Epichloë Endophyte Alters Bacterial Nitrogen-Cycling Gene Abundance in the Rhizosphere Soil of Perennial Ryegrass
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experiment Design
2.3. Soil Sampling and Chemical Analysis
2.4. Soil DNA Extraction and Quantitative PCR
2.5. PCR Amplification and Sequencing
2.6. Bioinformatics Analysis
2.7. Statistical Analysis
3. Results
3.1. Endophyte Infection Altered Soil Chemical Properties
3.2. Endophyte Infection Affects Relative Abundances of Nitrification and Denitrification Functional Genes
3.3. Endophyte Effect on Alpha and Beta Diversity of the AOB-amoA, nirK and nosZ Functional Genes
3.4. Relationships Between the AOB-amoA, nirK and nosZ Functional Genes with Soil Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, G.; Liu, Z.; Song, S.; Gao, J.; Liao, S.; Cao, S.; Xie, Y.; Cao, L.; Hu, L.; Jing, H.; et al. The LpHsfA2-molecular module confers thermotolerance via fine tuning of its transcription in perennial ryegrass (Lolium perenne L.). J. Integr. Plant Biol. 2024, 66, 2346–2361. [Google Scholar] [CrossRef]
- Austin, A.T.; Vivanco, L. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 2006, 442, 555–558. [Google Scholar] [CrossRef] [PubMed]
- Bohara, M.; Acharya, K.; Perveen, S.; Manevski, K.; Hu, C.S.; Yadav, R.K.P.; Shrestha, K.; Li, X.X. In situ litter decomposition and nutrient release from forest trees along an elevation gradient in central himalaya. Catena 2020, 194, 104698. [Google Scholar] [CrossRef]
- Johnson, D.W.; Henderson, G.S. Terrestrial Nutrient Cycling; Springer: New York, NY, USA, 1989. [Google Scholar]
- Laskowski, R.; Björn, B. Litter Decomposition: Guide to Carbon and Nutrient Turnover; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Marklein, A.R.; Winbourne, J.B.; Enders, S.K.; Gonzalez, D.J.X.; van Huysen, T.L.; Izquierdo, J.E.; Light, D.R.; Liptzin, D.; Miller, K.E.; Morford, S.L.; et al. Mineralization ratios of nitrogen and phosphorus from decomposing litter in temperate versus tropical forests. Glob. Ecol. Biogeogr. 2016, 25, 335–346. [Google Scholar] [CrossRef]
- Yu, W.; Wang, C.; Cornelissen, J.H.; Ye, X.; Huang, Z.; Wang, D.; Liu, G. Litter position and stoichiometry regulate plant litter decomposition and nitrogen release in terrestrial ecosystems. CATENA 2025, 256, 109093. [Google Scholar] [CrossRef]
- Knorr, K.H.; Horn, M.A.; Borken, W. Significant nonsymbiotic nitrogen fixation in Patagonian ombrotrophic bogs. Glob. Change Biol. 2015, 21, 2357–2365. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, R.M.; Duff, A.M.; Brennan, F.P.; Gebremichael, A.W.; Girkin, N.T.; Lanigan, G.J.; Krol, D.J.; Wall, D.P.; Renou-Wilson, F.; Müller, C.; et al. Linking long-term soil phosphorus management to microbial communities involved in nitrogen reactions. Biol. Fertil. Soils 2022, 58, 389–402. [Google Scholar] [CrossRef]
- de Sosa, L.L.; Glanville, H.C.; Marshall, M.R.; Williams, A.P.; Abadie, M.; Clark, I.M.; Blaud, A.; Jones, D.L. Spatial zoning of microbial functions and plant-soil nitrogen dynamics across a riparian area in an extensively grazed livestock system. Soil Biol. Biochem. 2018, 120, 153–164. [Google Scholar] [CrossRef]
- Harter, J.; Krause, H.M.; Schuettler, S.; Ruser, R.; Fromme, M.; Scholten, T.; Kappler, A.; Behrens, S. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. ISME J. 2014, 8, 660–674. [Google Scholar] [CrossRef]
- Liu, W.X.; Jiang, L.; Hu, S.J.; Li, L.H.; Liu, L.L.; Wan, S.Q. Decoupling of soil microbes and plants with increasing anthropogenic nitrogen inputs in a temperate steppe. Soil Biol. Biochem. 2014, 72, 116–122. [Google Scholar]
- Chen, Y.; Wen, Y.; Zhou, Q.; Vymazal, J. Effects of plant biomass on denitrifying genes in subsurface-flow constructed wetlands. Bioresour. Technol. 2014, 157, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Marcos, M.S.; Bertiller, M.B.; Cisneros, H.S.; Olivera, N.L. Nitrification and ammonia-oxidizing bacteria shift in response to soil moisture and plant litter quality in arid soils from the Patagonian Monte. Pedobiologia 2016, 59, 1–10. [Google Scholar] [CrossRef]
- Gundel, P.E.; Helander, M.; Garibaldi, L.A.; Vázquez-De-Aldana, B.R.; Saikkonen, K. Direct and indirect effects of the fungal endophyte Epichloë uncinatum on litter decomposition of the host grass, Schedonorus pratensis. Plant Ecol. 2017, 218, 1107–1115. [Google Scholar] [CrossRef]
- Purahong, W.; Hyde, K.D. Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Divers. 2011, 47, 1–7. [Google Scholar] [CrossRef]
- Omacini, M.; Semmartin, M.; Pérez, L.I.; Gundel, P.E. Grass-endophyte symbiosis: A neglected aboveground interaction with multiple belowground consequences. Appl. Soil Ecol. 2012, 61, 273–279. [Google Scholar] [CrossRef]
- Song, M.L.; Wang, Y.Q.; Wang, H.S.; Bao, G.S.; Li, X.Z. Effects of Epichloë endophytes on litter decomposition--depending on different host species. Plant Soil 2022, 471, 715–728. [Google Scholar] [CrossRef]
- Omacini, M.; Chaneton, E.J.; Ghersa, C.M.; Otero, P. Do foliar endophytes affect grass litter decomposition? A microcosm approach using Lolium multiflorum. Oikos 2004, 104, 581–590. [Google Scholar] [CrossRef]
- Matthews, J.W.; Clay, K. Influence of fungal endophyte infection on plant-soil feedback and community interactions. Ecology 2001, 82, 500–509. [Google Scholar]
- Rasmussen, S.; Parsons, A.J.; Russell, J.; Bastías, D.A.; Liu, Q. Plant species, nitrogen status and endophytes are drivers of soil microbial communities in grasslands. Crop Pasture Sci. 2023, 75, CP23149. [Google Scholar] [CrossRef]
- Chen, Z.J.; Jin, Y.Y.; Yao, X.; Wei, X.K.; Li, X.Z.; Li, C.J.; White, J.F.; Nan, Z.B. Gene analysis reveals that leaf litter from Epichloë endophyte-infected perennial ryegrass alters diversity and abundance of soil microbes involved in nitrification and denitrification. Soil Biol. Biochem. 2021, 154, 108123. [Google Scholar] [CrossRef]
- Clay, K. Fungal endophyte symbiosis and plant diversity in successional fields. Science 1999, 285, 1742–1744. [Google Scholar] [CrossRef]
- Clay, K.; Schardl, C. Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am. Nat. 2002, 160, S99–S127. [Google Scholar] [CrossRef] [PubMed]
- Kuldau, G.; Bacon, C. Clavicipitaceous endophytes: Their ability to enhance resistance of grasses to multiple stresses. Biol. Control 2008, 46, 57–71. [Google Scholar] [CrossRef]
- Saikkonen, K.; Wli, P.; Helander, M.; Faeth, S.H. Evolution of endophyte-plant symbioses. Trends Plant Sci. 2004, 9, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Arrieta, A.M.; Iannone, L.J.; Scervino, J.M.; Vignale, M.V.; Novas, M.V. A foliar endophyte increases the diversity of phosphorus-solubilizing rhizospheric fungi and mycorrhizal colonization in the wild grass Bromus auleticus. Fungal Ecol. 2015, 17, 146–154. [Google Scholar] [CrossRef]
- Afkhami, M.E.; Strauss, S.Y. Native fungal endophytes suppress an exotic dominant and increase plant diversity over small and large spatial scales. Ecology 2016, 97, 1159–1169. [Google Scholar] [CrossRef]
- Saikkonen, K.; Lehtonen, P.I.; Helander, M.; Koricheva, J.; Faeth, S.H. Model systems in ecology: Dissecting the endophyte-grass literature. Trends Plant Sci. 2006, 11, 428–433. [Google Scholar] [CrossRef]
- Oberhofer, M.; Güsewell, S.; Leuchtmann, A. Effects of natural hybrid and non-hybrid Epichloë endophytes on the response of Hordelymus europaeusto drought stress. New Phytol. 2013, 201, 242–253. [Google Scholar] [CrossRef]
- Faeth, S.H.; Helander, M.L.; Saikkonen, K.T. Asexual Neotyphodium endophytes in a native grass reduce competitive abilities. Ecol. Lett. 2010, 7, 304–314. [Google Scholar] [CrossRef]
- Jia, T.; Oberhofer, M.; Shymanovich, T.; Faeth, S.H. Effects of hybrid and non-hybrid Epichloë endophytes and their associated host genotypes on the response of a native grass to varying environments. Microb. Ecol. 2016, 72, 185–196. [Google Scholar] [CrossRef]
- Ma, M.Z.; Christensen, M.J.; Nan, Z.B. Effects of the endophyte Epichloë festucae var. lolii of perennial ryegrass (Lolium perenne) on indicators of oxidative stress from pathogenic fungi during seed germination and seedling growth. Eur. J. Plant Pathol. 2015, 141, 571–583. [Google Scholar] [CrossRef]
- Chen, Z.J.; Jin, Y.Y.; Yao, X.; Chen, T.X.; Wei, X.K.; Li, C.J.; White, J.F.; Nan, Z.B. Fungal endophyte improves survival of Lolium perenne in low fertility soils by increasing root growth, metabolic activity and absorption of nutrients. Plant Soil 2020, 452, 185–206. [Google Scholar] [CrossRef]
- Chen, Z.J.; Li, C.J.; Nan, Z.B.; White, J.F.; Jin, Y.Y.; Wei, X.K. Segregation of Lolium perenne into a subpopulation with high infection by endophyte Epichloë festucae var. lolii results in improved agronomic performance. Plant Soil 2020, 446, 595–612. [Google Scholar] [CrossRef]
- Guo, J.; Mcculley, R.L.; Phillips, T.D.; Mcnear, D.H. Fungal endophyte and tall fescue cultivar interact to differentially affect bulk and rhizosphere soil processes governing C and N cycling. Soil Biol. Biochem. 2016, 101, 165–174. [Google Scholar] [CrossRef]
- Roux-Michollet, D.; Czarnes, S.; Abam, B.; Berry, D.; Commeaux, C.; Guillaumaud, N.; Le Roux, X.; Josserand, A.C. Effects of steam disinfestation on community structure, abundance and activity of heterotrophic, denitrifying and nitrifying bacteria in an organic farming soil. Soil Biol. Biochem. 2008, 40, 1836–1845. [Google Scholar] [CrossRef]
- Zhang, L.M.; Duff, A.M.; Smith, C.J. Community and functional shifts in ammonia oxidizers across terrestrial and marine (soil/sediment) boundaries in two coastal Bay ecosystems. Environ. Microbiol. 2018, 20, 2834–2853. [Google Scholar] [CrossRef]
- Mao, Y.J.; Yannarell, A.C.; Mackie, R.I. Changes in N-transforming archaea and bacteria in soil during the establishment of bioenergy crops. PLoS ONE 2011, 6, e24750–e24762. [Google Scholar] [CrossRef] [PubMed]
- Cantera, J.J.L.; Stein, L.Y. Molecular diversity of nitrite reductase genes (nirK) in nitrifying bacteria. Environ. Microbiol. 2007, 9, 765–776. [Google Scholar] [CrossRef]
- Throbck, I.N.; Enwall, K.; Jarvis, S.; Hallin, S. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol. Ecol. 2004, 49, 401–417. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- Weitemier, K.; Straub, S.C.K.; Cronn, R.C.; Fishbein, M.; Schmickl, R.; McDonnell, A.; Liston, A. Hyb-Seq: Combining target enrichment and genome skimming for plant phylogenomics. Appl. Plant Sci. 2014, 2, 1400042–1400049. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Arfken, A.; Song, B.K.; Bowman, J.S.; Michael, P. Denitrification potential of the eastern oyster microbiome using a 16S rRNA gene based metabolic inference approach. PLoS ONE 2017, 12, e0185071–e0185092. [Google Scholar] [CrossRef] [PubMed]
- Casas, C.; Omacini, M.; Montecchia, M.S.; Correa, O. Soil microbial community responses to the fungal endophyte Neotyphodium in Italian ryegrass. Plant Soil 2011, 340, 347–355. [Google Scholar] [CrossRef]
- Rojas, X.; Guo, J.Q.; Leff, J.W.; Jr McNear, D.H.; Fierer, N.; Mcculley, R.L. Infection with a shoot-specific fungal endophyte (Epichloë) alters tall fescue soil microbial communities. Microb. Ecol. 2016, 72, 197–206. [Google Scholar] [CrossRef]
- Wakelin, S.; Harrison, S.; Mander, C.; Dignam, B.; Rasmussen, S.; Monk, S.; Fraser, K.; O’Callaghan, M. Impacts of endophyte infection of ryegrass on rhizosphere metabolome and microbial community. Crop Pasture Sci. 2015, 66, 1049–1057. [Google Scholar] [CrossRef]
- Jia, T.; Cao, M.W.; Jing, J.H.; Liu, J.X.; Chai, B.F. Endophytic fungi and soil microbial community characteristics over different years of phytoremediation in a copper tailings dam of Shanxi, China. Sci. Total Environ. 2017, 574, 881–888. [Google Scholar]
- Ju, Y.W.; Zhong, R.; Christensen, M.J.; Zhang, X.X. Effects of Epichloë gansuensis endophyte on the root and rhizosphere soil bacteria of Achnatherum inebrians under different moisture conditions. Front. Microbiol. 2020, 11, 747–760. [Google Scholar] [CrossRef]
- Yao, X.; Chen, Z.J.; Wei, X.K.; Chen, S.H.; White, J.F.; Huang, X.; Li, C.J.; Nan, Z.B. A toxic grass Achnatherum inebrians serves as a diversity refuge for the soil fungal community in rangelands of northern China. Plant Soil 2020, 448, 425–438. [Google Scholar] [CrossRef]
- Mahmud, K.; Lee, K.; Hill, N.S.; Missaoui, A.M. Influence of tall fescue Epichloë endophytes on rhizosphere soil microbiome. Microorganisms 2021, 9, 1843. [Google Scholar] [CrossRef]
- Jin, Y.Y.; Chen, Z.J.; He, Y.L.; White, J.F.; Malik, K.; Chen, T.X.; Li, C.J. Effects of Achnatherum inebrians ecotypes and endophyte status on plant growth, plant nutrient, soil fertility and soil microbial community. Soil Sci. Soc. Am. J. 2022, 86, 1028–1042. [Google Scholar] [CrossRef]
- Nicol, G.W.; Leininger, S.; Schleper, C.; Prosser, J.I. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ. Microbiol. 2010, 10, 2966–2978. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shen, K.; Wu, Y.; Wang, G. Abundance and structure composition of nirK and nosZ genes as well as denitrifying activity in heavy metal-polluted paddy soils. Geomicrobiology 2017, 35, 100–107. [Google Scholar] [CrossRef]
- Jha, N.; Palmada, T.; Berben, P.; Saggar, S.; Luo, J.F.; McMillan, A.M.S. Influence of liming-induced pH changes on nitrous oxide emission, nirS, nirK and nosZ gene abundance from applied cattle urine in allophanic and fluvial grazed pasture soils. Biol. Fertil. Soils 2020, 56, 811–824. [Google Scholar] [CrossRef]
Treatment | df | Soil pH | SOC | Soil Total N | Soil Total P | Soil NH4+ | Soil NO3− | C/N Ratio | C/P Ratio | N/P Ratio | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | F | p | F | p | F | p | ||
Endophyte (E) | 1 | 1.467 | 0.238 | 384.473 | <0.000 | 0.431 | 0.518 | 8.130 | 0.009 | 17.843 | <0.000 | 38.522 | <0.000 | 7.265 | 0.013 | 14.471 | 0.001 | 2.853 | 0.048 |
Litter addition times (T) | 3 | 4.483 | 0.012 | 1536.522 | <0.000 | 5.195 | 0.007 | 18.725 | <0.000 | 78.311 | <0.000 | 979.759 | <0.000 | 5.564 | 0.005 | 5.125 | 0.007 | 6.337 | 0.003 |
E x T | 3 | 0.170 | 0.916 | 55.246 | <0.000 | 1.692 | 0.195 | 1.981 | 0.144 | 1.150 | 0.349 | 6.158 | 0.003 | 4.785 | 0.009 | 7.675 | 0.001 | 2.396 | 0.093 |
Times | Soil pH | SOC | Soil Total N | Soil Total P | Soil NH4+ | Soil NO3− | Soil C/N Ratio | Soil C/P Ratio | Soil N/P Ratio | |
---|---|---|---|---|---|---|---|---|---|---|
T0 | df | 7 | 7 | 7 | 7 | 6 | 6 | 7 | 6 | 6 |
F | 0.716 | 5.383 | 1.259 | 4.645 | 0.037 | 0.110 | 0.000 | 0.001 | 0.000 | |
p | 0.453 | 0.508 | 0.426 | 0.435 | 0.701 | 0.718 | 0.876 | 0.758 | 0.571 | |
T1 | df | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 |
F | 0.029 | 0.059 | 1.036 | 0.175 | 0.885 | 8.394 | 0.119 | 0.148 | 8.568 | |
p | 0.438 | <0.000 | 0.056 | 0.131 | 0.001 | 0.234 | 0.366 | 0.080 | 0.402 | |
T2 | df | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
F | 2.934 | 0.955 | 0.021 | 0.135 | 0.043 | 1.931 | 2.076 | 0.552 | 0.363 | |
p | 0.743 | <0.000 | 0.171 | 0.021 | 0.003 | <0.000 | 0.264 | 0.007 | 0.006 | |
T3 | df | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
F | 0.427 | 3.388 | 8.273 | 1.376 | 5.960 | 8.294 | 1.657 | 1.148 | 2.596 | |
p | 0.314 | <0.000 | 0.326 | 0.439 | 0.049 | 0.023 | 0.017 | 0.733 | 0.536 |
Treatment | df | AOB-amoA Gene | nirK Gene | nosZ Gene | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Shannon | Chao1 | Shannon | Chao1 | Shannon | Chao1 | ||||||||
F | p | F | p | F | p | F | p | F | p | F | p | ||
Endophyte (E) | 1 | 0.008 | 0.930 | 1.125 | 0.320 | 1.142 | 0.316 | 2.179 | 0.178 | 0.552 | 0.479 | 0.525 | 0.489 |
Litter addition times (T) | 1 | 0.013 | 0.911 | 1.125 | 0.320 | 0.092 | 0.769 | 0.002 | 0.969 | 0.103 | 0.756 | 0.075 | 0.791 |
E x T | 1 | 0.969 | 0.354 | 3.125 | 0.115 | 0.096 | 0.764 | 0.065 | 0.805 | 0.397 | 0.546 | 0.004 | 0.952 |
Treatment | df | Nnorank_f__Environmental_Samples | Nitrosospira | Unclassified_k__Norank_d__Bacteria | Norank_p__Ammonia_Oxidising_Bacteria_Ensemble | Unclassified_o__Nitrosomonadales | Other | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | ||
Endophyte (E) | 1 | 10.253 | 0.013 | 4.979 | 0.056 | 62.421 | <0.000 | 0.068 | 0.801 | 7.263 | 0.027 | 0.685 | 0.432 |
Litter addition times (T) | 1 | 7.834 | 0.023 | 11.030 | 0.011 | 49.618 | <0.000 | 3.745 | 0.089 | 5.196 | 0.052 | 0.992 | 0.348 |
E x T | 1 | 2.990 | 0.122 | 6.383 | 0.035 | 24.413 | 0.001 | 0.698 | 0.428 | 8.323 | 0.020 | 1.013 | 0.344 |
Treatment | df | Unclassified | Unclassified_d__Bacteria | Methylobacterium | Gemmata | Geodermatophilus | Pseudomonas | Sinorhizobium | Rhodococcus_f__Nocardiaceae | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | F | p | F | p | ||
Endophyte (E) | 1 | 0.347 | 0.572 | 3.198 | 0.112 | 0.405 | 0.542 | 0.127 | 0.730 | 1.112 | 0.322 | 0.457 | 0.518 | 0.956 | 0.357 | 1.362 | 0.277 |
Litter addition times (T) | 1 | 0.117 | 0.742 | 0.217 | 0.654 | 8.564 | 0.019 | 0.165 | 0.695 | 5.866 | 0.042 | 0.165 | 0.695 | 0.139 | 0.719 | 1.104 | 0.324 |
E x T | 1 | 0.002 | 0.963 | 1.206 | 0.304 | 0.835 | 0.388 | 0.003 | 0.955 | 0.006 | 0.942 | 0.795 | 0.399 | 0.012 | 0.915 | 0.827 | 0.390 |
Treatment | df | Bradyrhizobium | Arthrobacter | Nitrosomonas | Conexibacter | Ensiter | Microvirga | Pseudarthrobacter | Other | ||||||||
F | p | F | p | F | p | F | p | F | p | F | p | F | p | F | p | ||
Endophyte (E) | 1 | 1.062 | 0.333 | 0.649 | 0.444 | 1.067 | 0.332 | 0.724 | 0.420 | 1.692 | 0.229 | 0.245 | 0.634 | 0.870 | 0.378 | 0.107 | 0.752 |
Litter addition times (T) | 1 | 0.724 | 0.420 | 1.774 | 0.220 | 1.174 | 0.310 | 0.188 | 0.676 | 1.371 | 0.275 | 0.557 | 0.477 | 1.476 | 0.259 | 0.094 | 0.767 |
E x T | 1 | 1.020 | 0.342 | 1.018 | 0.343 | 1.342 | 0.280 | 0.839 | 0.386 | 0.000 | 0.987 | 0.154 | 0.705 | 0.870 | 0.378 | 0.222 | 0.650 |
Treatment | df | Unclassified_p__Proteobacteria | Unclassified_c__Alphaproteobacteria | Unclassified_k__Norank_d__Bacteria | Unclassified_o__Rhizobiales | Unclassified_f__Rhodobacteraceae | Ralstonia | Other | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | F | p | ||
Endophyte (E) | 1 | 1.308 | 0.286 | 0.009 | 0.926 | 0.000 | 0.993 | 9.643 | 0.015 | 8.860 | 0.018 | 1.790 | 0.218 | 1.001 | 0.346 |
Litter addition times (T) | 1 | 12.022 | 0.008 | 13.770 | 0.006 | 0.086 | 0.776 | 43.165 | <0.000 | 35.847 | <0.000 | 1.790 | 0.218 | 3.771 | 0.088 |
E x T | 1 | 7.126 | 0.028 | 0.279 | 0.612 | 0.482 | 0.507 | 1.455 | 0.262 | 8.976 | 0.017 | 1.790 | 0.218 | 0.756 | 0.410 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maimaitiyiming, M.; Huang, Y.; Jia, L.; Wu, M.; Chen, Z. Epichloë Endophyte Alters Bacterial Nitrogen-Cycling Gene Abundance in the Rhizosphere Soil of Perennial Ryegrass. Biology 2025, 14, 879. https://doi.org/10.3390/biology14070879
Maimaitiyiming M, Huang Y, Jia L, Wu M, Chen Z. Epichloë Endophyte Alters Bacterial Nitrogen-Cycling Gene Abundance in the Rhizosphere Soil of Perennial Ryegrass. Biology. 2025; 14(7):879. https://doi.org/10.3390/biology14070879
Chicago/Turabian StyleMaimaitiyiming, Munire, Yanxiang Huang, Letian Jia, Mofan Wu, and Zhenjiang Chen. 2025. "Epichloë Endophyte Alters Bacterial Nitrogen-Cycling Gene Abundance in the Rhizosphere Soil of Perennial Ryegrass" Biology 14, no. 7: 879. https://doi.org/10.3390/biology14070879
APA StyleMaimaitiyiming, M., Huang, Y., Jia, L., Wu, M., & Chen, Z. (2025). Epichloë Endophyte Alters Bacterial Nitrogen-Cycling Gene Abundance in the Rhizosphere Soil of Perennial Ryegrass. Biology, 14(7), 879. https://doi.org/10.3390/biology14070879