Annual Temperature Variation, Not Number of Predators, Predicts Variation in Foraging Group Size Among Pigeons Worldwide
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Analyses
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 2004, 163, 192–211. [Google Scholar] [CrossRef]
- Jetz, W.; Sekercioglu, C.H.; Böhning-Gaese, K.; Sheldon, B. The worldwide variation in avian clutch size across species and space. PLoS Biol. 2008, 6, e303. [Google Scholar] [CrossRef]
- Scholer, M.N.; Strimas-Mackey, M.; Jankowski, J.E.; Coulson, T. A meta-analysis of global avian survival across species and latitude. Ecol. Lett. 2020, 23, 1537–1549. [Google Scholar] [CrossRef] [PubMed]
- Lomolino, M.V. Elevation gradients of species-density: Historical and prospective views. Glob. Ecol. Biogeogr. 2001, 10, 3–13. [Google Scholar] [CrossRef]
- Losos, J.B.; Ricklefs, R.E. Adaptation and diversification on islands. Nature 2009, 457, 830–836. [Google Scholar] [CrossRef] [PubMed]
- Baeckens, S.; Van Damme, R. The island syndrome. Curr. Biol. 2020, 30, R338–R339. [Google Scholar] [CrossRef]
- Jetz, W.; Rubenstein, D.R. Environmental uncertainty and the global biogeography of cooperative breeding in birds. Curr. Biol. 2011, 21, 72–78. [Google Scholar] [CrossRef]
- Møller, A.P.; Laursen, K. The ecological significance of extremely large flocks of birds. Ecol. Evol. 2019, 9, 6559–6567. [Google Scholar] [CrossRef]
- Pulliam, H.R.; Caraco, T. Living in groups: Is there an optimal group size? In Behavioural Ecology; Krebs, J.R., Davies, N.B., Eds.; Blackwell Scientific Publications: Oxford, UK, 1984; pp. 122–147. [Google Scholar]
- Beauchamp, G. Social Predation: How Group Living Benefits Predators and Prey; Academic Press: New York, NY, USA, 2014. [Google Scholar]
- Crook, J.H. The evolution of social organisation and visual communication in the weaver birds (Ploceinae). Behaviour Supp. 1964, 10, 1–178. [Google Scholar]
- Clutton-Brock, T.H.; Harvey, P.H. Primate ecology and social organization. J. Zool. 1977, 183, 1–39. [Google Scholar] [CrossRef]
- Jarman, P. The social organization of anteclope in relation to their ecology. Behaviour 1974, 48, 216–267. [Google Scholar] [CrossRef]
- McKinnon, L.; Smith, P.A.; Nol, E.; Martin, J.L.; Doyle, F.I.; Abraham, K.F.; Gilchrist, H.G.; Morrison, R.I.G.; Bêty, J. Lower predation risk for migratory birds at high latitudes. Science 2010, 327, 326–327. [Google Scholar] [CrossRef] [PubMed]
- Díaz, M.; Møller, A.P.; Flensted-Jensen, E.; Grim, T.; Ibáñez-Álamo, J.D.; Jokimäki, J.; Markó, G.; Tryjanowski, P.; Mettke-Hofmann, C. The geography of fear: A latitudinal gradient in anti-predator escape distances of birds across Europe. PLoS ONE 2013, 8, e64634. [Google Scholar] [CrossRef]
- Zvereva, E.L.; Kozlov, M.V.; Chase, J. Latitudinal gradient in the intensity of biotic interactions in terrestrial ecosystems: Sources of variation and differences from the diversity gradient revealed by meta-analysis. Ecol. Lett. 2021, 24, 2506–2520. [Google Scholar] [CrossRef]
- Roslin, T.; Hardwick, B.; Novotny, V.; Petry, W.K.; Andrew, N.R.; Asmus, A.; Barrio, I.C.; Basset, Y.; Boesing, A.L.; Bonebrake, T.C.; et al. Higher predation risk for insect prey at low latitudes and elevations. Science 2017, 356, 742–744. [Google Scholar] [CrossRef]
- Sobel, A.H. Tropical weather. Nat. Educ. Knowl. 2012, 3, 2. [Google Scholar]
- Terborgh, J. Bird species diversity on an Andean elevational gradient. Ecology 1977, 58, 1007–1019. [Google Scholar] [CrossRef]
- Stutchbury, B.J.M.; Morton, E.S. Behavioral Ecology of Tropical Birds; Academic Press: Oxford, UK, 2022. [Google Scholar]
- Barry, R.G. Mountain Weather and Climate; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Beauchamp, G. Reduced flocking by birds on islands with relaxed predation. Proc. R. Soc. Lond. B Biol. Sci. 2004, 271, 1039–1042. [Google Scholar] [CrossRef]
- Pulliam, H.R. Comparative feeding ecology of a tropical grassland finch (Tiaris olivacea). Ecology 1973, 54, 284–299. [Google Scholar] [CrossRef]
- Beauchamp, G. Parrots live in smaller groups on islands. Biol. Lett. 2024, 20, 20240413. [Google Scholar] [CrossRef]
- Whittaker, R.J.; Fernandez-Palacios, J.M. Island Biogeography Ecology, Evolution, and Conservation; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Cheney, D.L.; Wrangham, R.W. Predation. In Primate Societies; Smuts, B., Cheney, D.L., Seyfarth, R.M., Wrangham, R.W., Eds.; University of Chicago Press: Chicago, IL, USA, 1987; pp. 227–239. [Google Scholar]
- Cohen, J.E.; Pimm, S.L.; Yodzis, P.; Saldana, J. Body sizes of animal predators and animal prey in food Webs. J. Anim. Ecol. 1993, 62, 67. [Google Scholar] [CrossRef]
- Sinclair, A.R.E.; Mduma, S.; Brashares, J.S. Patterns of predation in a diverse predator–prey system. Nature 2003, 425, 288–290. [Google Scholar] [CrossRef]
- Kiltie, R.A. Scaling of visual acuity with body size in mammals and birds. Funct. Ecol. 2000, 14, 226–234. [Google Scholar] [CrossRef]
- Morton, E.S. On the evolutionary advantages and disadvantages of fruit eating in tropical birds. Am. Nat. 1973, 107, 8–22. [Google Scholar] [CrossRef]
- Clark, C.W.; Mangel, M. Foraging and flocking strategies: Information in an uncertain environment. Am. Nat. 1984, 123, 626–641. [Google Scholar] [CrossRef]
- Werner, E.E.; Gilliam, J.F.; Hall, D.J.; Mittelbach, G.G. An experimental test of the effects of predation risk on habitat use in fish. Ecology 1983, 64, 1540–1548. [Google Scholar] [CrossRef]
- Dunbar, R.I.M. Social systems as optimal strategy sets: The costs and benefits of sociality. In Comparative Socioecology of Humans and Other Mammals; Standen, V., Foley, R.A., Eds.; Blackwell: Oxford, UK, 1989; pp. 131–149. [Google Scholar]
- Thiollay, J.; Jullien, M. Flocking behaviour of foraging birds in a neotropical rain forest and the antipredator defence hypothesis. Ibis 1998, 140, 382–394. [Google Scholar] [CrossRef]
- Buskirk, W.H. Social systems in a tropical forest avifauna. Am. Nat. 1976, 110, 293–310. [Google Scholar] [CrossRef]
- Bonabeau, E.; Dagorn, L.; Fréon, P. Scaling in animal group-size distributions. Proc. Natl. Acad. Sci. USA 1999, 96, 4472–4477. [Google Scholar] [CrossRef]
- Wirtz, P.; Lörscher, J. Group sizes of antelopes in an East African National Park. Behaviour 1983, 84, 135–156. [Google Scholar] [CrossRef]
- Gerard, J.-F.; Bideau, E.; Maublanc, M.-L.; Loisel, P.; Marchal, C. Herd size in large herbivores: Encoded in the individual or emergent? Biol. Bull. 2002, 202, 275–282. [Google Scholar] [CrossRef]
- Beauchamp, G. Functional relationship between group size and population density in Northwest Atlantic seabirds. Mar. Ecol. Prog. Ser. 2011, 435, 225–233. [Google Scholar] [CrossRef]
- Beauchamp, G.; Krams, I. Flock size increases with the diversity and abundance of local predators in an avian family. Oecologia 2023, 202, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Lin, M.; Lusseau, D.; Li, S. The biogeography of group sizes in humpback dolphins (Sousa spp.). Integr. Zool. 2021, 16, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Holyoak, M.; Goodale, E.; Mammides, C.; Zou, F.; Chen, Y.; Zhang, C.; Quan, Q.; Zhang, Q. Mixed-species bird flocks re-assemble interspecific associations across an elevational gradient. Proc. R. Soc. Lond. B Biol. Sci. 2022, 289, 20221840. [Google Scholar] [CrossRef]
- Gibbs, D.; Barnes, E.; Cox, J. Pigeons and Doves; Yale University Press: New Haven, CT, USA, 2001. [Google Scholar]
- Goodwin, D. Pigeons and Doves of the World; Cornell University Press: Ithaca, NY, USA, 1983. [Google Scholar]
- Reiczigel, J.; Lang, Z.; Rózsa, L.; Tóthmérész, B. Measures of sociality: Two different views of group size. Anim. Behav. 2008, 75, 715–721. [Google Scholar] [CrossRef]
- Dunning, J.B. CRC Handbook of Avian Body Masses, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Tobias, J.A.; Sheard, C.; Pigot, A.L.; Devenish, A.J.M.; Yang, J.; Sayol, F.; Neate-Clegg, M.H.C.; Alioravainen, N.; Weeks, T.L.; Barber, R.A.; et al. AVONET: Morphological, ecological and geographical data for all birds. Ecol. Lett. 2022, 25, 581–597. [Google Scholar] [CrossRef]
- Wilman, H.; Belmaker, J.; Simpson, J.; de la Rosa, C.; Rivadeneira, M.M.; Jetz, W. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 2014, 95, 2027. [Google Scholar] [CrossRef]
- Sheard, C.; Neate-Clegg, M.H.C.; Alioravainen, N.; Jones, S.E.I.; Vincent, C.; MacGregor, H.E.A.; Bregman, T.P.; Claramunt, S.; Tobias, J.A. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 2020, 11, 2463. [Google Scholar] [CrossRef]
- Bliard, L.; Dufour, P.; Griesser, M.; Covas, R. Family living and cooperative breeding in birds are associated with the number of avian predators. Evolution 2024, 78, 1317–1324. [Google Scholar] [CrossRef]
- Ho, L.S.T.; Ané, C. A linear-time algorithm for gaussian and non-gaussian trait evolution models. Syst. Biol. 2014, 63, 397–408. [Google Scholar]
- Jetz, W.; Thomas, G.H.; Joy, J.B.; Hartmann, K.; Mooers, A.O. The global diversity of birds in space and time. Nature 2012, 491, 444–448. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, R.M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Covas, R. Evolution of reproductive life histories in island birds worldwide. Proc. R. Soc. Lond. B Biol. Sci. 2012, 279, 1531–1537. [Google Scholar] [CrossRef]
- Dunbar, R.I.M.; Korstjens, A.H.; Lehmann, J. Time as an ecological constraint. Biol. Rev. 2009, 84, 413–429. [Google Scholar] [CrossRef] [PubMed]
- Lukas, D.; Clutton-Brock, T. Climate and the distribution of cooperative breeding in mammals. R. Soc. Open Sci. 2017, 4, 160897. [Google Scholar] [CrossRef] [PubMed]
- Terborgh, J. Distribution on environmental gradients: Theory and a preliminary interpretation of distributional patterns in the avifauna of the Cordillera Vilcabamba, Peru. Ecology 1971, 52, 23–40. [Google Scholar] [CrossRef]
- Song, Z.; Liker, A.; Liu, Y.; Székely, T. Evolution of social organization: Phylogenetic analyses of ecology and sexual selection in Weavers. Am. Nat. 2022, 200, 250–263. [Google Scholar] [CrossRef]
- Beauchamp, G. Flocking in birds is associated with diet, foraging substrate, timing of activity, and life history. Behav. Ecol. Sociobiol. 2022, 76, 74. [Google Scholar] [CrossRef]
- Tella, J.L.; Romero-Vidal, P.; Dénes, F.V.; Hiraldo, F.; Toledo, B.; Rossetto, F.; Blanco, G.; Hernández-Brito, D.; Pacífico, E.; Díaz-Luque, J.A.; et al. Roadside car surveys: Methodological constraints and solutions for estimating parrot abundances across the world. Diversity 2021, 13, 300. [Google Scholar] [CrossRef]
Variable | Levels | Estimate (SE) | p-Value |
---|---|---|---|
Intercept | −0.35 (0.19) | 0.06 | |
Body mass in log10 scale | 0.089 (0.073) | 0.22 | |
Absolute centroid latitude | 0.021 (0.0028) | <0.0001 | |
Geographic location | Islands v. continent | 0.073 (0.075) | 0.33 |
Interaction between absolute centroid latitude and island living | Islands | −0.017 (0.0046) | 0.0002 |
Diet | Granivore v. frugivore | 0.10 (0.087) | 0.23 |
Omnivore v. frugivore | 0.0048 (0.077) | 0.95 | |
Altitude range | Mountains v. lowlands | 0.10 (0.052) | 0.04 |
Habitat type | Semi-open v. closed | 0.22 (0.056) | <0.0001 |
Open v. closed | 0.32 (0.074) | <0.0001 | |
Habitat use (% ground foraging) | −0.0021 (0.00078) | 0.008 | |
Research effort (number of sources used) | 0.55 (0.084) | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beauchamp, G. Annual Temperature Variation, Not Number of Predators, Predicts Variation in Foraging Group Size Among Pigeons Worldwide. Biology 2025, 14, 757. https://doi.org/10.3390/biology14070757
Beauchamp G. Annual Temperature Variation, Not Number of Predators, Predicts Variation in Foraging Group Size Among Pigeons Worldwide. Biology. 2025; 14(7):757. https://doi.org/10.3390/biology14070757
Chicago/Turabian StyleBeauchamp, Guy. 2025. "Annual Temperature Variation, Not Number of Predators, Predicts Variation in Foraging Group Size Among Pigeons Worldwide" Biology 14, no. 7: 757. https://doi.org/10.3390/biology14070757
APA StyleBeauchamp, G. (2025). Annual Temperature Variation, Not Number of Predators, Predicts Variation in Foraging Group Size Among Pigeons Worldwide. Biology, 14(7), 757. https://doi.org/10.3390/biology14070757