Integrating Deep Learning and Transcriptomics to Assess Livestock Aggression: A Scoping Review
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Databases Search Strategy
2.2. Selection Criterias, Selection Process
3. Results
3.1. Deep Learning-Based Video Analysis of Cattle Behavior
3.2. Deep Learning-Based Video Analysis of Pig Behavior
3.3. AI-Augmented Video Analysis in Poultry
3.4. AI-Augmented Video Behavior Analysis in Minor Livestock and Aquatic Species
3.5. Transcriptomic Insights into Aggression and Social Behavior in Livestock and Model Species
4. Discussion
- The field requires expansion to underrepresented species in order to develop fair behavioral information across worldwide livestock systems;
- The creation of multimodal datasets should include combining AI-generated behavior tracking systems with molecular sampling systems.
- AI models require evaluation through cross-validation and benchmarking tests to determine their performance across different species and environmental settings and behavioral domains.
- There should be a standardization of behavioral definitions, annotation practices, and model performance reporting in order to support meta-analysis and reproducibility.
- The evaluation of both behavioral and transcriptomic systems in real farms should occur in order to guarantee their practical use in animal husbandry.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Orihuela, A. Review: Management of livestock behavior to improve welfare and production. Animal 2021, 15, 100290. [Google Scholar] [CrossRef] [PubMed]
- Leroy, F.; Abraini, F.; Beal, T.; Dominguez-Salas, P.; Gregorini, P.; Manzano, P.; Rowntree, J.; Van Vliet, S. Animal board invited review: Animal source foods in healthy, sustainable, and ethical diets—An argument against drastic limitation of livestock in the food system. Animal 2022, 16, 100457. [Google Scholar] [CrossRef] [PubMed]
- Shoyombo, A.J.; Popoola, M.A.; Kuusu, D.J.; Yisah, L.J.; Adebayo, O.M.; Yakubu, H.; Ndiomu, E.P.; Moses, A.A. Computational Approaches in Livestock Breeding: A Review. In Proceedings of the International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG), Omu-Aran, Nigeria, 2–4 April 2024. [Google Scholar] [CrossRef]
- Yan, Y.; Zhu, S.; Jia, M.; Chen, X.; Qi, W.; Gu, F.; Valencak, T.G.; Liu, J.; Sun, H. Advances in single-cell transcriptomics in animal research. J. Anim. Sci. Biotechnol. 2024, 15, 1. [Google Scholar] [CrossRef] [PubMed]
- Congdon, J.V.; Hosseini, M.; Gading, E.F.; Masousi, M.; Franke, M.; MacDonald, S.E. The future of artificial intelligence in monitoring animal identification, health, and behaviour. Animals 2022, 12, 1711. [Google Scholar] [CrossRef]
- Fazzari, E.; Romano, D.; Falchi, F.; Stefanini, C. Animal Behavior Analysis Methods Using Deep Learning: A survey. Expert Syst. Appl. 2025, 289, 128330. [Google Scholar] [CrossRef]
- Chakraborty, D.; Sharma, N.; Kour, S.; Sodhi, S.S.; Gupta, M.K.; Lee, S.J.; Son, Y.O. Applications of OMICS technology for livestock selection and improvement. Front. Genet. 2022, 13, 774113. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, H.; Xu, Q.; Liu, M.; Chao, X.; Chen, J.; Zhou, B.; Liu, Y. Comprehensive Genome and Transcriptome Analysis Identifies SLCO3A1 Associated with Aggressive Behavior in Pigs. Biomolecules 2023, 13, 1381. [Google Scholar] [CrossRef]
- Jain, K.; Panigrahi, M.; Nayak, S.S.; Rajawat, D.; Sharma, A.; Sahoo, S.P.; Bhushan, B.; Dutt, T. The evolution of contemporary livestock species: Insights from mitochondrial genome. Gene 2024, 927, 148728. [Google Scholar] [CrossRef]
- Ahmad, M.; Zhang, W.; Smith, M.; Brilot, B.; Bell, M. IYOLO-FAM: Improved YOLOv8 with Feature Attention Mechanism for Cow Behaviour Detection. In Proceedings of the 2024 IEEE 15th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), Yorktown Heights, NY, USA, 17–19 October 2024. [Google Scholar] [CrossRef]
- Arıkan, İ.; Ayav, T.; Seçkin, A.Ç.; Soygazi, F. Estrus Detection and Dairy Cow Identification with Cascade Deep Learning for Augmented Reality-Ready Livestock Farming. Sensors 2023, 23, 9795. [Google Scholar] [CrossRef]
- Sim, H.; Kim, T.; Lee, C.; Choi, C.; Kim, J.S.; Cho, H. Optimizing Cattle Behavior Analysis in Precision Livestock Farming: Integrating YOLOv7-E6E with AutoAugment and GridMask to Enhance Detection Accuracy. Appl. Sci. 2024, 14, 3667. [Google Scholar] [CrossRef]
- Ahmad, M.; Zhang, W.; Smith, M.; Brilot, B.; Bell, M. Real-Time livestock activity monitoring via Fine-Tuned faster R-CNN for multiclass cattle behaviour detection. In Proceedings of the 2022 IEEE 13th Annual Ubiquitous Computing, Electronics & Amp; Mobile Communication Conference (UEMCON), New York, NY, USA, 26–29 October 2022. [Google Scholar] [CrossRef]
- Chae, J.; Sim, H.; Lee, C.; Choi, C.; Cho, H. Video-Based Analysis of Cattle Behaviors: Improved Classification using FlowEQ Transform. IEEE Access 2024, 12, 42860–42867. [Google Scholar] [CrossRef]
- Qiao, Y.; Guo, Y.; Yu, K.; He, D. C3D-ConvLSTM based cow behaviour classification using video data for precision livestock farming. Comput. Electron. Agric. 2022, 193, 106650. [Google Scholar] [CrossRef]
- Fuentes, A.; Yoon, S.; Park, J.; Park, D.S. Deep learning-based hierarchical cattle behavior recognition with spatio-temporal information. Comput. Electron. Agric. 2020, 177, 105627. [Google Scholar] [CrossRef]
- Islam, M.N.; Yoder, J.; Nasiri, A.; Burns, R.T.; Gan, H. Analysis of the drinking behavior of beef cattle using computer Vision. Animals 2023, 13, 2984. [Google Scholar] [CrossRef]
- Daker, M.; Elsayaad, F.; Atia, A. The Classification of Cattle Behaviors Using Deep Learning. In Proceedings of the 2024 6th International Conference on Computing and Informatics (ICCI), Cairo, Egypt, 6–7 March 2024. [Google Scholar] [CrossRef]
- Han, Y.; Wu, J.; Zhang, H.; Cai, M.; Sun, Y.; Li, B.; Feng, X.; Hao, J.; Wang, H. Beef cattle abnormal behaviour recognition based on dual-branch frequency channel temporal excitation and aggregation. Biosyst. Eng. 2024, 241, 28–42. [Google Scholar] [CrossRef]
- Bello, R.; Mohamed, A.S.A.; Talib, A.Z.; Sani, S.; Wahab, M.N.A. Behavior Recognition of Group-ranched Cattle from Video Sequences using Deep Learning. Indian J. Anim. Res. 2021, 56, 505–512. [Google Scholar] [CrossRef]
- Fuentes, A.; Han, S.; Nasir, M.F.; Park, J.; Yoon, S.; Park, D.S. Multiview monitoring of individual cattle behavior based on action recognition in closed barns using deep learning. Animals 2023, 13, 2020. [Google Scholar] [CrossRef]
- Nasir, M.F.; Fuentes, A.; Han, S.; Liu, J.; Jeong, Y.; Yoon, S.; Park, D.S. Multi-camera fusion and bird-eye view location mapping for deep learning-based cattle behavior monitoring. Artif. Intell. Agric. 2025, 15, 724–743. [Google Scholar] [CrossRef]
- Liu, D.; Oczak, M.; Maschat, K.; Baumgartner, J.; Pletzer, B.; He, D.; Norton, T. A computer vision-based method for spatial-temporal action recognition of tail-biting behaviour in group-housed pigs. Biosyst. Eng. 2020, 195, 27–41. [Google Scholar] [CrossRef]
- Gao, Y.; Yan, K.; Dai, B.; Sun, H.; Yin, Y.; Liu, R.; Shen, W. Recognition of aggressive behavior of group-housed pigs based on CNN-GRU hybrid model with spatio-temporal attention mechanism. Comput. Electron. Agric. 2023, 205, 107606. [Google Scholar] [CrossRef]
- Yan, K.; Dai, B.; Liu, H.; Yin, Y.; Li, X.; Wu, R.; Shen, W. Deep neural network with adaptive dual-modality fusion for temporal aggressive behavior detection of group-housed pigs. Comput. Electron. Agric. 2024, 224, 109243. [Google Scholar] [CrossRef]
- Ji, H.; Teng, G.; Yu, J.; Wen, Y.; Deng, H.; Zhuang, Y. Efficient Aggressive Behavior recognition of Pigs based on temporal shift module. Animals 2023, 13, 2078. [Google Scholar] [CrossRef] [PubMed]
- Odo, A.; Muns, R.; Boyle, L.; Kyriazakis, I. Video analysis using deep learning for automated quantification of ear biting in pigs. IEEE Access 2023, 11, 59744–59757. [Google Scholar] [CrossRef]
- Wei, L.; Zhu, X.; Li, J.; Zhai, Z. Sow Behavior Feature Recognition Based on Deep Camera Data. In Proceedings of the 2024 International Symposium on Digital Home (ISDH), Guilin, China, 1–4 November 2024. [Google Scholar] [CrossRef]
- Gan, H.; Xu, C.; Hou, W.; Guo, J.; Liu, K.; Xue, Y. Spatiotemporal graph convolutional network for automated detection and analysis of social behaviours among pre-weaning piglets. Biosyst. Eng. 2022, 217, 102–114. [Google Scholar] [CrossRef]
- Gan, H.; Ou, M.; Huang, E.; Xu, C.; Li, S.; Li, J.; Liu, K.; Xue, Y. Automated detection and analysis of social behaviors among preweaning piglets using key point-based spatial and temporal features. Comput. Electron. Agric. 2021, 188, 106357. [Google Scholar] [CrossRef]
- Li, Q.; Zhuo, Z.; Gao, R.; Wang, R.; Zhang, N.; Shi, Y.; Wu, T.; Ma, W. A PIG behavior-tracking method based on a Multi-Channel High-Efficiency attention mechanism. Agric. Commun. 2024, 4, 100062. [Google Scholar] [CrossRef]
- Low, B.E.; Cho, Y.; Lee, B.; Yi, M.Y. Playing behavior classification of Group-Housed pigs using a deep CNN-LSTM network. Sustainability 2022, 14, 16181. [Google Scholar] [CrossRef]
- Li, R.; Dai, B.; Hu, Y.; Dai, X.; Fang, J.; Yin, Y.; Liu, H.; Shen, W. Multi-behavior detection of group-housed pigs based on YOLOX and SCTS-SlowFast. Comput. Electron. Agric. 2024, 225, 109286. [Google Scholar] [CrossRef]
- Yang, A.; Huang, H.; Zheng, B.; Li, S.; Gan, H.; Chen, C.; Yang, X.; Xue, Y. An automatic recognition framework for sow daily behaviours based on motion and image analyses. Biosyst. Eng. 2020, 192, 56–71. [Google Scholar] [CrossRef]
- Pacheco, V.M.; Brown-Brandl, T.M.; De Sousa, R.V.; Rohrer, G.A.; Sharma, S.R.; Martello, L.S. Deep learning-based sow posture classifier using colour and depth images. Smart Agric. Technol. 2024, 9, 100563. [Google Scholar] [CrossRef]
- Li, B.; Xu, W.; Chen, T.; Cheng, J.; Shen, M. Recognition of fine-grained sow nursing behavior based on the SlowFast and hidden Markov models. Comput. Electron. Agric. 2023, 210, 107938. [Google Scholar] [CrossRef]
- Tu, S.; Du, J.; Liang, Y.; Cao, Y.; Chen, W.; Xiao, D.; Huang, Q. Tracking and behavior analysis of Group-Housed pigs based on a Multi-Object Tracking approach. Animals 2024, 14, 2828. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, W.; Oczak, M.; Maschat, K.; Baumgartner, J.; Larsen, M.L.V.; Norton, T. A computer vision approach for recognition of the engagement of pigs with different enrichment objects. Comput. Electron. Agric. 2020, 175, 105580. [Google Scholar] [CrossRef]
- Hao, W.; Zhang, K.; Zhang, L.; Han, M.; Hao, W.; Li, F.; Yang, G. TSML: A new PIG behavior recognition method based on Two-Stream Mutual Learning Network. Sensors 2023, 23, 5092. [Google Scholar] [CrossRef]
- Lee, J.; Choi, Y.H.; Lee, H.; Park, H.J.; Hong, J.S.; Lee, J.H.; Sa, S.J.; Kim, Y.M.; Kim, J.E.; Jeong, Y.D.; et al. Enhanced Swine Behavior Detection with YOLOs and a Mixed Efficient Layer Aggregation Network in Real Time. Animals 2024, 14, 3375. [Google Scholar] [CrossRef]
- Neethirajan, S. ChickTrack—A quantitative tracking tool for measuring chicken activity. Measurement 2022, 191, 110819. [Google Scholar] [CrossRef]
- Evangelista, I.R.S.; Concepcion, R.; Palconit, M.G.B.; Bandala, A.A.; Dadios, E.P. YOLOV7 and DeepSORT for intelligent Quail Behavioral Activities monitoring. In Proceedings of the 2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Boracay Island, Philippines, 20–30 November 2021. [Google Scholar] [CrossRef]
- Evangelista, I.R.S.; Catajay, L.T.; Bandala, A.A.; Concepcion, R.S., II; Sybingco, E.; Dadios, E.P. Exploring deep learning for detection of poultry activities—Towards an autonomous health and welfare monitoring in poultry farms. In Proceedings of the 2023 17th International Conference on Ubiquitous Information Management and Communication (IMCOM), Seoul, Republic of Korea, 3–5 January 2023. [Google Scholar] [CrossRef]
- Fomina, A.S.; Sklyarenko, A.A.; Dolgov, V.V.; Vasiliev, P.V.; Zelenkova, G.A.; Kochetkova, N.A. Assessing the motor activity of chickens based on artificial intelligence technology. BIO Web Conf. 2024, 149, 01017. [Google Scholar] [CrossRef]
- Silvera, A.; Knowles, T.; Butterworth, A.; Berckmans, D.; Vranken, E.; Blokhuis, H. Lameness assessment with automatic monitoring of activity in commercial broiler flocks. Poult. Sci. 2017, 96, 2013–2017. [Google Scholar] [CrossRef]
- Siriani, A.L.R.; De Carvalho Miranda, I.B.; Mehdizadeh, S.A.; Pereira, D.F. Chicken tracking and individual bird activity monitoring using the BOT-SORT algorithm. AgriEngineering 2023, 5, 1677–1693. [Google Scholar] [CrossRef]
- Khairunissa, J.; Wahjuni, S.; Soesanto, I.R.H.; Wulandari, W. Detecting Poultry Movement for Poultry Behavioral Analysis using The Multi-Object Tracking (MOT) Algorithm. In Proceedings of the 2021 8th International Conference on Computer and Communication Engineering (ICCCE), Kuala Lumpur, Malaysia, 22–23 June 2021. [Google Scholar] [CrossRef]
- Xue, H.; Ma, J.; Yang, Y.; Qu, H.; Wang, L.; Li, L. Aggressive behavior recognition and welfare monitoring in yellow-feathered broilers using FCTR and wearable identity tags. Comput. Electron. Agric. 2025, 235, 110284. [Google Scholar] [CrossRef]
- Dovdon, E.; Agarwal, M.; Dajsuren, Y.; De Vlieg, J. Irregular frame rate synchronization of multi-camera videos for Data-Driven Animal Behavior Detection. In Proceedings of the Second International Conference on Advances in Computing Research (ACR’24), Madrid, Spain, 3–5 June 2024, 1st ed.; Daimi, K., Al Sadoon, A., Eds.; Springer: Cham, Switzerland, 2024; pp. 97–112. [Google Scholar] [CrossRef]
- Bati, C.T.; Ser, G. SHEEPFEARNET: Sheep fear test behaviors classification approach from video data based on optical flow and convolutional neural networks. Comput. Electron. Agric. 2022, 204, 107540. [Google Scholar] [CrossRef]
- Gu, Z.; Zhang, H.; He, Z.; Niu, K. A two-stage recognition method based on deep learning for sheep behavior. Comput. Electron. Agric. 2023, 212, 108143. [Google Scholar] [CrossRef]
- Sneddon, J.; Mason, A. Automated Monitoring of Foraging Behaviour in Free Ranging Sheep Grazing a Bio-diverse Pasture using Audio and Video Information. Int. J. Smart Sens. Intell. Syst. 2014, 7, 1–4. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Y.; Wang, M.; Li, M.; Zhao, W.; Mao, R. A Real-Time lightweight behavior recognition model for multiple dairy goats. Animals 2024, 14, 3667. [Google Scholar] [CrossRef]
- Jiang, M.; Rao, Y.; Zhang, J.; Shen, Y. Automatic behavior recognition of group-housed goats using deep learning. Comput. Electron. Agric. 2020, 177, 105706. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, F.; Zheng, W.; Bai, T.; Chen, X.; Guo, L. Sleeping and eating behavior recognition of horses based on an improved SlowFast network. Sensors 2024, 24, 7791. [Google Scholar] [CrossRef]
- Liu, L.; Kurban, A.; Liu, Y. Improved YOLOV11pose for posture estimation of Xinjiang Bactrian Camels. Int. J. Adv. Comput. Sci. Appl. 2024, 15, 12. [Google Scholar] [CrossRef]
- Sun, G.; Liu, T.; Zhang, H.; Tan, B.; Li, Y. Basic behavior recognition of yaks based on improved SlowFast network. Ecol. Inform. 2023, 78, 102313. [Google Scholar] [CrossRef]
- Måløy, H.; Aamodt, A.; Misimi, E. A spatio-temporal recurrent network for salmon feeding action recognition from underwater videos in aquaculture. Comput. Electron. Agric. 2019, 167, 105087. [Google Scholar] [CrossRef]
- Koh, M.E.; Fong, M.W.K.; Ng, E.Y.K. Aqua3DNet: Real-time 3D pose estimation of livestock in aquaculture by monocular machine vision. Aquacult. Eng. 2023, 103, 102367. [Google Scholar] [CrossRef]
- Eusebi, P.G.; Sevane, N.; O’Rourke, T.; Pizarro, M.; Boeckx, C.; Dunner, S. Age Effects Aggressive Behavior: RNA-Seq Analysis in Cattle with Implications for Studying Neoteny Under Domestication. Behav. Genet. 2022, 52, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Keever-Keigher, M.R.; Zhang, P.; Bolt, C.R.; Rymut, H.E.; Antonson, A.M.; Caputo, M.P.; Houser, A.K.; Hernandez, A.G.; Southey, B.R.; Rund, L.A.; et al. Interacting impact of maternal inflammatory response and stress on the amygdala transcriptome of pigs. G3-Genes Genomes Genet. 2021, 11, 8. [Google Scholar] [CrossRef] [PubMed]
- Long, K.; Mao, K.; Che, T.; Zhang, J.; Qiu, W.; Wang, Y.; Tang, Q.; Ma, J.; Li, M.; Li, X. Transcriptome differences in frontal cortex between wild boar and domesticated pig. Animal 2018, 89, 848–857. [Google Scholar] [CrossRef] [PubMed]
- Kasper, C.; Ribeiro, D.; De Almeida, A.M.; Larzul, C.; Liaubet, L.; Murani, E. Omics Application in Animal Science—A special emphasis on stress response and damaging behaviour in pigs. Genes 2020, 11, 920. [Google Scholar] [CrossRef]
- Zhu, B.; Zhu, J.; Liu, A.; Yao, B.; Liao, F.; Yang, S. Transcriptomic and metabolomic analysis based on different aggressive pecking phenotype in duck. Sci. Rep. 2024, 14, 1. [Google Scholar] [CrossRef]
- Sun, H.X.; Guo, R.B.; Gu, T.T.; Zong, Y.B.; Xu, W.W.; Chen, L.; Tian, Y.; Li, G.Q.; Lu, L.Z.; Zeng, T. Investigating the correlation between phenotypes, adrenal transcriptome, and serum metabolism in laying ducks exhibiting varying behaviors under the same stressor. Animal 2024, 18, 101343. [Google Scholar] [CrossRef]
- Su, C.; Zhang, L.; Pan, Y.; Jiao, J.; Luo, P.; Chang, X.; Zhang, H.; Si, X.; Chen, W.; Huang, Y. Enhancing aggression in Henan gamecocks via augmentation of serotonergic-dopaminergic signaling and attenuation of neuroimmune response. Poult. Sci. 2024, 103, 104055. [Google Scholar] [CrossRef]
- Ren, X.; Guan, Z.; Zhao, X.; Zhang, X.; Wen, J.; Cheng, H.; Zhang, Y.; Cheng, X.; Liu, Y.; Ning, Z.; et al. Systematic Selection signature analysis of Chinese gamecocks based on genomic and transcriptomic data. Int. J. Mol. Sci. 2023, 24, 5868. [Google Scholar] [CrossRef]
- Shpigler, H.Y.; Saul, M.C.; Murdoch, E.E.; Corona, F.; Cash-Ahmed, A.C.; Seward, C.H.; Chandrasekaran, S.; Stubbs, L.J.; Robinson, G.E. Honey bee neurogenomic responses to affiliative and agonistic social interactions. Genes Brain Behav. 2018, 18, 1. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Rittschof, C.C.; Djukovic, D.; Gu, H.; Raftery, D.; Price, N.D.; Robinson, G.E. Aggression is associated with aerobic glycolysis in the honey bee brain1. Genes Brain Behav. 2015, 14, 158–166. [Google Scholar] [CrossRef]
- Shpigler, H.Y.; Saul, M.C.; Murdoch, E.E.; Cash-Ahmed, A.C.; Seward, C.H.; Sloofman, L.; Chandrasekaran, S.; Sinha, S.; Stubbs, L.J.; Robinson, G.E. Behavioral, transcriptomic and epigenetic responses to social challenge in honey bees. Genes Brain Behav. 2017, 16, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Rittschof, C.C.; Rubin, B.E.R.; Palmer, J.H. The transcriptomic signature of low aggression in honey bees resembles a response to infection. BMC Genom. 2019, 20, 1. [Google Scholar] [CrossRef] [PubMed]
- Traniello, I.M.; Bukhari, S.A.; Dibaeinia, P.; Serrano, G.; Avalos, A.; Ahmed, A.C.; Sankey, A.L.; Hernaez, M.; Sinha, S.; Zhao, S.D.; et al. Single-cell dissection of aggression in honeybee colonies. Nat. Ecol. Evol. 2023, 7, 1232–1244. [Google Scholar] [CrossRef]
- Bresnahan, S.T.; Lee, E.; Clark, L.; Ma, R.; Markey, M.; Rangel, J.; Grozinger, C.M.; Li-Byarlay, H. Examining parent-of-origin effects on transcription and RNA methylation in mediating aggressive behavior in honey bees (Apis mellifera). BMC Genom. 2023, 24, 315. [Google Scholar] [CrossRef]
- Frank, C.E.; Sadeghi, J.; Heath, D.D.; Semeniuk, C.A.D. Behavioral transcriptomic effects of triploidy and probiotic therapy (Bifidobacterium, Lactobacillus, and Lactococcus mixture) on juvenile Chinook salmon (Oncorhynchus tshawytscha). Genes Brain Behav. 2024, 23, e12898. [Google Scholar] [CrossRef]
- Bentz, A.B.; Niederhuth, C.E.; Carruth, L.L.; Navara, K.J. Prenatal testosterone triggers long-term behavioral changes in male zebra finches: Unravelling the neurogenomic mechanisms. BMC Genom. 2021, 22, 158. [Google Scholar] [CrossRef]
- Riyahi, S.; Liebermann-Lilie, N.D.; Jacobs, A.; Korsten, P.; Mayer, U.; Schmoll, T. Transcriptomic changes in the posterior pallium of male zebra finches associated with social niche conformance. BMC Genom. 2024, 25, 694. [Google Scholar] [CrossRef]
Species | Detection/Tracking | Classification Models | Pose/Keypoint Estimation |
---|---|---|---|
Cattle | Faster R-CNN Mask R-CNN YOLOv5 YOLOv7 YOLOv8 | CNN–RNN ConvLSTM DB-TEAF FlowEQ LSTM | BEV DeepLabCut |
Pigs | BoT-SORT DeepSORT Faster R-CNN YOLOX YOLOv4 YOLOv7 YOLOv8 | CNN-GRU CNN-LSTM CNN–RNN FCN HMM ResNet-18 SVM SlowFast Transformer | 3D CNN RGB-D Spatial-temporal tracking |
Poultry | BoT-SORT DeepSORT EfficientDet Faster R-CNN Kalman Filter SSD YOLOv5 YOLOv7 YOLOv8 | LSTM Transformer | Head emersion model Posture tracking |
Minor livestock | VGG YOLOX YOLOv11 YOLOv4 YOLOv8 | CARAFE CNN GCT LSTM ResNet-50 SlowFast | 3D ResNet DeepLabCut SOD-based depth estimation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juhos, R.; Kusza, S.; Bilicki, V.; Bagi, Z. Integrating Deep Learning and Transcriptomics to Assess Livestock Aggression: A Scoping Review. Biology 2025, 14, 771. https://doi.org/10.3390/biology14070771
Juhos R, Kusza S, Bilicki V, Bagi Z. Integrating Deep Learning and Transcriptomics to Assess Livestock Aggression: A Scoping Review. Biology. 2025; 14(7):771. https://doi.org/10.3390/biology14070771
Chicago/Turabian StyleJuhos, Roland, Szilvia Kusza, Vilmos Bilicki, and Zoltán Bagi. 2025. "Integrating Deep Learning and Transcriptomics to Assess Livestock Aggression: A Scoping Review" Biology 14, no. 7: 771. https://doi.org/10.3390/biology14070771
APA StyleJuhos, R., Kusza, S., Bilicki, V., & Bagi, Z. (2025). Integrating Deep Learning and Transcriptomics to Assess Livestock Aggression: A Scoping Review. Biology, 14(7), 771. https://doi.org/10.3390/biology14070771