scQTLtools: An R/Bioconductor Package for Comprehensive Identification and Visualization of Single-Cell eQTLs
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of scQTLtools
2.2. Data Preparation and Input Functions
2.3. Gene Expression Normalization
2.4. Quality Control and Filtering
2.5. sc-eQTLs Mapping and Statistical Models
2.6. Visualization of eQTL Results
3. Results
3.1. Comparison with Existing eQTL Analysis Tools
3.2. Case Study on Human Acute Myeloid Leukemia
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
eQTL | Expression quantitative trait locus |
scRNA-seq | Single-cell RNA sequencing |
ZINB | Zero-inflated negative binomial regression |
QC | Quality control |
AML | Acute myeloid leukemia |
References
- Avila, P.U.; Padvitski, T.; Leote, A.C.; Chen, H.; Saez-Rodriguez, J.; Kann, M.; Beyer, A. Gene regulatory networks in disease and ageing. Nat. Rev. Nephrol. 2024, 20, 616–633. [Google Scholar] [CrossRef] [PubMed]
- Jovic, D.; Liang, X.; Zeng, H.; Lin, L.; Xu, F.; Luo, Y. Single-cell RNA sequencing technologies and applications: A brief overview. Clin. Transl. Med. 2022, 12, e694. [Google Scholar] [CrossRef] [PubMed]
- Boxer, E.; Feigin, N.; Tschernichovsky, R.; Darnell, N.G.; Greenwald, A.R.; Hoefflin, R.; Kovarsky, D.; Simkin, D.; Turgeman, S.; Zhang, L.; et al. Emerging clinical applications of single-cell RNA sequencing in oncology. Nat. Rev. Clin. Oncol. 2025, 22, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhao, H. eQTL studies: From bulk tissues to single cells. J. Genet. Genom. 2023, 50, 925–933. [Google Scholar] [CrossRef]
- Vandereyken, K.; Sifrim, A.; Thienpont, B.; Voet, T. Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Genet. 2023, 24, 494–515. [Google Scholar] [CrossRef]
- Maria, M.; Pouyanfar, N.; Örd, T.; Kaikkonen, M.U. The power of single-cell RNA sequencing in eQTL discovery. Genes 2022, 13, 502. [Google Scholar] [CrossRef]
- van der Wijst, M.G.; de Vries, D.H.; Groot, H.E.; Trynka, G.; Hon, C.C.; Bonder, M.J.; Stegle, O.; Nawijn, M.C.; Idaghdour, Y.; van der Harst, P.; et al. The single-cell eQTLGen consortium. eLife 2020, 9, e52155. [Google Scholar] [CrossRef]
- Neavin, D.; Nguyen, Q.; Daniszewski, M.S.; Liang, H.H.; Chiu, H.S.; Wee, Y.K.; Senabouth, A.; Lukowski, S.W.; Crombie, D.E.; Lidgerwood, G.E.; et al. Single cell eQTL analysis identifies cell type-specific genetic control of gene expression in fibroblasts and reprogrammed induced pluripotent stem cells. Genome Biol. 2021, 22, 76. [Google Scholar] [CrossRef]
- Argelaguet, R.; Cuomo, A.S.E.; Stegle, O.; Marioni, J.C. Computational principles and challenges in single-cell data integration. Nat. Biotechnol. 2021, 39, 1202–1215. [Google Scholar] [CrossRef]
- Shabalin, A.A. Matrix eQTL: Ultra fast eQTL analysis via large matrix operations. Bioinformatics 2012, 28, 1353–1358. [Google Scholar] [CrossRef]
- Hu, Y.; Xi, X.; Yang, Q.; Zhang, X. SCeQTL: An R package for identifying eQTL from single-cell parallel sequencing data. BMC Bioinform. 2020, 21, 184. [Google Scholar] [CrossRef] [PubMed]
- Anders, S.; Reyes, A.; Huber, W. Detecting differential usage of exons from RNA-seq data. Genome Res. 2012, 22, 2008–2017. [Google Scholar] [CrossRef]
- Fiddes, I.; Marks, P.; Jackman, S. VarTrix, Release v1.1.22. 2021. Available online: https://github.com/10XGenomics/vartrix (accessed on 30 May 2025).
- Pertea, M.; Kim, D.; Pertea, G.M.; Leek, J.T.; Salzberg, S.L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 2016, 11, 1650–1667. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Smyth, G.K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 2004, 3, 3. [Google Scholar] [CrossRef] [PubMed]
- Nathan, A.; Asgari, S.; Ishigaki, K.; Valencia, C.; Amariuta, T.; Luo, Y.; Beynor, J.I.; Baglaenko, Y.; Suliman, S.; Price, A.L.; et al. Single-cell eQTL models reveal dynamic T cell state dependence of disease loci. Nature 2022, 606, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Miao, Z.; Deng, K.; Wang, X.; Zhang, X.; Berger, B. DEsingle for detecting three types of differential expression in single-cell RNA-seq data. Bioinformatics 2018, 34, 3223–3224. [Google Scholar] [CrossRef]
- Huang, M.; Wang, J.; Torre, E.; Dueck, H.; Shaffer, S.; Bonasio, R.; Murray, J.; Raj, A.; Li, M.; Zhang, N. SAVER: Gene expression recovery for UMI-based single cell RNA sequencing. bioRxiv 2017, 138677. [Google Scholar]
- Wickham, H. ggplot2. WIREs Comput. Stat. 2011, 3, 180–185. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.R. Nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-14. Core T. Available online: https://cran.r-project.org/web/packages/nlme/ (accessed on 21 March 2022).
- Imholte, G.C.; Scott-Boyer, M.-P.; Labbe, A.; Deschepper, C.F.; Gottardo, R. iBMQ: A R/Bioconductor package for integrated Bayesian modeling of eQTL data. Bioinformatics 2013, 29, 2797–2798. [Google Scholar] [CrossRef]
- Figueroa, D.B.; Madeen, E.P.; Tillotson, J.; Richardson, P.; Cottle, L.; McCauley, M.; Landovitz, R.J.; Andrade, A.; Hendrix, C.W.; Mayer, K.H.; et al. Genetic variation of the kinases that phosphorylate tenofovir and emtricitabine in peripheral blood mononuclear cells. AIDS Res. Hum. Retroviruses 2018, 34, 421–429. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Huang, X.; Chen, P.; Kang, J.; Yang, J.; Huang, Z.; Xu, S. scQTLtools: An R/Bioconductor Package for Comprehensive Identification and Visualization of Single-Cell eQTLs. Biology 2025, 14, 743. https://doi.org/10.3390/biology14070743
Wu X, Huang X, Chen P, Kang J, Yang J, Huang Z, Xu S. scQTLtools: An R/Bioconductor Package for Comprehensive Identification and Visualization of Single-Cell eQTLs. Biology. 2025; 14(7):743. https://doi.org/10.3390/biology14070743
Chicago/Turabian StyleWu, Xiaofeng, Xin Huang, Pinjing Chen, Jingtong Kang, Jin Yang, Zhanpeng Huang, and Siwen Xu. 2025. "scQTLtools: An R/Bioconductor Package for Comprehensive Identification and Visualization of Single-Cell eQTLs" Biology 14, no. 7: 743. https://doi.org/10.3390/biology14070743
APA StyleWu, X., Huang, X., Chen, P., Kang, J., Yang, J., Huang, Z., & Xu, S. (2025). scQTLtools: An R/Bioconductor Package for Comprehensive Identification and Visualization of Single-Cell eQTLs. Biology, 14(7), 743. https://doi.org/10.3390/biology14070743