X.; Zhang, J.; Liu, S. Stereoselective toxicity mechanism of neonicotinoid dinotefuran in honeybees: New perspective from a spatial metabolomics study. Sci. Total Environ. 2022, 809, 151116. [Google Scholar] [CrossRef]
- Alberoni, D.; Favaro, R.; Baffoni, L.; Gaggìa, F.; Di Gioia, D. Neonicotinoids in the agroecosystem: In-field long-term assessment on honeybee colony strength and microbiome. Sci. Total Environ. 2021, 762, 144116. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, L.J.; Wilson, R.J.; Aebi, A.; Caldeira, M.C.; Meeus, I.; Menz, M.H.M.; Michez, D.; Neumann, P.; Owen, R.; Potts, S.G.; et al. Neonicotinoid exposure increases Varroa destructor (Mesostigmata: Varroidae) mite parasitism severity in honey bee colonies and is not mitigated by increased colony genetic diversity. J. Insect Sci. 2024, 24, 20. [Google Scholar] [CrossRef] [PubMed]
- Nunes, W.C.; Batista, C.R.V.; de Oliveira, F.S.; Mendes, F.R.; Santos, T.M.M.; Rodrigues, L.N.; Souza, P.L. Neonicotinoids Versus Bees: A Brief Review on the Effects on These Pollinators and the Need for Reevaluation of Agricultural Practices. Aracê 2024, 6, 15514–15531. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahsan, Z.; Wu, Z.; Lin, Z.; Ji, T.; Wang, K. The Sublethal Effects of Neonicotinoids on Honeybees. Biology 2025, 14, 1076. https://doi.org/10.3390/biology14081076
Ahsan Z, Wu Z, Lin Z, Ji T, Wang K. The Sublethal Effects of Neonicotinoids on Honeybees. Biology. 2025; 14(8):1076. https://doi.org/10.3390/biology14081076
Chicago/Turabian StyleAhsan, Zunair, Zhijia Wu, Zheguang Lin, Ting Ji, and Kang Wang. 2025. "The Sublethal Effects of Neonicotinoids on Honeybees" Biology 14, no. 8: 1076. https://doi.org/10.3390/biology14081076
APA StyleAhsan, Z., Wu, Z., Lin, Z., Ji, T., & Wang, K. (2025). The Sublethal Effects of Neonicotinoids on Honeybees. Biology, 14(8), 1076. https://doi.org/10.3390/biology14081076