Effects of Different Ecological Floating Bed Plant Assemblages on Water Purification and Phytoplankton Community Structure in Shallow Eutrophic Lakes: A Case Study in Lake Taihu
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Setup of the Study Area and Sample Site
2.1.1. Overview of the Research Topic Experimental Infrastructure
2.1.2. Experimental System
2.2. Determining Physical and Chemical Parameters of the Water
2.3. Sample Collection and Identification
2.4. Data Analysis and Processing
3. Results
3.1. Environmental Parameters of Water in Various Ecological Restoration Areas
3.2. Phytoplankton Community Composition and Functional Groups in Different Ecological Restoration Areas
3.3. Diversity of Phytoplankton and Ecosystem Stability Across Varied Ecological Restoration Areas
3.4. Relationship Between Dominant Phytoplankton FGs and Environmental Factors in Different Ecological Restoration Areas
3.4.1. Pearson Correlation Analysis of Dominant Phytoplankton FGs and Environmental Factors
3.4.2. Redundancy and Canonical Correspondence Analysis of Dominant FGs and Environmental Factors
4. Discussions
4.1. Composition and Successional Characteristics of Dominant Phytoplankton Functional Groups
4.2. Key Drivers of Phytoplankton Functional Groups
4.3. Research Priorities Following Eutrophication Remediation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qin, B.; Gao, G.; Zhu, G.; Zhang, Y.; Song, Y.; Tang, X.; Xu, H.; Deng, J. Lake eutrophication and its ecosystem response. Chin. Sci. Bull. 2013, 58, 961–970. [Google Scholar] [CrossRef]
- Li, Y.; Fang, L.; Yuanzhu, W.; Mi, W.; Ji, L.; Guixiang, Z.; Yang, P.; Chen, Z.; Bi, Y. Anthropogenic activities accelerated the evolution of river trophic status. Ecol. Indic. 2022, 136, 108584. [Google Scholar] [CrossRef]
- Eggers, S.L.; Lewandowska, A.M.; Barcelos e Ramos, J.; Blanco-Ameijeiras, S.; Gallo, F.; Matthiessen, B. Community composition has greater impact on the functioning of marine phytoplankton communities than ocean acidification. Glob. Change Biol. 2014, 20, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Schlüter, L.; Lohbeck, K.T.; Gröger, J.P.; Riebesell, U.; Reusch, T.B.H. Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification. Sci. Adv. 2016, 2, e1501660. [Google Scholar] [CrossRef]
- Huisman, J.; Codd, G.A.; Paerl, H.W.; Ibelings, B.W.; Verspagen, J.M.H.; Visser, P.M. Cyanobacterial blooms. Nat. Rev. Microbiol. 2018, 16, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Weithoff, G. The concepts of “plant functional types” and “functional diversity” in lake phytoplankton—A new understanding of phytoplankton ecology? Freshw. Biol. 2010, 48, 795–807. [Google Scholar] [CrossRef]
- Salmaso, N.; Padisák, J. Morpho-Functional Groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 2007, 578, 97–112. [Google Scholar] [CrossRef]
- Kruk, C.; Huszar, V.L.; Peeters, E.T.; Bonilla, S.; Costa, L.; Lürling, M.; Reynolds, C.S.; Scheffer, M. A morphological classification capturing functional variation in phytoplankton. Freshw. Biol. 2010, 55, 614–627. [Google Scholar] [CrossRef]
- Dokulil, M.T.; Teubner, K. Steady state phytoplankton assemblages during thermal stratification in deep alpine lakes. Do they occur? Hydrobiologia 2003, 502, 65–72. [Google Scholar] [CrossRef]
- Reynolds, C.S.; Huszar, V.; Kruk, C.; Naselli-Flores, L.; Melo, S. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 2002, 24, 417–428. [Google Scholar] [CrossRef]
- Padisák, J.; Crossetti, L.O.; Naselli-Flores, L. Use and misuse in the application of the phytoplankton functional classification: A critical review with updates. Hydrobiologia 2009, 621, 1–19. [Google Scholar] [CrossRef]
- Yang, X. Characteristics of Phytoplankton Community Structure and Functional Groups and Their Relationship with Environmental Factors in the Main Stream of the Yangtze River. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2021. [Google Scholar]
- Aboal, M.; Puig, M.A.; Mateo, P.; Perona, E. Implications of cyanophyte toxicity on biological monitoring of calcareous streams in north-east Spain. J. Appl. Phycol. 2002, 14, 49–56. [Google Scholar] [CrossRef]
- Zhu, W.; Xiao, M.; Chang, K.; Ding, Z.; Feng, Z. Analysis of phytoplankton community characteristics in Hongcheng Lake, Haikou City based on functional group classification. J. Hydroecol. 2022, 43, 78–84. [Google Scholar]
- Bai, Y.; Huang, T.; Miao, W. Spatio-temporal dynamics of phytoplankton in a diversion reservoir and the major influencing factors: Taxonomic versus functional groups classification. Environ. Sci. Pollut. Res. 2023, 30, 111344–111356. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Ma, W.; Li, X.; Li, Z.; Pan, M.; Ding, C. Succession characteristics of phytoplankton functional groups and water quality responsiveness evaluation in an artificial constructed wetland-reservoir ecosystem. Environ. Pollut. Bioavailab. 2022, 34, 202–214. [Google Scholar] [CrossRef]
- Salmaso, N.; Naselli-Flores, L.; Padisák, J. Functional classifications and their application in phytoplankton ecology. Freshw. Biol. 2014, 60, 603–619. [Google Scholar] [CrossRef]
- Qu, Y.; Wu, N.; Guse, B.; Fohrer, N. Riverine phytoplankton functional groups response to multiple stressors variously depending on hydrological periods. In Proceedings of the European Geosciences Union General Assembly 2019, Vienna, Austria, 7–12 April 2019. [Google Scholar]
- Vanderley, R.F.; Becker, V.; Panosso, R.; Ger, K.A.; Padisák, J. The influence of trophic status and seasonal environmental variability on morpho-functional traits in tropical man-made shallow lakes. Environ. Monit. Assess. 2022, 194, 507. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, G.; Tan, Z.; Wang, Y.; Li, Q. Effects of ecological protection and restoration on phytoplankton diversity in impounded lakes along the eastern route of China’s South-to-North Water Diversion Project. Sci. Total Environ. 2021, 795, 148870. [Google Scholar] [CrossRef]
- Liang, Y.; Kuang, Z.; Sun, N.; Gu, J.; Xu, D. Effects of ecological floating beds with different plant combinations on water purification efficiency and zooplankton community structure in shallow eutrophic lakes. J. Dalian Ocean. Univ. 2023, 38, 302–310. [Google Scholar] [CrossRef]
- Ye, C.; Li, C.; Yu, H.; Song, X.; Zou, G.; Liu, J. Study on ecological restoration in near-shore zone of a eutrophic lake, Wuli Bay, Taihu Lake. Ecol. Eng. 2011, 37, 1434–1437. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 19th ed.; American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF): Washington, DC, USA, 1995. [Google Scholar]
- Papista, É.; Ács, É.; Böddi, B. Chlorophyll-a determination with ethanol—A critical test. Hydrobiologia 2002, 485, 191–198. [Google Scholar] [CrossRef]
- Devercelli, M. Phytoplankton of the middle Parana River during an anomalous hydrological period: A morphological and functional approach. Hydrobiologia 2006, 563, 465–478. [Google Scholar] [CrossRef]
- Han, M.; Shu, Y. Atlas of Chinese Freshwater Organisms; China Agriculture Press: Beijing, China, 1995. [Google Scholar]
- Weng, J.; Xu, H. Atlas of Common Freshwater Phytoplankton in China; Shanghai Scientific & Technical Publishers: Shanghai, China, 2010. [Google Scholar]
- Hillebrand, H.; Dürselen, C.-D.; Kirschtel, D.; Pollingher, U.; Zohary, T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 1999, 35, 403–424. [Google Scholar] [CrossRef]
- Liu, W.; Qiu, R. Water eutrophication in China and the combating strategies. J. Chem. Technol. Biotechnol. 2007, 82, 781–786. [Google Scholar] [CrossRef]
- Tian, Y.; Jiang, Y.; Liu, Q.; Xu, D.; Liu, Y.; Song, J. The impacts of local and regional factors on the phytoplankton community dynamics in a temperate river, northern China. Ecol. Indic. 2021, 123, 107352. [Google Scholar] [CrossRef]
- Xia, Y.; Hu, X.; Xu, J.; Li, Y.; Wu, S.; Wu, P. Seasonal succession characteristics of phytoplankton functional groups and water quality assessment in Lake Taihu. J. Lake Sci. 2019, 31, 134–146. [Google Scholar] [CrossRef]
- Ge, Y.; Zhou, Y.; Wang, C.; You, Y. Succession characteristics of phytoplankton functional groups and their relationship with environmental factors in West Yangcheng Lake. China Environ. Sci. 2019, 39, 3027–3039. [Google Scholar] [CrossRef]
- Han, L.; Wang, X.; Li, Q.; Huang, G.; Ma, Y.; Pan, S.; Li, Y. Dynamic changes of phytoplankton functional groups and driving factors in Baihua Reservoir, Guizhou Plateau. J. Lake Sci. 2022, 34, 1102–1114. [Google Scholar] [CrossRef]
- Pretty, J.N.; Mason, C.F.; Nedwell, D.B.; Hine, R.E.; Leaf, S.; Dils, R. Environmental costs of freshwater eutrophication in England and Wales. Environ. Sci. Technol. 2003, 37, 201–208. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, X.; Liu, Z. Response of phytoplankton community to ecosystem restoration in Huizhou West Lake. J. Wuhan Bot. Res. 2010, 28, 453–459. [Google Scholar] [CrossRef]
- Mouton, A.M.; Van der Most, H.; Jeuken, A.; Goethals, P.L.M.; De Pauw, N. Evaluation of River Basin Restoration Options by the Application of the Water Framework Directive Explorer in the Zwalm River Basin (Flanders, Belgium). River Res. Appl. 2009, 25, 82–97. [Google Scholar] [CrossRef]
- Paver, S.F. Investigating the Effect of Phytoplankton on Bacterial Community Composition Across Different Environmental Contexts. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Urbana, IL, USA, 2013. [Google Scholar]
- Paudel, B.; Velinsky, D.J.; Belton, T.J.; Pang, H. Spatial variability of estuarine environmental drivers and response by phytoplankton: A multivariate modeling approach. Ecol. Inform. 2016, 34, 1–12. [Google Scholar] [CrossRef]
- Guo, J.; Jiang, T.; Li, Z.; Chen, Y.; Sun, Z. Analysis on partial pressure of CO2; and influencing factors during spring phytoplankton bloom in the backwater area of Xiaojiang River in Three Gorges Reservoir. Adv. Water Sci. 2011, 22, 829–838. [Google Scholar]
- Li, Y.; Waite, A.M.; Gal, G.; Hipsey, M.R. An analysis of the relationship between phytoplankton internal stoichiometry and water column N:P ratios in a dynamic lake environment. Ecol. Model. 2013, 252, 246–258. [Google Scholar] [CrossRef]
- Qian, K.; Liu, B.; Chen, Y. Long-term characteristics of phytoplankton functional groups in Lake Poyang (2009–2016). J. Lake Sci. 2019, 31, 1035–1044. [Google Scholar] [CrossRef]
- Mandal, A.; Sk, N.; Biswas, S. Nutrient Enrichment and Phytoplankton Toxicity Influence a Diversity of Complex Dynamics in a Fear-Induced Plankton-Fish Model. J. Theor. Biol. 2024, 578, 111698. [Google Scholar] [CrossRef]
- Atkinson, A.; Rossberg, A.G.; Gaedke, U.; Sprules, G.; Heneghan, R.F.; Batziakas, S.; Grigoratou, M.; Fileman, E.; Schmidt, K.; Frangoulis, C. Steeper Size Spectra with Decreasing Phytoplankton Biomass Indicate Strong Trophic Amplification and Future Fish Declines. Nat. Commun. 2024, 15, 381. [Google Scholar] [CrossRef]
- Ma, C.; Zhao, C.; Mwagona, P.C.; Li, Z.; Liu, Z.; Dou, H.; Zhou, X.; Bhadha, J.H. Bottom-up and Top-down Effects on Phytoplankton Functional Groups in Hulun Lake, China. Ann. Limnol.-Int. J. Limnol. 2021, 57, 3. [Google Scholar] [CrossRef]
- Taipale, S.J.; Ventela, A.-M.; Litmanen, J.; Anttila, L. Poor Nutritional Quality of Primary Producers and Zooplankton Driven by Eutrophication Is Mitigated at Upper Trophic Levels. Ecol. Evol. 2022, 12, e8687. [Google Scholar] [CrossRef]
- Qian, T.; Diao, F.; Jeppesen, E.; Han, Y.; Li, K.; He, H. No Cascading Negative Effects of Piscivorous Fish Stocking on Phytoplankton Biomass in Subtropical Shallow Mesocosms: Implications for Lake Restoration by Biomanipulation. Hydrobiologia 2025, 852, 823–835. [Google Scholar] [CrossRef]
Time | Group | Control | EA | ES |
---|---|---|---|---|
June | T (°C) | 28.23 ± 0.40 a | 27.43 ± 0.12 b | 27.30 ± 0.36 b |
pH | 7.99 ± 0.15 c | 9.64 ± 0.08 a | 9.69 ± 0.16 a | |
DO (mg/L) | 9.65 ± 0.08 a | 9.60 ± 0.55 a | 10.04 ± 1.10 a | |
H (m) | 2.20 ± 0.00 a | 2.17 ± 0.05 a | 2.20 ± 0.00 a | |
TUR (NTU) | 41.33 ± 1.67 a | 5.45 ± 0.94 b | 4.73 ± 0.82 b | |
SD (m) | 0.25 ± 0.02 a | 0.99 ± 0.11 b | 0.99 ± 0.14 b | |
TN (mg/L) | 7.61 ± 0.86 a | 6.34 ± 1.25 b | 7.02 ± 0.00 a | |
TP (mg/L) | 0.15 ± 0.03 a | 0.06 ± 0.09 a | 0.08 ± 0.01 b | |
NH4+-N (mg/L) | 0.22 ± 0.18 a | 0.23 ± 0.10 a | 0.39 ± 0.05 a | |
Chl-a (ug/L) | 85.60 ± 4.05 a | 15.57 ± 11.45 c | 48.77 ± 14.32 b | |
CODMn (mg/L) | 5.01 ± 0.23 a | 3.54 ± 0.08 a | 4.09 ± 0.41 a | |
TLI | 69.8 | 57.3 | 59.4 | |
Trophic state | MOD | LIG | LIG | |
August | T (°C) | 30.87 ± 0.12 a | 30.37 ± 0.09 b | 30.37 ± 0.12 b |
pH | 8.30 ± 0.05 a | 8.14 ± 0.05 b | 8.12 ± 0.06 b | |
DO (mg/L) | 13.98 ± 0.75 a | 12.10 ± 0.56 b | 12.22 ± 0.33 b | |
H (m) | 2.67 ± 0.05 a | 2.60 ± 0.00 a | 2.63 ± 0.05 a | |
TUR (NTU) | 88.50 ± 21.84 a | 49.07 ± 15.92 bc | 54.10 ± 21.89 b | |
SD (m) | 0.27 ± 0.02 a | 0.30 ± 0.03 a | 0.32 ± 0.01 a | |
TN (mg/L) | 1.99 ± 0.40 a | 1.44 ± 0.44 a | 1.54 ± 0.15 a | |
TP (mg/L) | 0.19 ± 0.04 a | 0.14 ± 0.07 a | 0.16 ± 0.06 a | |
NH4+-N (mg/L) | 0.29 ± 0.09 a | 0.42 ± 0.07 a | 0.35 ± 0.06 a | |
Chl-a (ug/L) | 147.35 ± 33.86 a | 67.22 ± 14.46 b | 97.26 ± 20.82 ab | |
CODMn (mg/L) | 8.31 ± 1.60 a | 5.74 ± 0.84 a | 6.65 ± 0.86 a | |
TLI | 70.2 | 58.6 | 60.4 | |
Trophic state | SEV | LIG | MOD |
Functional Group | Representative Species (Genus) | Habitat Characteristics |
---|---|---|
B | Cyclotella sp., Stephanodiscus sp., Cyclotella ocellata, Cyclotella bodonica, Cryptomonas marssonii, Cryptomonas ovata, Cryptomonas erosa | Eutrophic, large, deep, or shallow water bodies |
C | Asterionella glacialis | Mesotrophic, medium to small-sized water bodies |
D | Synedra sp., Synedra acus, Synedra tabulata, Nitzschia sp., Nitzschia microcephala | High-nutrient content, low transparency |
E | Dinobryon sp. | Oligotrophic, mixed, shallow water |
F | Dictyosphaerium sp., Sphaerocystis sp., Oocystis sp., Oocystis lacustris, Kirchneriella sp., Nephrocytium agardhianum, Micractinium pusillum, Treubaria sp. | Eutrophic, clean, strong water mixing |
G | Pandorina sp., Eudorina sp. | Eutrophic, stagnant water bodies |
J | Scenedesmus sp., Scenedesmus acuminatus, Scenedesmus quadricanda, Antinomy quadricanda, Scenedesmus dimorphus, Tetrastrum sp., Coelastrum sp., Pediastrum sp., Actinastrum sp., Tetraedronoidrae, Pediastrum simplex, Pediastrum duple, Crucigenia tetrapedia, Crucigenia apiculata, Crucigenia. Quadrata, Tetrastrum sp., Tetraedrum heterocanthum, Scenedesmus platydiscus, Crucigenia fenestrata, Pediastrum tetras, Selenastrum bibraianum | Mesotrophic to eutrophic shallow water bodies |
K | Aphanocapsa sp. | Eutrophic shallow water bodies |
Lo | Merismopedia sp., Chroococcus sp., Ceratium sp., Peridinium sp. | Mesotrophic to eutrophic, medium to large-sized water bodies, variable depth |
M | Microcystis sp. | Relatively stable mesotrophic to eutrophic water bodies, moderate transparency |
MP | Pseudanabaena catenata, Oscillatoria sp., Navicula sp., Cocconeis sp., Gomphonema sp., Achnathes sp., Navicula capitata, Navicula radiosa | Frequently disturbed, turbid shallow lakes |
N | Cosmarium sp., Staurastrum sp. | Continuously or semi-continuously mixed water bodies |
P | Closterium sp., Melosira sp., Fragilaria sp., Melosira granulate | Mesotrophic to eutrophic, continuously or semi-continuously mixed water bodies |
S1 | Phormidium sp., Planktothrix sp., Rhabdogloea | Mesotrophic to eutrophic, mixed water bodies, low transparency |
T | Planctonema, Mougeotia sp. | Uniformly mixed water bodies with thermocline |
W1 | Euglena sp., Phacus sp., Phacus hamatus, Phacus longicauda, Euglena acus | Organically polluted, shallow water |
W2 | Trachelomonas sp., Strombomonas sp., Trachelomonas spinulosa | Mesotrophic, shallow water |
X1 | Schroederia sp., Ankistrodesmus sp., Chlorella sp., Ankistrodesmus spiralis, Ankistrodesmus falcatus, Monoraphidium | Highly mixed eutrophic shallow water bodies |
X2 | Chroomonas sp., Chroomonas acuta uterm, Chroomonas acuta | Highly mixed meso-eutrophic shallow water bodies |
Y | Gymnodinium sp., Cryptomonas sp., Komma sp. | Stagnant water environments, mesotrophic to eutrophic |
LM | Ceratium hirundinella | Eutrophic to hypereutrophic, medium-sized water bodies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.; Zhang, T.; Cui, W.; Kuang, Z.; Xu, D. Effects of Different Ecological Floating Bed Plant Assemblages on Water Purification and Phytoplankton Community Structure in Shallow Eutrophic Lakes: A Case Study in Lake Taihu. Biology 2025, 14, 807. https://doi.org/10.3390/biology14070807
Liang Y, Zhang T, Cui W, Kuang Z, Xu D. Effects of Different Ecological Floating Bed Plant Assemblages on Water Purification and Phytoplankton Community Structure in Shallow Eutrophic Lakes: A Case Study in Lake Taihu. Biology. 2025; 14(7):807. https://doi.org/10.3390/biology14070807
Chicago/Turabian StyleLiang, Yidong, Ting Zhang, Wei Cui, Zhen Kuang, and Dongpo Xu. 2025. "Effects of Different Ecological Floating Bed Plant Assemblages on Water Purification and Phytoplankton Community Structure in Shallow Eutrophic Lakes: A Case Study in Lake Taihu" Biology 14, no. 7: 807. https://doi.org/10.3390/biology14070807
APA StyleLiang, Y., Zhang, T., Cui, W., Kuang, Z., & Xu, D. (2025). Effects of Different Ecological Floating Bed Plant Assemblages on Water Purification and Phytoplankton Community Structure in Shallow Eutrophic Lakes: A Case Study in Lake Taihu. Biology, 14(7), 807. https://doi.org/10.3390/biology14070807