ERK1/2 Signaling in Intrahepatic Cholangiocarcinoma: From Preclinical Advances to Therapeutic Strategies
Simple Summary
Abstract
1. Introduction
2. Fundamental Insights into ERK1/2 Signaling Pathways
3. Role of ERK1/2 Signaling in iCCA Tumorigenesis and Progression
3.1. RTKs: HGF/Met and TLCA/EGFR Axes
3.2. TGF-β1
3.3. PD-L1/PD-1 Axis
3.4. PEDF
3.5. IL-22/IL-22R1 Axis
3.6. BAP1
3.7. Non-Coding RNA Regulation
3.7.1. Tumor-Suppressive Non-Coding RNA
3.7.2. Oncogenic Non-Coding RNA
3.8. ERK1/2 Downstream Targets
4. Unraveling the Potential Role of ERK1/2 Signaling in iCCA Targeted Therapy
Small- Molecule Inhibitors | Target | Features in iCCA Cells | Status in iCCA | AUC (0–t) (ng·h/mL) | AUC (0–∞) (ng·h/mL) | Cmax (ng/mL) | Tmax (h) | Resistance | Ref. |
---|---|---|---|---|---|---|---|---|---|
Selumetinib | MEK1/2 | Inhibition of cell proliferation | Preclinical and clinical | 4757.16 | 5653.31 | 1331.33 | 1.55 | [108,109,110] | |
U0126 | MEK1/2 | Inhibition of cell proliferation, cell cycle progression, and invasion | Tested in vitro and in vivo | [88,109] | |||||
PD901 | MEK1/2 | Increased apoptosis, inhibition of cell proliferation | Tested in vitro and in vivo | [109] | |||||
Sorafenib | Raf-1 | Cell cycle arrest, increased apoptosis | Preclinical and clinical | 18,000–23,000 | 20,000–26,000 | 3000–4000 | 3–4 | Activation of the PI3K/Akt pathway; Induction of CYP3A4 with prolonged sorafenib use | [111,112] |
Ulixertinib (BVD-523) | ERK1/2 | Cell cycle arrest, increased apoptosis | Preclinical and clinical | 19,930,000 | Not available due to measurement limitations (12 h sampling) | 2120 | 2–4 | [25] | |
Selumetinib + MK-2206 | MEK and Akt | Inhibition of cell proliferation | Tested in vitro | [113] |
4.1. ERK1/2 Pathway Inhibition Strategies in ERK1/2-Driven Cancers vs. Icca: Clinical Perspectives and Emerging Evidence
4.2. Challenges in ERK1/2 Small-Molecular Inhibitors Therapy: Resistance Mechanisms, Toxicity Management, and Delivery Approaches
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turati, F.; Bertuccio, P.; Negri, E.; La Vecchia, C. Epidemiology of Cholangiocarcinoma. Hepatoma Res. 2022, 8, 19. [Google Scholar] [CrossRef]
- Poultsides, G.A.; Zhu, A.X.; Choti, M.A.; Pawlik, T.M. Intrahepatic Cholangiocarcinoma. Surg. Clin. N. Am. 2010, 90, 817–837. [Google Scholar] [CrossRef] [PubMed]
- Banales, J.M.; Marin, J.J.G.; Lamarca, A.; Rodrigues, P.M.; Khan, S.A.; Roberts, L.R.; Cardinale, V.; Carpino, G.; Andersen, J.B.; Braconi, C.; et al. Cholangiocarcinoma 2020: The next Horizon in Mechanisms and Management. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 557–588. [Google Scholar] [CrossRef]
- Qurashi, M.; Vithayathil, M.; Khan, S.A. Epidemiology of Cholangiocarcinoma. Eur. J. Surg. Oncol. 2025, 51, 107064. [Google Scholar] [CrossRef]
- Cadamuro, M.; Romanzi, A.; Guido, M.; Sarcognato, S.; Cillo, U.; Gringeri, E.; Zanus, G.; Strazzabosco, M.; Simioni, P.; Villa, E.; et al. Translational Value of Tumor-Associated Lymphangiogenesis in Cholangiocarcinoma. J. Pers. Med. 2022, 12, 1086. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Glaser, S.; Chakraborty, S. Inflammation and Progression of Cholangiocarcinoma: Role of Angiogenic and Lymphangiogenic Mechanisms. Front. Med. 2019, 6, 293. [Google Scholar] [CrossRef]
- Sia, D.; Villanueva, A.; Friedman, S.L.; Llovet, J.M. Liver Cancer Cell of Origin, Molecular Class, and Effects on Patient Prognosis. Gastroenterology 2017, 152, 745–761. [Google Scholar] [CrossRef] [PubMed]
- Bridgewater, J.; Galle, P.R.; Khan, S.A.; Llovet, J.M.; Park, J.-W.; Patel, T.; Pawlik, T.M.; Gores, G.J. Guidelines for the Diagnosis and Management of Intrahepatic Cholangiocarcinoma. J. Hepatol. 2014, 60, 1268–1289. [Google Scholar] [CrossRef]
- Blechacz, B.; Gores, G.J. Cholangiocarcinoma: Advances in Pathogenesis, Diagnosis, and Treatment. Hepatology 2008, 48, 308–321. [Google Scholar] [CrossRef]
- Spolverato, G.; Kim, Y.; Alexandrescu, S.; Marques, H.P.; Lamelas, J.; Aldrighetti, L.; Clark Gamblin, T.; Maithel, S.K.; Pulitano, C.; Bauer, T.W.; et al. Management and Outcomes of Patients with Recurrent Intrahepatic Cholangiocarcinoma Following Previous Curative-Intent Surgical Resection. Ann. Surg. Oncol. 2016, 23, 235–243. [Google Scholar] [CrossRef]
- Arrington, A.K.; Nelson, R.A.; Falor, A.; Luu, C.; Wiatrek, R.L.; Fakih, M.; Singh, G.; Kim, J. Impact of Medical and Surgical Intervention on Survival in Patients with Cholangiocarcinoma. World J. Gastrointest. Surg. 2013, 5, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Saeed, R.F.; Awan, U.A.; Saeed, S.; Mumtaz, S.; Akhtar, N.; Aslam, S. Targeted Therapy and Personalized Medicine. Cancer Treat. Res. 2023, 185, 177–205. [Google Scholar] [CrossRef] [PubMed]
- Massa, C.; Seliger, B. Combination of Multiple Omics Techniques for a Personalized Therapy or Treatment Selection. Front. Immunol. 2023, 14, 1258013. [Google Scholar] [CrossRef]
- Yoon, S.J.; Lee, C.B.; Chae, S.U.; Jo, S.J.; Bae, S.K. The Comprehensive “Omics” Approach from Metabolomics to Advanced Omics for Development of Immune Checkpoint Inhibitors: Potential Strategies for Next Generation of Cancer Immunotherapy. Int. J. Mol. Sci. 2021, 22, 6932. [Google Scholar] [CrossRef] [PubMed]
- Garay, J.P.; Gray, J.W. Omics and Therapy—A Basis for Precision Medicine. Mol. Oncol. 2012, 6, 128–139. [Google Scholar] [CrossRef]
- Fournier, V.; Prebet, T.; Dormal, A.; Brunel, M.; Cremer, R.; Schiaratura, L. Definition of Personalized Medicine and Targeted Therapies: Does Medical Familiarity Matter? J. Pers. Med. 2021, 11, 26. [Google Scholar] [CrossRef]
- Wu, P.-K.; Park, J.-I. MEK1/2 Inhibitors: Molecular Activity and Resistance Mechanisms. Semin. Oncol. 2015, 42, 849–862. [Google Scholar] [CrossRef]
- Porreca, V.; Barbagallo, C.; Corbella, E.; Peres, M.; Stella, M.; Mignogna, G.; Maras, B.; Ragusa, M.; Mancone, C. Unveil Intrahepatic Cholangiocarcinoma Heterogeneity through the Lens of Omics and Multi-Omics Approaches. Cancers 2024, 16, 2889. [Google Scholar] [CrossRef]
- Carotenuto, M.; Sacco, A.; Forgione, L.; Normanno, N. Genomic Alterations in Cholangiocarcinoma: Clinical Significance and Relevance to Therapy. Explor. Target. Anti-Tumor Ther. 2022, 3, 200–223. [Google Scholar] [CrossRef]
- Gao, Z.; Chen, J.-F.; Li, X.-G.; Shi, Y.-H.; Tang, Z.; Liu, W.-R.; Zhang, X.; Huang, A.; Luo, X.-M.; Gao, Q.; et al. KRAS Acting through ERK Signaling Stabilizes PD-L1 via Inhibiting Autophagy Pathway in Intrahepatic Cholangiocarcinoma. Cancer Cell Int. 2022, 22, 128. [Google Scholar] [CrossRef]
- Sritananuwat, P.; Sueangoen, N.; Thummarati, P.; Islam, K.; Suthiphongchai, T. Blocking ERK1/2 Signaling Impairs TGF-Β1 Tumor Promoting Function but Enhances Its Tumor Suppressing Role in Intrahepatic Cholangiocarcinoma Cells. Cancer Cell Int. 2017, 17, 85. [Google Scholar] [CrossRef] [PubMed]
- Arrieta, V.A.; Duerinck, J.; Burdett, K.B.; Habashy, K.J.; Geens, W.; Gould, A.; Schwarze, J.K.; Dmello, C.; Kim, K.-S.; Saganty, R.; et al. ERK1/2 Phosphorylation Predicts Survival in Recurrent Glioblastoma Following Intracerebral and Adjuvant PD-1/CTLA-4 Immunotherapy: A REMARK-Guided Analysis. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2024, 30, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.-Y.; Yang, Y.; Ren, Y.-H.; Gao, F.; Wang, M.-J.; Li, G.; Liu, Y.-X.; Fan, L. A Pan-Cancer Analysis of the MAPK Family Gene and Their Association with Prognosis, Tumor Microenvironment, and Therapeutic Targets. Medicine 2023, 102, e35829. [Google Scholar] [CrossRef]
- de Kort, W.W.B.; de Ruiter, E.J.; Haakma, W.E.; Driehuis, E.; Devriese, L.A.; van Es, R.J.J.; Willems, S.M. P-mTOR, p-ERK and PTEN Expression in Tumor Biopsies and Organoids as Predictive Biomarkers for Patients with HPV Negative Head and Neck Cancer. Head Neck Pathol. 2023, 17, 697–707. [Google Scholar] [CrossRef]
- Sullivan, R.J.; Infante, J.R.; Janku, F.; Wong, D.J.L.; Sosman, J.A.; Keedy, V.; Patel, M.R.; Shapiro, G.I.; Mier, J.W.; Tolcher, A.W.; et al. First-in-Class ERK1/2 Inhibitor Ulixertinib (BVD-523) in Patients with MAPK Mutant Advanced Solid Tumors: Results of a Phase I Dose-Escalation and Expansion Study. Cancer Discov. 2018, 8, 184–195. [Google Scholar] [CrossRef]
- Stuhlmiller, T.J.; Cohen, S.; Jain, S.K.; Nair, S.; Weinberg, B.A.; Ginn, S.; Wood, A.; Knoerzer, D.; Box, J.A.; Federowicz, B.; et al. Updated Clinical Outcomes from ULI-EAP-100, an Intermediate Expanded Access Program for Ulixertinib (BVD-523). J. Clin. Oncol. 2022, 40, e15101. [Google Scholar] [CrossRef]
- Ko, A.H.; Zalupski, M.; Al-Rajabi, R.M.T.; Matin, K.; Cohen, D.J.; Krishnamurthi, S.S.; Kreider, B.; Box, J.A.; Emery, C.; Teresk, M.; et al. A Phase 2 Basket Trial of Ulixertinib (BVD-523) in Combination with Hydroxychloroquine in Patients with Advanced Gastrointestinal Malignancies Harboring MAPK Pathway Mutations (BVD-523-HCQ). J. Clin. Oncol. 2023, 41, TPS4174. [Google Scholar] [CrossRef]
- Schmitz, K.J.; Lang, H.; Wohlschlaeger, J.; Sotiropoulos, G.C.; Reis, H.; Schmid, K.W.; Baba, H.A. AKT and ERK1/2 Signaling in Intrahepatic Cholangiocarcinoma. World J. Gastroenterol. 2007, 13, 6470–6477. [Google Scholar] [CrossRef]
- Boilly, B.; Vercoutter-Edouart, A.S.; Hondermarck, H.; Nurcombe, V.; Le Bourhis, X. FGF Signals for Cell Proliferation and Migration through Different Pathways. Cytokine Growth Factor Rev. 2000, 11, 295–302. [Google Scholar] [CrossRef]
- Sabio, G.; Davis, R.J. TNF and MAP Kinase Signalling Pathways. Semin. Immunol. 2014, 26, 237–245. [Google Scholar] [CrossRef]
- Plotnikov, A.; Zehorai, E.; Procaccia, S.; Seger, R. The MAPK Cascades: Signaling Components, Nuclear Roles and Mechanisms of Nuclear Translocation. Biochim. Biophys. Acta 2011, 1813, 1619–1633. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.-J.; Pan, W.-W.; Liu, S.-B.; Shen, Z.-F.; Xu, Y.; Hu, L.-L. ERK/MAPK Signalling Pathway and Tumorigenesis. Exp. Ther. Med. 2020, 19, 1997–2007. [Google Scholar] [CrossRef]
- Maik-Rachline, G.; Hacohen-Lev-Ran, A.; Seger, R. Nuclear ERK: Mechanism of Translocation, Substrates, and Role in Cancer. Int. J. Mol. Sci. 2019, 20, 1194. [Google Scholar] [CrossRef]
- Pang, X.; He, X.; Qiu, Z.; Zhang, H.; Xie, R.; Liu, Z.; Gu, Y.; Zhao, N.; Xiang, Q.; Cui, Y. Targeting Integrin Pathways: Mechanisms and Advances in Therapy. Signal Transduct. Target. Ther. 2023, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Kong, T.; Liu, M.; Ji, B.; Bai, B.; Cheng, B.; Wang, C. Role of the Extracellular Signal-Regulated Kinase 1/2 Signaling Pathway in Ischemia-Reperfusion Injury. Front. Physiol. 2019, 10, 1038. [Google Scholar] [CrossRef]
- Otsuka, M.; Negishi, Y.; Aramaki, Y. Involvement of Phosphatidylinositol-3-Kinase and ERK Pathways in the Production of TGF-Β1 by Macrophages Treated with Liposomes Composed of Phosphatidylserine. FEBS Lett. 2007, 581, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Otani, T.; Matsuda, M.; Mizokami, A.; Kitagawa, N.; Takeuchi, H.; Jimi, E.; Inai, T.; Hirata, M. Osteocalcin Triggers Fas/FasL-Mediated Necroptosis in Adipocytes via Activation of P300. Cell Death Dis. 2018, 9, 1194. [Google Scholar] [CrossRef]
- Wortzel, I.; Seger, R. The ERK Cascade: Distinct Functions within Various Subcellular Organelles. Genes Cancer 2011, 2, 195–209. [Google Scholar] [CrossRef]
- Roskoski, R. ERK1/2 MAP Kinases: Structure, Function, and Regulation. Pharmacol. Res. 2012, 66, 105–143. [Google Scholar] [CrossRef]
- Chuderland, D.; Seger, R. Protein-Protein Interactions in the Regulation of the Extracellular Signal-Regulated Kinase. Mol. Biotechnol. 2005, 29, 57–74. [Google Scholar] [CrossRef]
- Shaul, Y.D.; Seger, R. The MEK/ERK Cascade: From Signaling Specificity to Diverse Functions. Biochim. Biophys. Acta 2007, 1773, 1213–1226. [Google Scholar] [CrossRef] [PubMed]
- Cook, S.J.; Stuart, K.; Gilley, R.; Sale, M.J. Control of Cell Death and Mitochondrial Fission by ERK1/2 MAP Kinase Signalling. FEBS J. 2017, 284, 4177–4195. [Google Scholar] [CrossRef]
- Liu, Y.L.; Lai, F.; Wilmott, J.S.; Yan, X.G.; Liu, X.Y.; Luan, Q.; Guo, S.T.; Jiang, C.C.; Tseng, H.-Y.; Scolyer, R.A.; et al. Noxa Upregulation by Oncogenic Activation of MEK/ERK through CREB Promotes Autophagy in Human Melanoma Cells. Oncotarget 2014, 5, 11237–11251. [Google Scholar] [CrossRef] [PubMed]
- Gan, X.; Huang, S.; Wu, L.; Wang, Y.; Hu, G.; Li, G.; Zhang, H.; Yu, H.; Swerdlow, R.H.; Chen, J.X.; et al. Inhibition of ERK-DLP1 Signaling and Mitochondrial Division Alleviates Mitochondrial Dysfunction in Alzheimer’s Disease Cybrid Cell. Biochim. Biophys. Acta 2014, 1842, 220–231. [Google Scholar] [CrossRef]
- Yu, T.; Jhun, B.S.; Yoon, Y. High-Glucose Stimulation Increases Reactive Oxygen Species Production through the Calcium and Mitogen-Activated Protein Kinase-Mediated Activation of Mitochondrial Fission. Antioxid. Redox Signal. 2011, 14, 425–437. [Google Scholar] [CrossRef]
- Persico, A.; Cervigni, R.I.; Barretta, M.L.; Corda, D.; Colanzi, A. Golgi Partitioning Controls Mitotic Entry through Aurora-A Kinase. Mol. Biol. Cell 2010, 21, 3708–3721. [Google Scholar] [CrossRef]
- Cha, H.; Shapiro, P. Tyrosine-Phosphorylated Extracellular Signal–Regulated Kinase Associates with the Golgi Complex during G2/M Phase of the Cell Cycle: Evidence for Regulation of Golgi Structure. J. Cell Biol. 2001, 153, 1355–1367. [Google Scholar] [CrossRef]
- Crozet, F.; Levayer, R. Emerging Roles and Mechanisms of ERK Pathway Mechanosensing. Cell. Mol. Life Sci. CMLS 2023, 80, 355. [Google Scholar] [CrossRef] [PubMed]
- Ku, H.; Meier, K.E. Phosphorylation of Paxillin via the ERK Mitogen-Activated Protein Kinase Cascade in EL4 Thymoma Cells. J. Biol. Chem. 2000, 275, 11333–11340. [Google Scholar] [CrossRef]
- Woo, M.S.; Ohta, Y.; Rabinovitz, I.; Stossel, T.P.; Blenis, J. Ribosomal S6 Kinase (RSK) Regulates Phosphorylation of Filamin A on an Important Regulatory Site. Mol. Cell. Biol. 2004, 24, 3025–3035. [Google Scholar] [CrossRef]
- Hehlgans, S.; Eke, I.; Cordes, N. Targeting FAK Radiosensitizes 3-Dimensional Grown Human HNSCC Cells through Reduced Akt1 and MEK1/2 Signaling. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, e669–e676. [Google Scholar] [CrossRef]
- Eke, I.; Deuse, Y.; Hehlgans, S.; Gurtner, K.; Krause, M.; Baumann, M.; Shevchenko, A.; Sandfort, V.; Cordes, N. Β1 Integrin/FAK/Cortactin Signaling Is Essential for Human Head and Neck Cancer Resistance to Radiotherapy. J. Clin. Investig. 2012, 122, 1529–1540. [Google Scholar] [CrossRef] [PubMed]
- Salaroglio, I.C.; Mungo, E.; Gazzano, E.; Kopecka, J.; Riganti, C. ERK Is a Pivotal Player of Chemo-Immune-Resistance in Cancer. Int. J. Mol. Sci. 2019, 20, 2505. [Google Scholar] [CrossRef]
- Buscà, R.; Pouysségur, J.; Lenormand, P. ERK1 and ERK2 Map Kinases: Specific Roles or Functional Redundancy? Front. Cell Dev. Biol. 2016, 4, 53. [Google Scholar] [CrossRef] [PubMed]
- Bar-Gill, A.B.; Efergan, A.; Seger, R.; Fukuda, M.; Sagi-Eisenberg, R. The Extra-Cellular Signal Regulated Kinases ERK1 and ERK2 Segregate Displaying Distinct Spatiotemporal Characteristics in Activated Mast Cells. Biochim. Biophys. Acta 2013, 1833, 2070–2082. [Google Scholar] [CrossRef]
- Leduc, M.; Richard, J.; Costes, S.; Muller, D.; Varrault, A.; Compan, V.; Mathieu, J.; Tanti, J.-F.; Pagès, G.; Pouyssegur, J.; et al. ERK1 Is Dispensable for Mouse Pancreatic Beta Cell Function but Is Necessary for Glucose-Induced Full Activation of MSK1 and CREB. Diabetologia 2017, 60, 1999–2010. [Google Scholar] [CrossRef] [PubMed]
- Lefloch, R.; Pouysségur, J.; Lenormand, P. Single and Combined Silencing of ERK1 and ERK2 Reveals Their Positive Contribution to Growth Signaling Depending on Their Expression Levels. Mol. Cell. Biol. 2008, 28, 511–527. [Google Scholar] [CrossRef]
- Voisin, L.; Saba-El-Leil, M.K.; Julien, C.; Frémin, C.; Meloche, S. Genetic Demonstration of a Redundant Role of Extracellular Signal-Regulated Kinase 1 (ERK1) and ERK2 Mitogen-Activated Protein Kinases in Promoting Fibroblast Proliferation. Mol. Cell. Biol. 2010, 30, 2918–2932. [Google Scholar] [CrossRef]
- Radtke, S.; Milanovic, M.; Rossé, C.; De Rycker, M.; Lachmann, S.; Hibbert, A.; Kermorgant, S.; Parker, P.J. ERK2 but Not ERK1 Mediates HGF-Induced Motility in Non-Small Cell Lung Carcinoma Cell Lines. J. Cell Sci. 2013, 126, 2381–2391. [Google Scholar] [CrossRef]
- Crowe, M.S.; Zavorotinskaya, T.; Voliva, C.F.; Shirley, M.D.; Wang, Y.; Ruddy, D.A.; Rakiec, D.P.; Engelman, J.A.; Stuart, D.D.; Freeman, A.K. RAF-Mutant Melanomas Differentially Depend on ERK2 Over ERK1 to Support Aberrant MAPK Pathway Activation and Cell Proliferation. Mol. Cancer Res. MCR 2021, 19, 1063–1075. [Google Scholar] [CrossRef]
- Guégan, J.-P.; Frémin, C.; Baffet, G. The MAPK MEK1/2-ERK1/2 Pathway and Its Implication in Hepatocyte Cell Cycle Control. Int. J. Hepatol. 2012, 2012, 328372. [Google Scholar] [CrossRef]
- Chen, C.; Nelson, L.J.; Ávila, M.A.; Cubero, F.J. Mitogen-Activated Protein Kinases (MAPKs) and Cholangiocarcinoma: The Missing Link. Cells 2019, 8, 1172. [Google Scholar] [CrossRef] [PubMed]
- Buchegger, K.; Silva, R.; López, J.; Ili, C.; Araya, J.C.; Leal, P.; Brebi, P.; Riquelme, I.; Roa, J.C. The ERK/MAPK Pathway Is Overexpressed and Activated in Gallbladder Cancer. Pathol.-Res. Pract. 2017, 213, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Du, P.; Liang, H.; Fu, X.; Wu, P.; Wang, C.; Chen, H.; Zheng, B.; Zhang, J.; Hu, S.; Zeng, R.; et al. SLC25A22 Promotes Proliferation and Metastasis by Activating MAPK/ERK Pathway in Gallbladder Cancer. Cancer Cell Int. 2019, 19, 33. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-S.; Wang, X.-A.; Wu, W.-G.; Hu, Y.-P.; Li, M.-L.; Ding, Q.; Weng, H.; Shu, Y.-J.; Liu, T.-Y.; Jiang, L.; et al. MALAT1 Promotes the Proliferation and Metastasis of Gallbladder Cancer Cells by Activating the ERK/MAPK Pathway. Cancer Biol. Ther. 2014, 15, 806–814. [Google Scholar] [CrossRef]
- Chen, K.; Tang, H.; Zhu, P.; Ye, J.; Liu, D.; Pu, Y.; Zhang, L.; Zhai, W. Interleukin 17A Promotes Gallbladder Cancer Invasiveness via ERK/NF-κB Signal Pathway Mediated Epithelial-to-Mesenchymal Transition. J. Cancer 2020, 11, 4406–4412. [Google Scholar] [CrossRef]
- Tsagkalidis, V.; Langan, R.C.; Ecker, B.L. Ampullary Adenocarcinoma: A Review of the Mutational Landscape and Implications for Treatment. Cancers 2023, 15, 5772. [Google Scholar] [CrossRef]
- Wang, Y.; Li, K.; Zhao, W.; Liu, Z.; Liu, J.; Shi, A.; Chen, T.; Mu, W.; Xu, Y.; Pan, C.; et al. Aldehyde Dehydrogenase 3B2 Promotes the Proliferation and Invasion of Cholangiocarcinoma by Increasing Integrin Beta 1 Expression. Cell Death Dis. 2021, 12, 1158. [Google Scholar] [CrossRef]
- Weinberg, B.A.; Xiu, J.; Lindberg, M.R.; Shields, A.F.; Hwang, J.J.; Poorman, K.; Salem, M.E.; Pishvaian, M.J.; Holcombe, R.F.; Marshall, J.L.; et al. Molecular Profiling of Biliary Cancers Reveals Distinct Molecular Alterations and Potential Therapeutic Targets. J. Gastrointest. Oncol. 2019, 10, 652–662. [Google Scholar] [CrossRef]
- Cristinziano, G.; Porru, M.; Lamberti, D.; Buglioni, S.; Rollo, F.; Amoreo, C.A.; Manni, I.; Giannarelli, D.; Cristofoletti, C.; Russo, G.; et al. FGFR2 Fusion Proteins Drive Oncogenic Transformation of Mouse Liver Organoids towards Cholangiocarcinoma. J. Hepatol. 2021, 75, 351–362. [Google Scholar] [CrossRef]
- Khorsandi, S.E.; Dokal, A.D.; Rajeeve, V.; Britton, D.J.; Illingworth, M.S.; Heaton, N.; Cutillas, P.R. Computational Analysis of Cholangiocarcinoma Phosphoproteomes Identifies Patient-Specific Drug Targets. Cancer Res. 2021, 81, 5765–5776. [Google Scholar] [CrossRef] [PubMed]
- Qiu, B.; Chen, T.; Sun, R.; Liu, Z.; Zhang, X.; Li, Z.; Xu, Y.; Zhang, Z. Sprouty4 Correlates with Favorable Prognosis in Perihilar Cholangiocarcinoma by Blocking the FGFR-ERK Signaling Pathway and Arresting the Cell Cycle. EBioMedicine 2019, 50, 166–177. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.G.; Martin, T.A.; Parr, C.; Davies, G.; Matsumoto, K.; Nakamura, T. Hepatocyte Growth Factor, Its Receptor, and Their Potential Value in Cancer Therapies. Crit. Rev. Oncol. Hematol. 2005, 53, 35–69. [Google Scholar] [CrossRef]
- Menakongka, A.; Suthiphongchai, T. Involvement of PI3K and ERK1/2 Pathways in Hepatocyte Growth Factor-Induced Cholangiocarcinoma Cell Invasion. World J. Gastroenterol. 2010, 16, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Chen, J.-R.; Li, J.-M.; Han, S.-Q.; Deng, X.-Y.; Li, Z.-M.; Tong, W.; Wang, C.; Bai, Y.; Zhang, Y.-M. IL-22/IL-22R1 Pathway Enhances Cholangiocarcinoma Progression via ERK1/2 Activation. World J. Gastrointest. Oncol. 2025, 17, 102083. [Google Scholar] [CrossRef]
- Bupathi, M.; Ahn, D.H.; Bekaii-Saab, T. Therapeutic Options for Intrahepatic Cholangiocarcinoma. Hepatobiliary Surg. Nutr. 2017, 6, 91–100. [Google Scholar] [CrossRef]
- Vanichapol, T.; Leelawat, K.; Hongeng, S. Hypoxia Enhances Cholangiocarcinoma Invasion through Activation of Hepatocyte Growth Factor Receptor and the Extracellular Signal-regulated Kinase Signaling Pathway. Mol. Med. Rep. 2015, 12, 3265–3272. [Google Scholar] [CrossRef]
- Amonyingcharoen, S.; Suriyo, T.; Thiantanawat, A.; Watcharasit, P.; Satayavivad, J. Taurolithocholic Acid Promotes Intrahepatic Cholangiocarcinoma Cell Growth via Muscarinic Acetylcholine Receptor and EGFR/ERK1/2 Signaling Pathway. Int. J. Oncol. 2015, 46, 2317–2326. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, N.; Lee, C. Mysteries of TGF-β Paradox in Benign and Malignant Cells. Front. Oncol. 2014, 4, 94. [Google Scholar] [CrossRef]
- Sato, Y.; Harada, K.; Itatsu, K.; Ikeda, H.; Kakuda, Y.; Shimomura, S.; Shan Ren, X.; Yoneda, N.; Sasaki, M.; Nakanuma, Y. Epithelial-Mesenchymal Transition Induced by Transforming Growth Factor-{beta}1/Snail Activation Aggravates Invasive Growth of Cholangiocarcinoma. Am. J. Pathol. 2010, 177, 141–152. [Google Scholar] [CrossRef]
- Hudson, K.; Cross, N.; Jordan-Mahy, N.; Leyland, R. The Extrinsic and Intrinsic Roles of PD-L1 and Its Receptor PD-1: Implications for Immunotherapy Treatment. Front. Immunol. 2020, 11, 568931. [Google Scholar] [CrossRef] [PubMed]
- Carpino, G.; Cardinale, V.; Di Giamberardino, A.; Overi, D.; Donsante, S.; Colasanti, T.; Amato, G.; Mennini, G.; Franchitto, M.; Conti, F.; et al. Thrombospondin 1 and 2 along with PEDF Inhibit Angiogenesis and Promote Lymphangiogenesis in Intrahepatic Cholangiocarcinoma. J. Hepatol. 2021, 75, 1377–1386. [Google Scholar] [CrossRef]
- Corbella, E.; Fara, C.; Covarelli, F.; Porreca, V.; Palmisano, B.; Mignogna, G.; Corsi, A.; Riminucci, M.; Maras, B.; Mancone, C. THBS1 and THBS2 Enhance the In Vitro Proliferation, Adhesion, Migration and Invasion of Intrahepatic Cholangiocarcinoma Cells. Int. J. Mol. Sci. 2024, 25, 1782. [Google Scholar] [CrossRef]
- Porreca, V.; Corbella, E.; Palmisano, B.; Peres, M.; Angelone, P.; Barbagallo, C.; Stella, M.; Mignogna, G.; Mennini, G.; Melandro, F.; et al. Pigment Epithelium-Derived Factor Inhibits Cell Motility and p-ERK1/2 Signaling in Intrahepatic Cholangiocarcinoma Cell Lines. Biology 2025, 14, 155. [Google Scholar] [CrossRef] [PubMed]
- Abooshahab, R.; Al-Salami, H.; Dass, C.R. Synergy between PEDF and Doxorubicin in Breast Cancer Cells: Effects on Metastatic and Metabolic Pathways. Int. J. Mol. Sci. 2024, 25, 2755. [Google Scholar] [CrossRef]
- Fukui, H.; Zhang, X.; Sun, C.; Hara, K.; Kikuchi, S.; Yamasaki, T.; Kondo, T.; Tomita, T.; Oshima, T.; Watari, J.; et al. IL-22 Produced by Cancer-Associated Fibroblasts Promotes Gastric Cancer Cell Invasion via STAT3 and ERK Signaling. Br. J. Cancer 2014, 111, 763–771. [Google Scholar] [CrossRef]
- Luchini, C.; Veronese, N.; Yachida, S.; Cheng, L.; Nottegar, A.; Stubbs, B.; Solmi, M.; Capelli, P.; Pea, A.; Barbareschi, M.; et al. Different Prognostic Roles of Tumor Suppressor Gene BAP1 in Cancer: A Systematic Review with Meta-Analysis. Genes. Chromosomes Cancer 2016, 55, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-X.; Yin, Y.; Cheng, J.-W.; Huang, A.; Hu, B.; Zhang, X.; Sun, Y.-F.; Wang, J.; Wang, Y.-P.; Ji, Y.; et al. BAP1 Acts as a Tumor Suppressor in Intrahepatic Cholangiocarcinoma by Modulating the ERK1/2 and JNK/c-Jun Pathways. Cell Death Dis. 2018, 9, 1036. [Google Scholar] [CrossRef]
- Conn, V.M.; Chinnaiyan, A.M.; Conn, S.J. Circular RNA in Cancer. Nat. Rev. Cancer 2024, 24, 597–613. [Google Scholar] [CrossRef]
- Liang, Z.; Liu, L.; Guo, X.; Wu, X.; Yu, Y.-L.; Yu, Z.; Hu, X.; Zhang, X.; Wang, J. The Expression Profiles of Circular RNAs and Competing Endogenous RNA Networks in Intrahepatic Cholangiocarcinoma. Front. Cell Dev. Biol. 2022, 10, 942853. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Target Recognition and Regulatory Functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Chen, M.; Zhang, L.; Huang, S.; Xiao, F.; Zou, L. Circular RNAs: Biomarkers of Cancer. Cancer Innov. 2022, 1, 197–206. [Google Scholar] [CrossRef]
- Louis, C.; Desoteux, M.; Coulouarn, C. Exosomal circRNAs: New Players in the Field of Cholangiocarcinoma. Clin. Sci. 2019, 133, 2239–2244. [Google Scholar] [CrossRef]
- Louis, C.; Leclerc, D.; Coulouarn, C. Emerging Roles of Circular RNAs in Liver Cancer. JHEP Rep. Innov. Hepatol. 2022, 4, 100413. [Google Scholar] [CrossRef]
- Du, J.; Lan, T.; Liao, H.; Feng, X.; Chen, X.; Liao, W.; Hou, G.; Xu, L.; Feng, Q.; Xie, K.; et al. CircNFIB Inhibits Tumor Growth and Metastasis through Suppressing MEK1/ERK Signaling in Intrahepatic Cholangiocarcinoma. Mol. Cancer 2022, 21, 18. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Wang, T.; Shi, K.; Fan, S.; Li, C.; Chen, R.; Wang, J.; Jiang, W.; Zhang, Y.; et al. CircPCNXL2 Promotes Tumor Growth and Metastasis by Interacting with STRAP to Regulate ERK Signaling in Intrahepatic Cholangiocarcinoma. Mol. Cancer 2024, 23, 35. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Yuan, P.; Wang, J.; Zhang, Y.; Chang, X.; Jin, D.; Lei, P.; Lu, Z.; Chen, B. MiR-192-5p Regulates the Proliferation and Apoptosis of Cholangiocarcinoma Cells by Activating MEK/ERK Pathway. 3 Biotech 2021, 11, 99. [Google Scholar] [CrossRef] [PubMed]
- Cui, D.; Xiao, J.; Zhou, Y.; Zhou, X.; Liu, Y.; Peng, Y.; Yu, Y.; Li, H.; Zhou, X.; Yuan, Q.; et al. Epiregulin Enhances Odontoblastic Differentiation of Dental Pulp Stem Cells via Activating MAPK Signalling Pathway. Cell Prolif. 2019, 52, e12680. [Google Scholar] [CrossRef]
- Cao, Y.; Xia, D.S.; Qi, S.R.; Du, J.; Ma, P.; Wang, S.L.; Fan, Z.P. Epiregulin Can Promote Proliferation of Stem Cells from the Dental Apical Papilla via MEK/Erk and JNK Signalling Pathways. Cell Prolif. 2013, 46, 447–456. [Google Scholar] [CrossRef]
- Wang, D.; Xiong, F.; Wu, G.; Liu, W.; Wang, B.; Chen, Y. MiR-155-5p Suppresses SOX1 to Promote Proliferation of Cholangiocarcinoma via RAF/MEK/ERK Pathway. Cancer Cell Int. 2021, 21, 656. [Google Scholar] [CrossRef]
- Duan, S.-G.; Cheng, L.; Li, D.-J.; Zhu, J.; Xiong, Y.; Li, X.-W.; Wang, S.-G. The Role of MAPK-ERK Pathway in 67-kDa Laminin Receptor-Induced FasL Expression in Human Cholangiocarcinoma Cells. Dig. Dis. Sci. 2010, 55, 2844–2852. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.; Su, W.; Hu, L.; Yu, M. MUC3A Promotes the Progression of Cholangiocarcinoma through the MAPK/ERK Pathway. Discov. Oncol. 2025, 16, 493. [Google Scholar] [CrossRef]
- Kendall, T.; Verheij, J.; Gaudio, E.; Evert, M.; Guido, M.; Goeppert, B.; Carpino, G. Anatomical, Histomorphological and Molecular Classification of Cholangiocarcinoma. Liver Int. Off. J. Int. Assoc. Study Liver 2019, 39 (Suppl. 1), 7–18. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, S.I.; Khan, S.A.; Hallemeier, C.L.; Kelley, R.K.; Gores, G.J. Cholangiocarcinoma—Evolving Concepts and Therapeutic Strategies. Nat. Rev. Clin. Oncol. 2018, 15, 95–111. [Google Scholar] [CrossRef]
- Zhu, A.X.; Macarulla, T.; Javle, M.M.; Kelley, R.K.; Lubner, S.J.; Adeva, J.; Cleary, J.M.; Catenacci, D.V.T.; Borad, M.J.; Bridgewater, J.A.; et al. Final Overall Survival Efficacy Results of Ivosidenib for Patients With Advanced Cholangiocarcinoma With IDH1 Mutation: The Phase 3 Randomized Clinical ClarIDHy Trial. JAMA Oncol. 2021, 7, 1669–1677. [Google Scholar] [CrossRef]
- Yuan, J.; Dong, X.; Yap, J.; Hu, J. The MAPK and AMPK Signalings: Interplay and Implication in Targeted Cancer Therapy. J. Hematol. Oncol. 2020, 13, 113. [Google Scholar] [CrossRef]
- Schüler, J.; Vockerodt, M.; Salehzadeh, N.; Becker, J.; Wilting, J. Dual Inhibition of PI3 Kinase and MAP Kinase Signaling Pathways in Intrahepatic Cholangiocellular Carcinoma Cell Lines Leads to Proliferation Arrest but Not Apoptosis. Curr. Issues Mol. Biol. 2024, 46, 7395–7410. [Google Scholar] [CrossRef]
- Peng, J.; Fang, S.; Li, M.; Liu, Y.; Liang, X.; Li, Z.; Chen, G.; Peng, L.; Chen, N.; Liu, L.; et al. Genetic Alterations of KRAS and TP53 in Intrahepatic Cholangiocarcinoma Associated with Poor Prognosis. Open Life Sci. 2023, 18, 20220652. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Liu, X.; Evert, K.; Utpatel, K.; Peters, M.; Zhang, S.; Xu, Z.; Che, L.; Cigliano, A.; Ribback, S.; et al. Efficacy of MEK Inhibition in a K-Ras-Driven Cholangiocarcinoma Preclinical Model. Cell Death Dis. 2018, 9, 31. [Google Scholar] [CrossRef]
- Bridgewater, J.; Lopes, A.; Beare, S.; Duggan, M.; Lee, D.; Ricamara, M.; McEntee, D.; Sukumaran, A.; Wasan, H.; Valle, J.W. A Phase 1b Study of Selumetinib in Combination with Cisplatin and Gemcitabine in Advanced or Metastatic Biliary Tract Cancer: The ABC-04 Study. BMC Cancer 2016, 16, 153. [Google Scholar] [CrossRef]
- Gundlach, J.-P.; Kerber, J.; Hendricks, A.; Bernsmeier, A.; Halske, C.; Röder, C.; Becker, T.; Röcken, C.; Braun, F.; Sebens, S.; et al. Paracrine Interaction of Cholangiocellular Carcinoma with Cancer-Associated Fibroblasts and Schwann Cells Impact Cell Migration. J. Clin. Med. 2022, 11, 2785. [Google Scholar] [CrossRef] [PubMed]
- Koch, M.; Nickel, S.; Lieshout, R.; Lissek, S.M.; Leskova, M.; van der Laan, L.J.W.; Verstegen, M.M.A.; Christ, B.; Pampaloni, F. Label-Free Imaging Analysis of Patient-Derived Cholangiocarcinoma Organoids after Sorafenib Treatment. Cells 2022, 11, 3613. [Google Scholar] [CrossRef]
- Ewald, F.; Nörz, D.; Grottke, A.; Hofmann, B.T.; Nashan, B.; Jücker, M. Dual Inhibition of PI3K-AKT-mTOR- and RAF-MEK-ERK-Signaling Is Synergistic in Cholangiocarcinoma and Reverses Acquired Resistance to MEK-Inhibitors. Investig. New Drugs 2014, 32, 1144–1154. [Google Scholar] [CrossRef]
- You, Y.; Niu, Y.; Zhang, J.; Huang, S.; Ding, P.; Sun, F.; Wang, X. U0126: Not Only a MAPK Kinase Inhibitor. Front. Pharmacol. 2022, 13, 927083. [Google Scholar] [CrossRef] [PubMed]
- Barrett, S.D.; Bridges, A.J.; Dudley, D.T.; Saltiel, A.R.; Fergus, J.H.; Flamme, C.M.; Delaney, A.M.; Kaufman, M.; LePage, S.; Leopold, W.R.; et al. The Discovery of the Benzhydroxamate MEK Inhibitors CI-1040 and PD 0325901. Bioorg. Med. Chem. Lett. 2008, 18, 6501–6504. [Google Scholar] [CrossRef]
- Guevremont, C.; Jeldres, C.; Perrotte, P.; Karakiewicz, P.I. Sorafenib in the Management of Metastatic Renal Cell Carcinoma. Curr. Oncol. Tor. Ont 2009, 16 (Suppl. 1), S27–S32. [Google Scholar] [CrossRef]
- Wilhelm, S.M.; Carter, C.; Tang, L.; Wilkie, D.; McNabola, A.; Rong, H.; Chen, C.; Zhang, X.; Vincent, P.; McHugh, M.; et al. BAY 43-9006 Exhibits Broad Spectrum Oral Antitumor Activity and Targets the RAF/MEK/ERK Pathway and Receptor Tyrosine Kinases Involved in Tumor Progression and Angiogenesis. Cancer Res. 2004, 64, 7099–7109. [Google Scholar] [CrossRef] [PubMed]
- Braicu, C.; Buse, M.; Busuioc, C.; Drula, R.; Gulei, D.; Raduly, L.; Rusu, A.; Irimie, A.; Atanasov, A.G.; Slaby, O.; et al. A Comprehensive Review on MAPK: A Promising Therapeutic Target in Cancer. Cancers 2019, 11, 1618. [Google Scholar] [CrossRef]
- Weinstein, I.B.; Joe, A. Oncogene Addiction. Cancer Res. 2008, 68, 3077–3080, discussion 3080. [Google Scholar] [CrossRef]
- Lakhani, N.J.; Burris, H.; Miller, W.H.; Huang, M.; Chen, L.-C.; Siu, L.L. A Phase 1b Study of the ERK Inhibitor MK-8353 plus Pembrolizumab in Patients with Advanced Solid Tumors. Investig. New Drugs 2024, 42, 581–589. [Google Scholar] [CrossRef]
- Poulikakos, P.I.; Rosen, N. Mutant BRAF Melanomas--Dependence and Resistance. Cancer Cell 2011, 19, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Germann, U.A.; Furey, B.F.; Markland, W.; Hoover, R.R.; Aronov, A.M.; Roix, J.J.; Hale, M.; Boucher, D.M.; Sorrell, D.A.; Martinez-Botella, G.; et al. Targeting the MAPK Signaling Pathway in Cancer: Promising Preclinical Activity with the Novel Selective ERK1/2 Inhibitor BVD-523 (Ulixertinib). Mol. Cancer Ther. 2017, 16, 2351–2363. [Google Scholar] [CrossRef] [PubMed]
- Bekaii-Saab, T.; Phelps, M.A.; Li, X.; Saji, M.; Goff, L.; Kauh, J.S.W.; O’Neil, B.H.; Balsom, S.; Balint, C.; Liersemann, R.; et al. Multi-Institutional Phase II Study of Selumetinib in Patients with Metastatic Biliary Cancers. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2011, 29, 2357–2363. [Google Scholar] [CrossRef]
- Luo, X.; Jia, W.; Huang, Z.; Li, X.; Xing, B.; Jiang, X.; Li, J.; Yang, T.; Gao, C.; Lau, W.Y.; et al. Effectiveness and Safety of Sorafenib for Unresectable and Advanced Intrahepatic Cholangiocarcinoma: A Pilot Study. J. Clin. Oncol. 2017, 35, 405. [Google Scholar] [CrossRef]
- Pan, T.-T.; Wang, W.; Jia, W.-D.; Xu, G.-L. A Single-Center Experience of Sorafenib Monotherapy in Patients with Advanced Intrahepatic Cholangiocarcinoma. Oncol. Lett. 2017, 13, 2957–2964. [Google Scholar] [CrossRef]
- Wu, J.; Liu, D.; Offin, M.; Lezcano, C.; Torrisi, J.M.; Brownstein, S.; Hyman, D.M.; Gounder, M.M.; Abida, W.; Drilon, A.; et al. Characterization and Management of ERK Inhibitor Associated Dermatologic Adverse Events: Analysis from a Nonrandomized Trial of Ulixertinib for Advanced Cancers. Investig. New Drugs 2021, 39, 785–795. [Google Scholar] [CrossRef]
- Raybould, A.L.; Burgess, B.; Urban, C.; Naim, R.; Lee, M.S.; McRee, A.J. A Phase Ib Trial of ERK Inhibition with Ulixertinib Combined with Palbociclib in Patients (Pts) with Advanced Solid Tumors. J. Clin. Oncol. 2021, 39, 3103. [Google Scholar] [CrossRef]
- Meng, J.; Dai, B.; Fang, B.; Bekele, B.N.; Bornmann, W.G.; Sun, D.; Peng, Z.; Herbst, R.S.; Papadimitrakopoulou, V.; Minna, J.D.; et al. Combination Treatment with MEK and AKT Inhibitors Is More Effective than Each Drug Alone in Human Non-Small Cell Lung Cancer in Vitro and in Vivo. PLoS ONE 2010, 5, e14124. [Google Scholar] [CrossRef]
- Mendoza, M.C.; Er, E.E.; Blenis, J. The Ras-ERK and PI3K-mTOR Pathways: Cross-Talk and Compensation. Trends Biochem. Sci. 2011, 36, 320–328. [Google Scholar] [CrossRef]
- Chen, C.-H.; Hsia, T.-C.; Yeh, M.-H.; Chen, T.-W.; Chen, Y.-J.; Chen, J.-T.; Wei, Y.-L.; Tu, C.-Y.; Huang, W.-C. MEK Inhibitors Induce Akt Activation and Drug Resistance by Suppressing Negative Feedback ERK-Mediated HER2 Phosphorylation at Thr701. Mol. Oncol. 2017, 11, 1273–1287. [Google Scholar] [CrossRef]
- Little, A.S.; Balmanno, K.; Sale, M.J.; Newman, S.; Dry, J.R.; Hampson, M.; Edwards, P.A.W.; Smith, P.D.; Cook, S.J. A Correction to the Research Article Titled: “Amplification of the Driving Oncogene, KRAS or BRAF, Underpins Acquired Resistance to MEK1/2 Inhibitors in Colorectal Cancer Cells” by A. S. Little, K. Balmanno, M.J. Sale, S. Newman, J.R. Dry, M. Hampson, P.A.W. Edwards, P.D. Smith, S.J. Cook. Sci. Signal. 2011, 4, er2. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Kang, P.M. Recent Advances in Nanocarrier-Assisted Therapeutics Delivery Systems. Pharmaceutics 2020, 12, 837. [Google Scholar] [CrossRef]
- Khizar, S.; Alrushaid, N.; Alam Khan, F.; Zine, N.; Jaffrezic-Renault, N.; Errachid, A.; Elaissari, A. Nanocarriers Based Novel and Effective Drug Delivery System. Int. J. Pharm. 2023, 632, 122570. [Google Scholar] [CrossRef]
- Wei, Q.-Y.; Xu, Y.-M.; Lau, A.T.Y. Recent Progress of Nanocarrier-Based Therapy for Solid Malignancies. Cancers 2020, 12, 2783. [Google Scholar] [CrossRef]
- Yang, H.; Shi, G.; Ge, C.; Huang, J.; Wan, L.; Wang, Z.; Liu, Y.; Jia, R.; Wang, M.; Zhang, L.; et al. Functionalized Graphene Oxide as a Nanocarrier for Multiple Suppressive miRNAs to Inhibit Human Intrahepatic Cholangiocarcinoma. Nano Sel. 2021, 2, 1372–1384. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, Y.; Ding, Y.; Yang, J.; Song, Z.; Lin, S.; Zhang, R.; Wu, J.; Shen, S. Nanosize Non-Viral Gene Therapy Reverses Senescence Reprograming Driven by PBRM1 Deficiency to Suppress iCCA Progression. Adv. Sci. Weinh. Baden-Wurtt. Ger. 2025, 12, e2414525. [Google Scholar] [CrossRef] [PubMed]
- Dutta, D.; Ray, P.; De, A.; Ghosh, A.; Hazra, R.S.; Ghosh, P.; Banerjee, S.; Diaz, F.J.; Upadhyay, S.P.; Quadir, M.; et al. pH-Responsive Targeted Nanoparticles Release ERK-Inhibitor in the Hypoxic Zone and Sensitize Free Gemcitabine in Mutant K-Ras-Addicted Pancreatic Cancer Cells and Mouse Model. PLoS ONE 2024, 19, e0297749. [Google Scholar] [CrossRef] [PubMed]
- Lito, P.; Pratilas, C.A.; Joseph, E.W.; Tadi, M.; Halilovic, E.; Zubrowski, M.; Huang, A.; Wong, W.L.; Callahan, M.K.; Merghoub, T.; et al. Relief of Profound Feedback Inhibition of Mitogenic Signaling by RAF Inhibitors Attenuates Their Activity in BRAFV600E Melanomas. Cancer Cell 2012, 22, 668–682. [Google Scholar] [CrossRef]
- Ross, J.S.; Wang, K.; Gay, L.; Al-Rohil, R.; Rand, J.V.; Jones, D.M.; Lee, H.J.; Sheehan, C.E.; Otto, G.A.; Palmer, G.; et al. New Routes to Targeted Therapy of Intrahepatic Cholangiocarcinomas Revealed by Next-Generation Sequencing. Oncologist 2014, 19, 235–242. [Google Scholar] [CrossRef]
- Casak, S.J.; Pradhan, S.; Fashoyin-Aje, L.A.; Ren, Y.; Shen, Y.-L.; Xu, Y.; Chow, E.C.Y.; Xiong, Y.; Zirklelbach, J.F.; Liu, J.; et al. FDA Approval Summary: Ivosidenib for the Treatment of Patients with Advanced Unresectable or Metastatic, Chemotherapy Refractory Cholangiocarcinoma with an IDH1 Mutation. Clin. Cancer Res. 2022, 28, 2733–2737. [Google Scholar] [CrossRef]
- Syed, Y.Y. Futibatinib: First Approval. Drugs 2022, 82, 1737–1743. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, H.; Arai, Y.; Totoki, Y.; Shirota, T.; Elzawahry, A.; Kato, M.; Hama, N.; Hosoda, F.; Urushidate, T.; Ohashi, S.; et al. Genomic Spectra of Biliary Tract Cancer. Nat. Genet. 2015, 47, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Abou-Alfa, G.K.; Sahai, V.; Hollebecque, A.; Vaccaro, G.; Melisi, D.; Al-Rajabi, R.; Paulson, A.S.; Borad, M.J.; Gallinson, D.; Murphy, A.G.; et al. Pemigatinib for Previously Treated, Locally Advanced or Metastatic Cholangiocarcinoma: A Multicentre, Open-Label, Phase 2 Study. Lancet Oncol. 2020, 21, 671–684. [Google Scholar] [CrossRef]
- Wang, J.; Liu, S.; Cao, Y.; Chen, Y. Overcoming Treatment Resistance in Cholangiocarcinoma: Current Strategies, Challenges, and Prospects. Front. Cell Dev. Biol. 2024, 12, 1408852. [Google Scholar] [CrossRef]
- DiPeri, T.P.; Zhao, M.; Evans, K.W.; Varadarajan, K.; Moss, T.; Scott, S.; Kahle, M.P.; Byrnes, C.C.; Chen, H.; Lee, S.S.; et al. Convergent MAPK Pathway Alterations Mediate Acquired Resistance to FGFR Inhibitors in FGFR2 Fusion-Positive Cholangiocarcinoma. J. Hepatol. 2024, 80, 322–334. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.; Min, J.-K.; Lee, J.W.; Kim, D.-G.; Hong, H.J. Acquisition of Chemoresistance in Intrahepatic Cholangiocarcinoma Cells by Activation of AKT and Extracellular Signal-Regulated Kinase (ERK)1/2. Biochem. Biophys. Res. Commun. 2011, 405, 333–337. [Google Scholar] [CrossRef]
- Parekh, A.-D.E.; Shaikh, O.A.; Simran; Manan, S.; Hasibuzzaman, M.A. Artificial Intelligence (AI) in Personalized Medicine: AI-Generated Personalized Therapy Regimens Based on Genetic and Medical History: Short Communication. Ann. Med. Surg. 2023, 85, 5831–5833. [Google Scholar] [CrossRef]
Small- Molecule Inhibitors | Reference Number | Type of Study | Main Results | TRAEs | Ref. |
---|---|---|---|---|---|
Selumetinib | NCT00553332 | Multicenter Phase II study | Partial response: 12% Stable disease: 68% PFS: 3.7 months OS: 9.8 months | Rash (90%), xerostomia (54%), nausea (51%), with dose reduction in 14% due to fatigue, diarrhea, and rash | [123] |
Selumetinib + CisGem | NCT01242605 | Randomized Phase II study | PFS: 6 months OS: 12 months | Increased toxicity requiring chemotherapy dose reduction in patients treated with Selumetinib | [110] |
Sorafenib | Pilot study | DCR a 12 sett.: 15.9% PFS: 3.2 months OS: 5.7 months | Grade 1–2 toxicity: 75% 1 case of severe skin reaction (grade 4) | [124] | |
Single-center study | OS: 5.7 months PFS: 5.5 months | Rash (33.3%), grade 3 hand-foot syndrome (6.7%) | [125] | ||
Ulixertinib (BVD-523) | NCT01781429 | Phase I | Stable disease for more than 6 months | dAEs in 79% Acneiform rash (33%), maculopapular rash (27%), pruritus (25%) Grade 3: 19% No Grade 4/5 | [25,126] |
Ulixertinib (BVD-523) + Palbociclib | NCT03454035 | Phase Ib | 1 iCCA patient achieved stable disease | Fatigue (70%), rash (62%), and nausea (54%) decreased lymphocyte count (77%), decreased WBC count (73%) and anemia (65%) (all grade) No Grade 4/5 | [127] |
Ulixertinib (BVD-523) + Hydroxychloroquine | NCT05221320 | Phase II basket | Results still pending | [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porreca, V.; Sallustio, L.; Giancola, L.; Angelone, P.; Mignogna, G.; Maras, B.; Mancone, C. ERK1/2 Signaling in Intrahepatic Cholangiocarcinoma: From Preclinical Advances to Therapeutic Strategies. Biology 2025, 14, 776. https://doi.org/10.3390/biology14070776
Porreca V, Sallustio L, Giancola L, Angelone P, Mignogna G, Maras B, Mancone C. ERK1/2 Signaling in Intrahepatic Cholangiocarcinoma: From Preclinical Advances to Therapeutic Strategies. Biology. 2025; 14(7):776. https://doi.org/10.3390/biology14070776
Chicago/Turabian StylePorreca, Veronica, Luca Sallustio, Ludovica Giancola, Pietro Angelone, Giuseppina Mignogna, Bruno Maras, and Carmine Mancone. 2025. "ERK1/2 Signaling in Intrahepatic Cholangiocarcinoma: From Preclinical Advances to Therapeutic Strategies" Biology 14, no. 7: 776. https://doi.org/10.3390/biology14070776
APA StylePorreca, V., Sallustio, L., Giancola, L., Angelone, P., Mignogna, G., Maras, B., & Mancone, C. (2025). ERK1/2 Signaling in Intrahepatic Cholangiocarcinoma: From Preclinical Advances to Therapeutic Strategies. Biology, 14(7), 776. https://doi.org/10.3390/biology14070776