Compound Eye Structure and Phototactic Dimorphism in the Yunnan Pine Shoot Beetle, Tomicus yunnanensis (Coleoptera: Scolytinae)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Collection and Laboratory Sample Preparation
2.2. Scanning Electron Microscopy (SEM)
2.3. Transmission Electron Microscopy (TEM)
2.4. Light Microscopy (LM)
2.5. Observation of Daily Behavioral Rhythms
2.6. Testing Phototaxis with Monochromatic Light Across Multiple Wavelengths
2.7. Morphometric Data Processing and Analysis
3. Results
3.1. Gross External Morphology of the Eye
Structural Elements | Parameters | Unit | n | Average | Range (Min–Max) |
---|---|---|---|---|---|
Body size | Males | mm | 30 | 7.4 ± 0.5 | 5.7–8.4 |
females | mm | 30 | 7.1 ± 0.5 | 6.5–8.1 | |
Compound eyes | Eye height in males | µm | 30 | 576.3 ± 39.0 | 518.2–641.3 |
Eye height in females | µm | 30 | 593.3 ± 27.6 | 528.0–644.9 | |
Eye width in males | µm | 30 | 219.3 ± 13.0 | 198.5–241.6 | |
Eye width in females | µm | 30 | 220.6 ± 14.4 | 201.2–260.2 | |
Facet number in males | - | 14 | 240.0 ± 3.5 | 224–265 | |
Facet number in females | - | 16 | 247.4 ± 3.2 | 224–266 | |
Eye radius in males | µm | 12 | 481.5 ± 53.9 | 417.5–595.8 | |
Eye radius in females | µm | 12 | 481.9 ± 45.6 | 412.1–571.3 | |
ommatidia | Facet diameter | µm | 130 | 21.0 ± 2.9 | 13.5–25.8 |
Quadrilateral facet area | µm2 | 150 | 363.9 ± 3.2 | 278.7–481.9 | |
Hexagonal facet area | µm2 | 150 | 406.7 ± 2.3 | 358.4–501.7 | |
Cornea | Maximum thickness | µm | 10 | 20.7 ± 1.1 | 19.2–22.3 |
Thickness of OLU | µm | 30 | 16.0 ± 2.4 | 12.4–18.7 | |
Thickness of ILU | µm | 30 | 2.4 ± 0.5 | 1.3–3.4 | |
Number of chitin layers | µm | 5 | 69.6 ± 1.2 | 67–74 | |
Outer lens surface radius | µm | 23 | 17.4 ± 0.9 | 8.9–28.4 | |
Inner lens surface radius | µm | 27 | 11.0 ± 3.0 | 6.9–19.8 | |
Crystalline cone | Length in LA | µm | 12 | 6.3 ± 1.1 | 4.5–7.9 |
Length in DA | µm | 12 | 7.7 ± 0.8 | 6.6–9.8 | |
Distal diameter in LA | µm | 16 | 11.4 ± 1.1 | 10.2–13.9 | |
Distal diameter in DA | µm | 16 | 12.7 ± 1.2 | 10.3–14.2 | |
Pigment granule | PPC diameter | nm | 55 | 495.3 ± 165.0 | 199–922 |
SPC diameter | nm | 55 | 517.2 ± 88.3 | 192–867 | |
Rhabdom | Length of peripheral rhabdomeres | µm | 6 | 11.9 ± 0.5 | 11.4–12.4 |
Length of central rhabdomeres | µm | 17 | 43.5 ± 1.6 | 33.0–55.3 | |
Distal diameter | µm | 32 | 6.7 ± 0.5 | 5.9–7.9 | |
Microvillus diameter | nm | 60 | 36.4 ± 5.8 | 20–50 | |
Rhabdom cross-sectional area in LA | µm2 | 24 | 120.4 ± 18.0 | 90.4–184.8 | |
Rhabdom cross-sectional area in DA | µm2 | 18 | 152.1 ± 23.7 | 120.2–196.2 | |
Pigment granule diameter | nm | 65 | 502.2 ± 83.3 | 179–950 | |
Ommatrichia | Number | - | 10 | 7.8 ± 0.5 | 7–12 |
Length | µm | 20 | 10.1 ± 0.5 | 6.0–14.7 | |
Basal matrix | Thickness | µm | 30 | 9.0 ± 1.7 | 5.8–11.5 |
Optical characteristics | Focal length | µm | - | 31.3 | - |
Image focus length | µm | - | 42.2 | - | |
F-number | - | - | 1.5 | - | |
Ommatidium acceptance angle | ° | - | 12.2 | - | |
Interommatidial angle | ° | - | 3.2 | - | |
Eye parameter | µm·rad | - | 0.9 | - |
3.2. Internal Structures of the Eyes
3.2.1. Cornea
3.2.2. Crystalline Cone
3.2.3. Retinular Cells and Rhabdom
3.2.4. Pigment Cells
3.2.5. Basal Matrix
3.3. Morphological Changes in the Eye During Dark/Light Adaptation
3.4. Optical Features of the Compound Eyes
3.5. Daily Activities Patterns of T. yunnanensis
3.6. Phototactic Response of T. yunnanensis to Different Monochromatic Wavelengths
4. Discussion
4.1. Morphological Features of the Compound Eyes in T. yunnanensis
4.2. Light-Adaptive Modifications in the Ommatidia of T. yunnanensis
4.3. Optical Properties, Phototactic Behavior, and Spectral Sensitivity in T. yunnanensis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Kirkendall, L.R.; Faccoli, M.; Ye, H. Description of the Yunnan shoot borer, Tomicus yunnanensis Kirkendall & Faccoli sp. n. (Curculionidae, Scolytinae), an unusually aggressive pine shoot beetle from southern China, with a key to the species of Tomicus. Zootaxa 2008, 1819, 25–39. [Google Scholar] [CrossRef]
- Ye, H. On the bionomy of Tomicus piniperda (L.) (Col., Scolytidae) in the Kunming region of China. J. Appl. Entomol. 1991, 112, 366–369. [Google Scholar] [CrossRef]
- Lieutier, F.; Ye, H.; Yart, A. Shoot damage by Tomicus sp.(Coleoptera: Scolytidae) and effect on Pinus yunnanensis resistance to subsequent reproductive attacks in the stem. Agric. For. Entomol. 2003, 5, 227–233. [Google Scholar] [CrossRef]
- Yu, L.; Huang, J.; Zong, S.; Huang, H.; Luo, Y. Detecting shoot beetle damage on Yunnan pine using landsat time-series data. Forests 2018, 9, 39. [Google Scholar] [CrossRef]
- Lieutier, F.; Långström, B.; Faccoli, M. The genus Tomicus. In Bark Beetles: Biology and Ecology of Native and Invasive Species; Vega, F.E., Hofstetter, R.W., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 371–426. [Google Scholar]
- Cui, Y.; Zhang, M.; Zhu, H.; Yang, P.; Yang, B.; Li, Z. Fine structure of the mouthparts of three Tomicus beetles co-infecting Pinus yunnanensis in Southwestern China with some functional comments. Insects 2023, 14, 933. [Google Scholar] [CrossRef] [PubMed]
- Långström, B.; Hellqvist, C.; Ericsson, A.; Gref, R. Induced defence reaction in Scots pine following stem attacks by Tomicus piniperda. Ecography 1992, 15, 318–327. [Google Scholar] [CrossRef]
- Mulock, P.; Christiansen, E. The threshold of successful attack by Ips typographus on Picea abies: A field experiment. For. Ecol. Manag. 1986, 14, 125–132. [Google Scholar] [CrossRef]
- Waring, R.H.; Pitman, G.B. Modifying lodgepole pine stands to change susceptibility to mountain pine beetle attack. Ecology 1985, 66, 889–897. [Google Scholar] [CrossRef]
- Wu, C.X.; Liu, F.; Zhang, S.F.; Kong, X.B.; Zhang, Z. Semiochemical regulation of the intraspecific and interspecific behavior of Tomicus yunnanensis and Tomicus minor during the shoot-feeding phase. J. Chem. Ecol. 2019, 45, 227–240. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, M.; Qian, L.; Wang, Z.; Li, Z. Electrophysiology and behavior of Tomicus yunnanensis to Pinus yunnanensis volatile organic compounds across infestation stages in southwest China. Forests 2025, 16, 1178. [Google Scholar] [CrossRef]
- Chu, H.; Norris, D.M.; Carlson, S.D. Ultrastructure of the compound eye of the diploid female beetle, Xyleborus ferrugineus. Cell Tissue Res. 1975, 165, 23–36. [Google Scholar] [CrossRef]
- Chu, H.-m.; Norris, D.M. Ultrastructure of the compound eye of the haploid male beetle, Xyleborus ferrugineus. Cell Tissue Res. 1976, 168, 315–324. [Google Scholar] [CrossRef]
- Finch, S.; Collier, R.H. Host-plant selection by insects—A theory based on ‘appropriate/inappropriate landings’ by pest insects of cruciferous plants. Entomol. Exp. Appl. 2000, 96, 91–102. [Google Scholar] [CrossRef]
- Campbell, S.A.; Borden, J.H. Integration of visual and olfactory cues of hosts and non-hosts by three bark beetles (Coleoptera: Scolytidae). Ecol. Entomol. 2006, 31, 437–449. [Google Scholar] [CrossRef]
- Makarova, A.A.; Diakova, A.A.; Chaika, S.Y.; Polilov, A.A. Scaling of the sense organs of insects. 1. Introduction. Compound eyes. Entomol. Rev. 2022, 102, 161–181. [Google Scholar] [CrossRef]
- Kittelmann, M.; McGregor, A.P. Looking across the gap: Understanding the evolution of eyes and vision among insects. BioEssays 2024, 46, 2300240. [Google Scholar] [CrossRef] [PubMed]
- Bright, D.E. Eye reduction in a cavernicolous population of Coccotrypes dactyliperda Fabricius (Coleoptera: Scolytidae). Coleopt. Bull. 1981, 35, 117–120. [Google Scholar]
- Bell, W.J. Searching behavior patterns in insects. Annu. Rev. Entomol. 1990, 35, 447–467. [Google Scholar] [CrossRef]
- Dubbel, V.; Kerck, K.; Sohrt, M.; Mangold, S. Influence of trap color on the efficiency of bark beetle pheromone traps. Z. Angew. Entomol. 1985, 99, 59–64. [Google Scholar] [CrossRef]
- Shepherd, R.F. Factors influencing the orientation and rates of activity of Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae). Can. Entomol. 1966, 98, 507–518. [Google Scholar] [CrossRef]
- Groberman, L.J.; Borden, J.H. Electrophysiological response of Dendroctonus pseudotsugae and Ips paraconfusus (Coleoptera: Scolytidae) to selected wavelength regions of the visible spectrum. Can. J. Zool. 1982, 60, 2180–2189. [Google Scholar] [CrossRef]
- Strom, B.L.; Roton, L.M.; Goyer, R.A.; Meeker, J.R. Visual and semiochemical disruption of host finding in the southern pine beetle. Ecol. Appl. 1999, 9, 1028–1038. [Google Scholar] [CrossRef]
- Strom, B.L.; Goyer, R.A.; Shea, P.J. Visual and olfactory disruption of orientation by the western pine beetle to attractant-baited traps. Entomol. Exp. Appl. 2001, 100, 63–67. [Google Scholar] [CrossRef]
- van der Kooi, C.J.; Stavenga, D.G.; Arikawa, K.; Belušič, G.; Kelber, A. Evolution of insect color vision: From spectral sensitivity to visual ecology. Annu. Rev. Entomol. 2021, 66, 435–461. [Google Scholar] [CrossRef]
- Krokene, P. Conifer defense and resistance to bark beetles. In Bark Beetles: Biology and Ecology of Native and Invasive Species; Vega, F.E., Hofstetter, R.W., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 177–207. [Google Scholar]
- Land, M.F.; Nilsson, D.-E. Animal Eyes; Oxford University Press: Oxford, UK, 2021. [Google Scholar]
- Freas, C.A.; Spetch, M.L. Varieties of visual navigation in insects. Anim. Cogn. 2023, 26, 319–342. [Google Scholar] [CrossRef] [PubMed]
- Santer, R.D.; Allen, W.L. Insect visual perception and pest control: Opportunities and challenges. Curr. Opin. Insect Sci. 2025, 68, 101331. [Google Scholar] [CrossRef]
- Qian, L. The Reproductive Acoustic Signals and Functional Differentiation of Three Tomicus spp. (Coleoptera: Curculionidae: Scolytinae) Infesting Pinus yunnanensis. Master’s Thesis, Southwest Forestry University, Kunming, China, 2022. [Google Scholar]
- Kim, K.-N.; Song, H.-S.; Li, C.-S.; Huang, Q.-Y.; Lei, C.-L. Effect of several factors on the phototactic response of the oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae). J. Asia Pac. Entomol. 2018, 21, 952–957. [Google Scholar] [CrossRef]
- Wachmann, E. Vergleichende analyse der feinstrukturellen organisation offener rhabdome in den augen der Cucujiformia (lnsecta, Coleoptera), unter besonderer berücksichtigung der Chrysomelidae. Zoomorphologie 1977, 88, 95–131. [Google Scholar] [CrossRef]
- Schmitt, M.; Mischke, U.; Wachmann, E. Phylogenetic and functional implications of the rhabdom patterns in the eyes of Chrysomeloidea (Coleoptera). Zool. Scr. 1982, 11, 31–44. [Google Scholar] [CrossRef]
- Land, M.F. Visual acuity in insects. Annu. Rev. Entomol. 1997, 42, 147–177. [Google Scholar] [CrossRef]
- Stavenga, D.G. Angular and spectral sensitivity of fly photoreceptors. II. Dependence on facet lens F-number and rhabdomere type in Drosophila. J. Comp. Physiol. A 2003, 189, 189–202. [Google Scholar] [CrossRef]
- Mora, A.A.D.R. A preliminary comparative study on structure and main characteristics of compound eyes in four Mexican cone borers Conophthorus spp (Coleoptera: Scolytinae). Arthropods 2014, 3, 147–160. [Google Scholar]
- Vega, F.E.; Simpkins, A.; Bauchan, G.; Infante, F.; Kramer, M.; Land, M.F. On the eyes of male coffee berry borers as rudimentary organs. PLoS ONE 2014, 9, e85860. [Google Scholar] [CrossRef]
- Lanier, G.N. Integration of visual stimuli, host odorants, and pheromones by bark beetles and weevils in locating and colonizing host trees. In Herbivorous Insects: Host-Seeking Behavior and Mechanisms; Ahmad, S., Ed.; Academic Press: New York, NY, USA, 1983; pp. 161–171. [Google Scholar]
- Chapman, J.A. Ommatidia numbers and eyes in scolytid beetles. Ann. Entomol. Soc. Am. 1972, 65, 550–553. [Google Scholar] [CrossRef]
- Wen, C.; Ma, T.; Deng, Y.; Liu, C.; Liang, S.; Wen, J.; Wang, C.; Wen, X. Morphological and optical features of the apposition compound eye of Monochamus alternatus Hope (Coleoptera: Cerambycidae). Micron 2020, 128, 102769. [Google Scholar] [CrossRef] [PubMed]
- Jander, U.; Jander, R. Allometry and resolution of bee eyes (Apoidea). Arthropod Struct. Dev. 2002, 30, 179–193. [Google Scholar] [CrossRef]
- Gonzalez-Bellido, P.T.; Wardill, T.J.; Juusola, M. Compound eyes and retinal information processing in miniature dipteran species match their specific ecological demands. Proc. Natl. Acad. Sci. USA 2011, 108, 4224–4229. [Google Scholar] [CrossRef] [PubMed]
- Meyer-Rochow, V.B. The eyes of Creophilus erythrocephalus F. and Sartallus signatus sharp (Staphylinidae: Coleoptera). Z. Zellforsch. Mikrosk. Anat. 1972, 133, 59–86. [Google Scholar] [CrossRef] [PubMed]
- Mishra, M.; Meyer-Rochow, V.B. Eye ultrastructure in the pollen-feeding beetle, Xanthochroa luteipennis (Coleoptera: Cucujiformia: Oedemeridae). J. Electron. Microsc. Tech. 2006, 55, 289–300. [Google Scholar] [CrossRef]
- Labhart, T.; Meyer, E.P. Detectors for polarized skylight in insects: A survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc. Res. Tech. 1999, 47, 368–379. [Google Scholar] [CrossRef]
- Meyer-Rochow, V.B.; Lindström, M. Reflections of an insect’s lifestyle and habitat: Morphological and ultrastructural adaptations involving the eyes of insects. In Insect Ecomorphology; Betz, O., Ed.; Academic Press: New York, NY, USA, 2025; pp. 93–153. [Google Scholar]
- Stavenga, D.G. Eye regionalization and spectral tuning of retinal pigments in insects. Trends Neurosci. 1992, 15, 213–218. [Google Scholar] [CrossRef]
- Meyer-Rochow, V.B.; Mishra, M. A six-rhabdomere, open rhabdom arrangement in the eye of the chrysanthemum beetle Phytoecia rufiventris: Some ecophysiological predictions based on eye anatomy. Biocell 2009, 33, 115–120. [Google Scholar] [CrossRef]
- Meyer-Rochow, V.B.; Kashiwagi, T.; Eguchi, E. Selective photoreceptor damage in four species of insects induced by experimental exposures to UV-irradiation. Micron 2002, 33, 23–31. [Google Scholar] [CrossRef]
- Narendra, A.; Alkaladi, A.; Raderschall, C.A.; Robson, S.K.A.; Ribi, W.A. Compound eye adaptations for diurnal and nocturnal lifestyle in the intertidal ant, Polyrhachis sokolova. PLoS ONE 2013, 8, e76015. [Google Scholar] [CrossRef]
- Meyer-Rochow, V.B.; Waldvogel, H. Visual behaviour and the structure of dark and light-adapted larval and adult eyes of the New Zealand glowworm Arachnocampa luminosa (Mycetophilidae: Diptera). J. Insect Physiol. 1979, 25, 601–613. [Google Scholar] [CrossRef] [PubMed]
- Horridge, G.A.; Giddings, C. Movement on dark–light adaptation in beetle eyes of the neuropteran type. Proc. R. Soc. Lond. B Biol. Sci. 1971, 179, 73–85. [Google Scholar] [CrossRef]
- Warrant, E.J.; McIntyre, P.D. Arthropod eye design and the physical limits to spatial resolving power. Prog. Neurobiol. 1993, 40, 413–461. [Google Scholar] [CrossRef]
- Snyder, A.W.; Stavenga, D.G.; Laughlin, S.B. Spatial information capacity of compound eyes. J. Comp. Physiol. A 1977, 116, 183–207. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, C.W.; Kuang, R.P.; Li, H.W.; Chen, Z.; Liu, Y.J. Phototactic behavior of the Armand pine bark weevil, Pissodes punctatus. J. Insect Sci. 2013, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Jackowska, M.; Bao, R.; Liu, Z.; McDonald, E.C.; Cook, T.A.; Friedrich, M. Genomic and gene regulatory signatures of cryptozoic adaptation: Loss of blue sensitive photoreceptors through expansion of long wavelength-opsin expression in the red flour beetle Tribolium castaneum. Front. Zool. 2007, 4, 24. [Google Scholar] [CrossRef]
- Oba, Y.; Kainuma, T. Diel changes in the expression of long wavelength-sensitive and ultraviolet-sensitive opsin genes in the Japanese firefly, Luciola cruciata. Gene 2009, 436, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X.-X.; Jing, X.; Tian, H.-G.; Liu, T.-X. Winged pea aphids can modify phototaxis in different development stages to assist their host distribution. Front. Physiol. 2016, 7, 307. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, H.; Yuan, H.; Wang, Y.; Tang, X.; Yang, M.; Zheng, L.; Li, Z. Compound Eye Structure and Phototactic Dimorphism in the Yunnan Pine Shoot Beetle, Tomicus yunnanensis (Coleoptera: Scolytinae). Biology 2025, 14, 1032. https://doi.org/10.3390/biology14081032
Xie H, Yuan H, Wang Y, Tang X, Yang M, Zheng L, Li Z. Compound Eye Structure and Phototactic Dimorphism in the Yunnan Pine Shoot Beetle, Tomicus yunnanensis (Coleoptera: Scolytinae). Biology. 2025; 14(8):1032. https://doi.org/10.3390/biology14081032
Chicago/Turabian StyleXie, Hua, Hui Yuan, Yuyun Wang, Xinyu Tang, Meiru Yang, Li Zheng, and Zongbo Li. 2025. "Compound Eye Structure and Phototactic Dimorphism in the Yunnan Pine Shoot Beetle, Tomicus yunnanensis (Coleoptera: Scolytinae)" Biology 14, no. 8: 1032. https://doi.org/10.3390/biology14081032
APA StyleXie, H., Yuan, H., Wang, Y., Tang, X., Yang, M., Zheng, L., & Li, Z. (2025). Compound Eye Structure and Phototactic Dimorphism in the Yunnan Pine Shoot Beetle, Tomicus yunnanensis (Coleoptera: Scolytinae). Biology, 14(8), 1032. https://doi.org/10.3390/biology14081032