DNA Specimen Preservation Using DESS and DNA Extraction in Museum Collections
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Specimens
2.1.2. DESS and DESS-NMNS Solution
2.2. Methods
2.2.1. Analysis of Evaporation Rates in Preservation Solutions
2.2.2. DNA Extraction
2.2.3. Assessment of DNA Quantification and Quality
2.2.4. PCR for DNA Barcoding Region
3. Results and Discussion
3.1. Characteristics of the DESS Solution
3.1.1. The pH Stability of the DESS Solution
3.1.2. Rate of Evaporation
3.2. Advantages and Disadvantages of DESS for Morphological Preservation and Taxonomic Studies
3.2.1. Invertebrates
- Nematodes
- Arthropods
- -
- Spiders
- -
- Insects
- Shrimp (Neomysis)
- Sea cucumbers
- Slugs and snails (Gastropoda)
3.2.2. Vertebrates
- Birds
3.2.3. Seagrasses and Algae
- Seagrasses
- Algae
3.2.4. Fungi
3.3. Customizing the Preservation Solutions for Different Species
3.3.1. Cost-Based Selection of Preservation Solutions
3.3.2. Safe Use of Preservation Solutions
3.3.3. Application in Ecological Field Studies
3.4. DNA Extraction from Museum Specimens
Comparison of Silica Performance and Cost in DNA Extraction Using the Boom Method
Product Name | Cost Per 10 g (Dollar, JPY) |
---|---|
Wakosil®5SIL 1 | USD0.014, JPY23,800 |
Silica gel 2 | USD4.73–10.95, JPY687–1590 |
SiO2 (~99%, 0.5–10 μm) 3 | USD1.42–7.44, JPY206–1080 |
Diatomaceous earth 4 | USD0.81–2.04, JPY117–296 |
4. Conclusions
5. Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nachman, M.W.; Beckman, E.J.; Bowie, R.C.; Cicero, C.; Conroy, C.J.; Dudley, R.; Hayes, T.B.; Koo, M.S.; Lacey, E.A.; Martin, C.H.; et al. Specimen collection is essential for modern science. PLoS Biol. 2023, 21, e3002318. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://archive.nytimes.com/schott.blogs.nytimes.com/2009/01/15/museomics/ (accessed on 11 May 2025).
- Miller, W.; Drautz, D.I.; Ratan, A.; Pusey, B.; Qi, J.; Lesk, A.M.; Tomsho, L.P.; Packard, M.D.; Zhao, F.; Sher, A.; et al. Sequencing the nuclear genome of the extinct woolly mammoth. Nature 2008, 456, 387–390. [Google Scholar] [CrossRef] [PubMed]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; deWaard, J.R. Biological identifications through DNA barcodes. Proc. Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef]
- Strutzenberger, P.; Brehm, G.; Fiedler, K. DNA barcode sequencing from old type specimens as a tool in taxonomy: A case study in the diverse genus eois (Lepidoptera: Geometridae). PLoS ONE 2012, 7, e49710. [Google Scholar] [CrossRef]
- Price, B.W.; Henry, C.S.; Hall, A.C.; Mochizuki, A.; Duelli, P.; Brooks, S.J. Singing from the grave: DNA from a 180 year old type specimen confirms the identity of Chrysoperla carnea (Stephens). PLoS ONE 2015, 10, e0121127. [Google Scholar] [CrossRef] [PubMed]
- Prosser, S.W.J.; deWaard, J.R.; Miller, S.E.; Hebert, P.D.N. DNA barcodes from century-old type specimens using next-generation sequencing. Mol. Ecol. Resour. 2016, 16, 487–497. [Google Scholar] [CrossRef]
- Hosaka, K. DNA Extraction, PCR and Sequencing Were Largely Unsuccessful from the Type Specimens of Mushrooms but Some 50-Year-Old or Older Specimens Produced Authentic Sequences; Bulletin of National Museum of Nature and Science: Tokyo, Japan, 2017; Volume 43, pp. 33–44. [Google Scholar]
- Todisco, V.; Basu, D.N.; Prosser, S.W.J.; Russell, S.; Mutanen, M.; Zilli, A.; Huertas, B.; Kunte, K.; Vane-Wright, R. DNA barcodes from over-a-century-old type specimens shed light on the taxonomy of a group of rare butterflies (Lepidoptera: Nymphalidae: Calinaginae). PLoS ONE 2024, 19, e0305825. [Google Scholar] [CrossRef]
- Stein, E.D.; White, B.P.; Mazor, R.D.; Miller, P.E.; Pilgrim, E.M. Evaluating ethanol-based sample preservation to facilitate use of DNA barcoding in routine freshwater biomonitoring programs using benthic. PLoS ONE 2013, 8, e51273. [Google Scholar] [CrossRef]
- Nsubuga, A.M.; Robbins, M.M.; Roeder, A.D.; Morin, P.A.; Boesch, C.; Vigilant, L. Factirs affecting the amount of genomic DNA extracted from ape faeces and the identification of an improved sample strage method. Mol. Ecol. 2004, 13, 2089–2094. [Google Scholar] [CrossRef]
- Naem, S.; Pagan, C.; Nadler, S.A. Structural restoration of nematodes and acanthocephalans fixed in high percentage alcohol using DESS solution and rehydration. J. Parasitol. 2010, 96, 809–811. [Google Scholar] [CrossRef]
- Gilbert, M.T.P.; Moore, W.; Melchior, L.; Worobey, M. DNA extraction from dry museum beetles without conferring external morphological damage. PLoS ONE 2007, 2, e272. [Google Scholar] [CrossRef] [PubMed]
- Sugita, N.; Ebihara, A.; Hosoya, T.; Jinbo, U.; Kaneko, S.; Kurosawa, T.; Nakae, M.; Yukawa, T. Non-destructive DNA extraction from herbarium specimens: A method particularly suitable for plants with small and fragile leaves. J. Plant Res. 2020, 133, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Seutin, G.; White, B.N.; Boag, P.T. Preservation of avian blood and tissue samples for DNA analyses. Can. J. Zool. 1991, 69, 82–90. [Google Scholar] [CrossRef]
- Dawson, M.N.; Raskoff, K.A.; Jacobs, D.K. Field preservation of marine invertebrate tissue for DNA analysis. Mol. Mar. Biol. Biotechnol. 1998, 7, 145–152. [Google Scholar]
- Yoder, M.; De Ley, I.T.; Wm King, I.; Mundo-Ocampo, M.; Mann, J.; Blaxter, M.; Poiras, L.; De Ley, P. DESS: A versatile solution for preserving morphology and extractable DNA of nematodes. Nematology 2006, 8, 367–376. [Google Scholar] [CrossRef]
- Oosting, T.; Hilario, E.; Wellenreuther, M.; Ritchie, P.A. DNA degradation in fish: Practical solutions and guidelines to improve DNA preservation for genomic research. Ecol. Evol. 2020, 10, 8643–8651. [Google Scholar] [CrossRef]
- Sharpe, A.; Barrios, S.; Gayer, S.; Allan-Perkins, E.; Stein, D.; Appiah-Madson, H.J.; Falco, R.; Distel, D.L. DESS deconstructed: Is EDTA solely responsible for protection of high molecular weight DNA in this common tissue preservative? PLoS ONE 2020, 15, e0237356. [Google Scholar] [CrossRef]
- Ogiso-Tanaka, E.; Ito, M.A.; Shimada, D. Non-destructive DNA Extraction from Specimens and Environmental Samples Using DESS Preservation Solution for DNA Barcoding. bioRxiv 2024. [Google Scholar] [CrossRef]
- Shimada, D.; Kakui, K.; Kajihara, H. A New Species of Deep-sea Nematode, Micoletzkyia mawatarii sp. nov. (Nematoda: Enoplida: Phanodermatidae) from Northern Japan. Spec. Divers. 2012, 17, 221–226. [Google Scholar] [CrossRef]
- Shimada, D.; Suzuki, A.C.; Tsujimoto, M.; Imura, S.; Kakui, K. Oncholaimus Langhovdensis sp. nov. (Nematoda: Enoplea: Oncholaimida), a New Species of Free-Living Marine Nematode from Langhovde, Dronning Maud Land, East Antarctica. Spec. Divers. 2017, 22, 151–159. [Google Scholar] [CrossRef]
- Hosaka, K.; Castellano, M.A. Molecular Phylogenetics of Geastrales with Special Emphasis on the Position of Sclerogaster. Bull. Natl. Mus. Nat. Sci. Ser. B 2008, 34, 161–173. [Google Scholar]
- Hosaka, K.; Uno, K. Assessment of the DNA quality in mushroom specimens: Effect of drying temperature. Bull. Natl. Mus. Nat. Sci. Ser. B 2011, 37, 101–111. [Google Scholar]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Boom, R.; Sol, C.J.; Salimans, M.M.; Jansen, C.L.; Wertheim-van Dillen, P.M.; van der Noordaa, J. Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol. 1990, 28, 495–503. [Google Scholar] [CrossRef]
- Shioya, N.; Ogiso-Tanaka, E.; Watanabe, M.; Anai, T.; Hoshino, T. Development of a high-quality/yield long-read sequencing-adaptable DNA extraction method for crop seeds. Plants 2023, 12, 2971. [Google Scholar] [CrossRef]
- Hosaka, K.; Nam, K.O. Polymerase chain reaction with a reduced ramp rate: A case study from fungal atp 6. Bull. Natl. Mus. Nat. Sci. 2023, 49, 41–48. [Google Scholar]
- Rogstad, S.H. Plant DNA extraction using silica. Plant Mol. Biol. Rep. 2003, 21, 463. [Google Scholar] [CrossRef]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Leray, M.; Yang, J.Y.; Meyer, C.P.; Mills, S.C.; Agudelo, N.; Ranwez, V.; Boehm, J.T.; Machida, R.J. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: Application for characterizing coral reef fish gut contents. Front. Zool. 2013, 10, 34. [Google Scholar] [CrossRef]
- White, T.; Bruns, T.; Lee, S.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
- Vilgalys, R.; Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990, 172, 4238–4246. [Google Scholar] [CrossRef]
- Yasuda, T. Purasuchikku zairyō no kaku dōtokusei no shikenhō to hyōka kekka (5) [Test methods and evaluation results for various dynamic properties of plastic materials (5)]. Purasuchikkusu [Plastics] 2000, 51, 119–127. (In Japanese) [Google Scholar]
- Madshus, I.H. Regulation of intracellular pH in eukaryotic cells. Biochem. J. 1988, 250, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Maeda, M.; Koshikawa, M.; Nishizawa, K.; Takano, K. Cell wall constituents, especially pectic substance of a marine phanerogam Zostera marina. Bot. Mag. 1966, 79, 422–426. [Google Scholar] [CrossRef]
- Vink, C.J.; Thomas, S.M.; Paquin, P.; Hayashi, C.Y.; Hedin, M. The effects of preservatives and temperatures on arachnid DNA. Invertebr. Syst. 2005, 19, 99–104. [Google Scholar] [CrossRef]
- Ferro, M.L.; Park, J.S. Effect of propylene glycol concentration on mid-term DNA preservation of Coleoptera. Coleopt. Bull. 2013, 67, 581–586. [Google Scholar] [CrossRef]
- Nakahama, N.; Isagi, Y.; Ito, M. Methods for retaining well-preserved DNA with dried specimens of insects. Eur. J. Entomol. 2019, 116, 486–491. [Google Scholar] [CrossRef]
- Gerlach, S.A. Development of marine nematode taxonomy up to 1979. Veroff. Inst. Meeresforsch. Bremerh. 1980, 18, 249–255. [Google Scholar]
- Lambshead, P.J.D. Marine nematode biodiversity. In Nematology: Advances and Perspectives; Chen, Z.X., Chen, S.Y., Dickson, D.W., Eds.; Tsinghua University Press: Beijing, China, 2004; Volume I, pp. 438–468. [Google Scholar]
- Shirayama, Y. How to understand marine biodiversity [Kaiyo seibutsu no tayosei wo ikanishite rikaisuru ka]. In The Life History of the Ocean—How Life Evolved in the Sea [Kaiyo no Seimeishi—Seimei Wa Umi De Do Shinkashita Ka]; Tokai University Press: Tokyo, Japan, 2009. (In Japanese) [Google Scholar]
- World Spider Catalog Version 26. Available online: https://wsc.nmbe.ch/ (accessed on 27 February 2025).
- Bolzern, A.; Burckhardt, D.; Hänggi, A. Phylogeny and taxonomy of European funnel-web spiders of the Tegenaria-Malthonica complex (Araneae: Agelenidae) based upon morphological and molecular data. Zool. J. Linn. Soc. 2013, 168, 723–848. [Google Scholar] [CrossRef]
- Chu, C.; Lin, Y.; Li, S. New genera and new species of Hahniidae (Araneae) from China, Laos, Myanmar, and Vietnam. Zookeys 2023, 1187, 91–134. [Google Scholar] [CrossRef]
- Kulkarni, S.; Wood, H.M.; Hormiga, G. Advances in the reconstruction of the spider tree of life: A roadmap for spider systematics and comparative studies. Cladistics 2023, 39, 479–532. [Google Scholar] [CrossRef]
- Raven, R.J. Revisions of Australian ground-hunting spiders VI: Five new stripe-less miturgid genera and 48 new species (Miturgidae: Miturginae). Zootaxa 2023, 5358, 1–117. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, W.C.; Coddington, J.A.; Crowley, L.M.; Dimitrov, D.; Goloboff, P.A.; Griswold, C.E.; Hormiga, G.; Prendini, L.; Ramírez, M.J.; Sierwald, P.; et al. The spider tree of life: Phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. Cladistics 2017, 33, 574–616. [Google Scholar] [CrossRef] [PubMed]
- Masumoto, T. The preservation of specimens and DNA sequencing for the analysis of phylogeny in spiders [Mitokonodoria DNA wo mochiita kumorui no keitō kaiseki no tame no hyōhon hozon to enki hairetsu no kettei-hō]. Acta Arachnol. 1997, 46, 61–67. (In Japanese) [Google Scholar]
- Takeichi, M. Functional correlation between cell adhesive properties and some cell surface proteins. J. Cell Biol. 1977, 75, 464–474. [Google Scholar] [CrossRef]
- Baba, K.; Hirashima, Y. Konchu Saishugaku [Insect Collection Science]; Kyushu University Press: Fukuoka, Japan, 2000; ISBN 4873786576. (In Japanese) [Google Scholar]
- Dillon, N.; Austin, A.D.; Bartowsky, E. Comparison of preservation techniques for DNA extraction from hymenopterous insects. Insect Mol. Biol. 1996, 5, 21–24. [Google Scholar] [CrossRef]
- Knudsen, J.W. Biological Techniques: Collecting, Preserving, and Illustrating Plants and Animals; Harper & Row: Manhattan, NY, USA, 1966. [Google Scholar]
- Goates, C.Y.; Knutson, K. Enhanced permeation of polar compounds through human epidermis. I. Permeability and membrane structural changes in the presence of short chain alcohols. Biochim. Biophys. Acta 1994, 1195, 169–179. [Google Scholar] [CrossRef]
- Masner, L. Effect of low temperature on preservation and quality of insect specimens stored in alcohol. Ins. Coll. News 1994, 9, 14–15. [Google Scholar]
- Hancock, G.E.; Ryder, S. Silver and nickel pins in entomology: Historical attempts at combating corrosion problems in insect collections. J. Nat. Sci. Collect. 2020, 7, 44–48. [Google Scholar]
- Katayama, S.; Tamaki, M.; Okata, A. Diel changes in vertical distributions of two mysid species, Neomysis, in estuarine brackish water. Bull. Jpn. Soc. Fish. Oceanogr. 2011, 75, 19–28. (In Japanese) [Google Scholar]
- WoRMS (World Register of Marine Species). Available online: https://www.marinespecies.org/aphia.php?p=taxdetails&id=123083 (accessed on 27 February 2025).
- Herring, P. The Biology of the Deep Ocean; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Samyn, Y.; Vandenspiegel, D.; Massin, C. A new Indo-west Pacific species of Actinopyga (Holothuroidea: Aspidochirotida: Holothuriidae). Zootaxa 2006, 1138, 53. [Google Scholar] [CrossRef]
- Thandar, A.S. A Taxonomic Monograph of the Sea Cucumbers of Southern AFRICA (Echinodermata: Holothuroidea). Suricata 9; The South African National Biodiversity Institute Pretoria: Pretoria, South Africa, 2022. [Google Scholar]
- Mucharin, A.; Gustafsson, M.; Cedhagen, T.; Funch, P. Silica gel drying of sea cucumber tissue as an alternative to extraction buffer or ethanol for preservation of DNA. Thai. Nat. Hist. Mus. J. 2021, 15, 135–136. [Google Scholar]
- Fukuda, H.; Haga, T.; Tatara, Y. Niku-nuki: A useful method for anatomical and DNA studies on shell-bearing. Zoosymposia 2008, 1, 15–38. [Google Scholar] [CrossRef]
- Di Lecce, I.; Sudyka, J.; Westneat, D.F.; Szulkin, M. Preserving avian blood and DNA sampled in the wild: A survey of personal experiences. Ecol. Evol. 2022, 12, e9232. [Google Scholar] [CrossRef] [PubMed]
- Longmire, J.L.; Maltbie, M.; Baker, R.J. Use of ‘lysis buffer’. In DNA Isolation and Its Implication for Museum Collections; Occasional Papers, The Museum, Texas Tech University: Lubbock, TX, USA, 1997; Volume 163, pp. 1–3. [Google Scholar]
- U.S. Pharmacopeial Convention. National Formulary 2009; U.S. Pharmacopeia: Rockville, MD, USA, 2009; Volume USP32-NF 27. [Google Scholar]
- Shinmei, A. Effects of Ethanol Concentration on Sterilization and Antiviral Efficacy [Sakkin, Kōuirusu Kōka ni Oyobosu Etanōru Nōdo no Eikyō.]. Doctoral Dissertation, Tokyo Healthcare University, Tokyo, Japan, 2019. (In Japanese). [Google Scholar]
- Newton, H.; Fisher, J.; Arnold, J.R.; Pegg, D.E.; Faddy, M.J.; Gosden, R.G. Permeation of human ovarian tissue with cryoprotective agents in preparation for cryopreservation. Hum. Reprod. 1998, 13, 376–380. [Google Scholar] [CrossRef]
- Noda, M.; Ma, Y.; Yoshikawa, Y.; Imanaka, T.; Mori, T.; Furuta, M.; Tsuruyama, T.; Yoshikawa, K. A single-molecule assessment of the protective effect of DMSO against DNA double-strand breaks induced by photo-and γ-ray-irradiation, and freezing. Sci. Rep. 2017, 7, 8557. [Google Scholar] [CrossRef]
- Inglis, G.; Waycott, M. Methods for Assessing Seagrass Seed Ecology and Population Genetics. In Global Seagrass Research Methods; Elsevier Science: Amsterdam, The Netherlands, 2001; pp. 123–140. [Google Scholar]
- Tanaka, N.; Kuo, J.; Omori, Y.; Nakaoka, M.; Aioi, K. Phylogenetic relationships in the genera Zostera and Heterozostera (Zosteraceae) based on matK sequence data. J. Plant Res. 2003, 116, 273–279. [Google Scholar] [CrossRef]
- Yang, E.C.; Peters, A.F.; Kawai, H.; Stern, R.; Hanyuda, T.; Bárbara, I.; Müller, D.G.; Strittmatter, M.; van Reine, W.F.P.; Küpper, F.C. Ligulate Desmarestia (Desmarestiales, Phaeophyceae) revisited: D. japonica sp. nov. and D. dudresnayi differ from D. ligulata. J. Phycol. 2014, 50, 149–166. [Google Scholar] [CrossRef]
- Rodríguez-Prieto, C.; Freshwater, D.W.; Hommersand, M.H. Morphology and phylogenetic systematics of Ptilocladiopsis horrida and proposal of the Ptilocladiopsidaceae fam. nov. (Gigartinales, Rhodophyta). Phycologia 2014, 53, 383–395. [Google Scholar]
- Kawai, H.; Sherwood, A.R.; Ui, S.; Hanyuda, T. New record of Sporochnus dotyi (Sporochnales, Phaeophyceae) from Kii Peninsula, Japan. Phycol. Res. 2023, 71, 100–106. [Google Scholar]
- Zuccarello, G.C.; Paul, N.A. A beginner’s guide to molecular identification of seaweed. Squalen Bull. Mar. Fish. Postharvest Biotechnol. 2019, 14, 43–53. [Google Scholar] [CrossRef]
- Wilson, L.J.; Weber, X.A.; King, T.M.; Fraser, C.I. DNA extraction techniques for genomic analyses of macroalgae. In Seaweed Phylogeography: Adaptation and Evolution of Seaweeds under Environmental Change; Hu, Z.-M., Fraser, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 363–386. [Google Scholar]
- Fontana, S.; Wang, W.-L.; Tseng, K.-Y.; Draisma, S.G.A.; Dumilag, R.V.; Hu, Z.-M.; Li, J.-J.; Lai, P.-H.; Mattio, L.; Sherwood, A.R.; et al. Seaweed diversification driven by Taiwan’s emergence and the Kuroshio Current: Insights from the cryptic diversity and phylogeography of Dichotomaria (Galaxauraceae, Rhodophyta). Front. Ecol. Evol. 2024, 12, 1346199. [Google Scholar]
- Kyaw, M.K.; Kato, A.; Kurashima, A.; Liao, L.M.; Baba, M. Lithophyllum nagaokaense sp. nov. (Corallinales, Corallinophycidae, Rhodophyta): A new rhodolith-forming non-geniculate coralline alga from Japan. Phycol. Res. 2024, 72, 167–179. [Google Scholar]
- Vieira, C.; Kim, M.S.; Zubia, M. French Polynesian Scytosiphonaceae (Ectocarpales, Phaeophyceae): A combined molecular and morphological approach to their diversity and systematics. J. Phycol. 2024, 60, 447–464. [Google Scholar] [CrossRef]
- Pearman, W.S.; Arranz, V.; Carvajal, J.I.; Whibley, A.; Liau, Y.; Johnson, K.; Gray, R.; Treece, J.M.; Gemmell, N.J.; Liggins, L.; et al. A cry for kelp: Evidence for polyphenolic inhibition of Oxford nanopore sequencing of brown algae. J. Phycol. 2024, 60, 1601–1610. [Google Scholar] [CrossRef]
- Denoeud, F.; Godfroy, O.; Cruaud, C.; Heesch, S.; Nehr, Z.; Tadrent, N.; Couloux, A.; Brillet-Guéguen, L.; Delage, L.; Mckeown, D.; et al. Evolutionary genomics of the emergence of brown algae as key components of coastal ecosystems. Cell 2024, 187, 6943–6965.e39. [Google Scholar] [CrossRef] [PubMed]
- Akita, S.; Vieira, C.; Hanyuda, H.; Rousseau, F.; Cruaud, C.; Couloux, A.; Heesch, S.; Cock, J.M.; Kawai, H. Providing a phylogenetic framework for trait-based analyses in brown algae: Phylogenomic tree inferred from 32 nuclear protein-coding sequences. Mol. Phylogenet. Evol. 2022, 168, 107408. [Google Scholar] [CrossRef] [PubMed]
- Osmundson, T.W.; Halling, R.E.; den Bakker, H.C. Morphological and molecular evidence supporting an arbutoid mycorrhizal relationship in the Costa Ricanpáramo. Mycorrhiza 2007, 17, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Hosaka, K. Phylogeography of the genus Pisolithus Revisited with some additional taxa from New Caledonia and Japan. Bull. Natl. Mus. Nat. Sci. 2009, 35, 151–167. [Google Scholar]
- Hosaka, K.; Nam, K.-O.; Linn, W.W.; Aung, M.M. Species identification based on DNA of selected mushrooms from Myanmar (1) Lactarius austrotorminosus and 17 other taxa newly reported from Myanmar. Bull. Natl. Mus. Nat. Sci. B 2021, 47, 59–69. [Google Scholar]
- Byrne, M.; Macdonald, B.; Francki, M. Incorporation of sodium sulfite into extraction protocol minimizes degradation of Acacia DNA. BioTechniques 2001, 30, 742–748. [Google Scholar] [CrossRef]
- Whitten, W.M.; Williams, N.H.; Glover, K.V. Sulphuryl fluoride fumigation: Effect on DNA extraction and amplification from herbarium specimens. Taxon 1999, 48, 507–510. [Google Scholar] [CrossRef]
- Huang, Y.T. RNAlater Recipe. Available online: https://www.protocols.io/view/rnalater-recipe-bp2l61w35vqe/v1 (accessed on 1 May 2025).
- Prickett, P.S.; Murray, H.L.; Mercer, N.H. Potentiation of preservatives (parabens) in pharmaceutical formulations by low concentrations of propylene glycol. J. Pharm. Sci. 1961, 50, 316–320. [Google Scholar] [CrossRef]
- Asaka, Y. Preservation technology for cosmetics [Keshohin no bofu gijutsu]. In Q&A 181 Guidebook for Microbiological Testing of Cosmetics—From Preservative Design, Manufacturing Process Control to Shipping Inspection and Complaint Measures; Yakuji Nippo: Tokyo, Japan, 2019; pp. 1–27. (In Japanese) [Google Scholar]
- Spicer, A.B.; Spooner, D.F. The inhibition of growth of Escherichia coli spheroplasts by antibacterial agents. J. Gen. Microbiol. 1974, 80, 37–50. [Google Scholar] [CrossRef]
- Kida, N.; Suzuki, S.; Yamanaka, T.; Furuyama, K.; Taguchi, F. Effect of pH on preferential antibacterial-activity of ethylenediaminetetraacetic acid (EDTA). Nihon Saikingaku Zasshi 1992, 47, 625–629. [Google Scholar] [CrossRef]
- Ministry of the Environment of Japan. Available online: https://www.env.go.jp/content/900411187.pdf (accessed on 1 May 2025).
- Kasai, H.; Kawai, K.; Li, Y.S. DNA methylation at the C-5 position of cytosine by methyl radical: A link between environmental agents and epigenetic change. Genes Environ. 2011, 33, 61–65. [Google Scholar] [CrossRef]
- Vogelstein, B.; Gillespie, D. Preparation and analytical purification of DNA from agarose. Proc. Natl. Acad. Sci. USA 1979, 76, 615–619. [Google Scholar] [CrossRef]
- Rothe, J.; Nagy, M. Comparison of two silica-based extraction methods for DNA isolation from bones. Legal Med. 2016, 22, 36–41. [Google Scholar] [CrossRef]
- Katevatis, C.; Fan, A.; Klapperich, C.M. Low concentration DNA extraction and recovery using a silica solid phase. PLoS ONE 2017, 12, e0176848. [Google Scholar] [CrossRef]
- Chen, W.; Matulis, D.; Hu, W.; Lai, Y.; Wang, W. Studies of the interactions mechanism between DNA and silica surfaces by Isothermal Titration Calorimetry. J. Taiwan Inst. Chem. Eng. 2020, 116, 62–66. [Google Scholar] [CrossRef]
- FUJIFILM. Wakosil®5SIL; FUJIFILM: Tokyo, Japan, 2025; Available online: https://labchem-wako.fujifilm.com/us/product/detail/W01W0123-0085.html (accessed on 12 May 2025).
- Sigma-Aldrich. Silica Gel Inorganic Sorbent [Internet]; Sigma-Aldrich: St. Louis, MO, USA, 2025; Available online: https://www.sigmaaldrich.com/JP/ja/product/sial/236810?srsltid=AfmBOor9U5-cGyJuwIWP6uSFeICW6F-C0AOUReJvtCRY5yqUo9HzCj_m. (accessed on 12 May 2025).
- Sigma-Aldrich. SiO2 [Internet]; Sigma-Aldrich: St. Louis, MO, USA, 2025; Available online: https://www.sigmaaldrich.com/JP/ja/product/sigald/s5631?srsltid=AfmBOoqofV21AOQAULv7j4HpK0DZ79PNiIQLsBPL7rRXdQrWYnevlwlP (accessed on 12 May 2025).
- Sigma-Aldrich. Diatomaceous Earth [Internet]; Sigma-Aldrich: St. Louis, MO, USA, 2025; Available online: https://www.sigmaaldrich.com/JP/ja/product/sigald/d3877. (accessed on 12 May 2025).
- PacBio. New Ampli-Fi Ultra-Low-Input Protocol Will Support HiFi Sequencing from as Little as 1 ng of DNA; PacBio: Menlo Park, CA, USA, 2025; Available online: https://www.pacb.com/blog/new-ampli-fi-ultra-low-input-protocol-will-support-hifi-sequencing-from-as-little-as-1-ng-of-dna/. (accessed on 12 May 2025).
- Dekker, J.; Marti-Renom, M.A.; Mirny, L.A. Exploring the three-dimensional organization of genomes: Interpreting chromatin interaction data. Nat. Rev. Genet. 2013, 14, 390–403. [Google Scholar] [CrossRef]
- Fraser, J.; Williamson, I.; Bickmore, W.A.; Dostie, J. An overview of genome organization and how we got there: From fish to Hi-C. Microbiol. Mol. Biol. Rev. 2015, 79, 347–372. [Google Scholar] [CrossRef]
- Giere, O. (Ed.) Sampling and processing meiofauna. In Meinbeothology: The Microscopic Motile Fauna of Aquatic Sediments, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 63–86. [Google Scholar] [CrossRef]
- Hulings, N.C.; Gray, J.S. A manual for the study of meiofauna. Smithson. Contrib. Zool. 1971, 78, 1–83. [Google Scholar] [CrossRef]
- Pfannkuche, O.; Thiel, H. Sample processing. In Introduction to the Study of Meiofauna; Higgins, R.P., Thiel, H., Eds.; Smithonian Institute Press: Washington, DC, USA; London, UK, 1988. [Google Scholar]
- Shirayama, Y. Kaisan senchu [Marine nematodes]. In Senchugaku Jikkenho [Nematological Experimentation]; Mamiya, Y., Araki, M., Ishibashi, N., Iwahori, H., Ogura, N., Kosaka, H., Eds.; The Japanese Nematological Society: Tsukuba, Japan, 2004; pp. 187–194. [Google Scholar]
- Schram, M.D.; Davison, P.G. Irwin loops—A history and method of constructing homemade loops. Trans. Kans. Acad. Sci. 2012, 115, 35–40. [Google Scholar] [CrossRef]
Taxa | Preservation Condition | ||||
---|---|---|---|---|---|
Animal | Invertebrates | Nematoda (free-living marine nematode) 1 | Oncholaimida Phanodermatidae Enoplida Adoncholaimus | DESS | |
Arthropoda | Insecta | Membracidae Coleoptera Scarabaeidae Chrysomelidae Cerambycidae Staphylinidae Carabidae Endomychidae Curculionidae Pyrochroidae Nitidulidae Mordellidae Cantharidae Protaetia orientalis | DESS | ||
Mantodea | Ethanol, DESS | ||||
Orthoptera | Ethanol, DESS, DESS-NMNS 2 | ||||
Prionus insularis | Air dry, Ethanol, DESS, Ethanol + DESS, | ||||
Spider | Okumura various (Table S1) | 70% Ethanol, DESS, etc. | |||
Mysida | Neomysis japonica | Ethanol, DESS, formalin | |||
Echinodermata | Holothuroidea cucumber | Elpidia kurilensis Peniagone sp. Pseudostichopus sp. | Ethanol, DESS | ||
Mollusca | Echinolittorina radiata Lottia kogamogai Nassarius siquijorensis Sinotaia quadrata histrica | 100% Ethanol, DESS | |||
Vertebrates | Aves (Birds) | Birds | Charadriiformes Columbiformes Passeriformes Piciformes Psittaciformes Strigiformes Gallus gallus domesticus | Ethanol, DESS | |
Plant | Seagrasses | Zostera marina Phyllospadix iwatensis | DESS | ||
Algae | Seaweeds | Ochrophyta | Brown alga | Turbinaria ornata | DESS |
Fungi | Mushrooms | Basidiomycota | Pluteus sp. Cortinarius sp. Russula sp. Entoloma spp. Thaxterogaster sp. | modified DESS 2 (DESS-NMNS) |
Composition | DESS | DESS-NMNS 3 | Cat. No. |
---|---|---|---|
DMSO | 20% | 20% | FUJIFILM, Tokyo, Japan, 043-07216 |
EDTA 1 | 250 mM | 250 mM | DOJINDO, Mashiki, Japan, 345-01865 |
NaCl | saturated | saturated | FUJIFILM, 195-01663 |
Tris-HCl (pH 8.0) 2 | - | 100 mM | NACALAI TESQUE, Kyoto, Japan, 35406-75 |
sodium sulfite (Na2SO3) | - | 100 mM | FUJIFILM, 192-03415 |
Treatment Method | Advantages | Disadvantages | |
---|---|---|---|
Reagent | 99% ethanol 1 | Inexpensive Safe Dehydrating ability | DNase inhibitory effect: Medium Non-shippable concentration Volarility Tissue hardening |
70% ethanol | Inexpensive Safe Shippable concentration Maintains tissue flexibility | DNase inhibitory effect: Low 2* Volarility 3* | |
99.5% ethanol 4 | Safe Dehydrating ability | DNase inhibitory effect: Medium Non-shippable concentration Volarility Tissue hardening | |
Dimethyl sulfoxide (DMSO) | Cell permeability Dehydrating ability Cell cryoprotectant (5~10%) DNAphotoprotection Extremely low volatility | Low cell toxicity | |
Propylene glycol (P.G.) | Safe Extremely low volatility Dehydrating ability(preservative effect >10%) Cell permeability Cell cryoprotectant (1~7%) | DNase inhibitory effect: Medium | |
EDTA (pH 8.0) | DNase inhibitory effect: High (Chelating action) | Environmental impact: High (Difficult biodegradation) Morphological damage to the calcified organisms | |
HIDS® 5 | DNase inhibitory effect: High (Chelating action) Biodegradable | Environmental impact: Low Morphological damage to the calcified organisms | |
NaCl | DNA stabilization Preservative effect (osmotic pressure) | - | |
Tris-HCl (pH 8.0) | pH stabilization | - | |
Sodium Sulfite 6 | Antioxidant Safe | - | |
Treatment Method | Drying | DNase inactivation | Morphological damage/deformation DNase reactivation due to moisture absorption |
Heat (dry heat/hot water) (e.g., 55 °C 1 h, 65 °C 30 min, 90 °C 10 min) | Irreversible DNase inactivation | Equipment/hot water preparation requirement Morphological damage | |
Ultrasonic cleaning 7 | Specimen cleaning High cleaning power | DNA fragmentation 8 Morphological damage 9 | |
Refrigeration (4 °C) | Reduced DNase activity Morphology preservation | Equipment maintenance Power requirements | |
Freezing (−80 °C) | DNase inactivation Morphology preservation in the cryoprotectant | Equipment maintenance Power requirements |
Solution Name | Cost Per 100 mL (the USD, JPY) 1 | Cost Per 1 Tube (USD, JPY) 2 |
---|---|---|
99% ethanol 3 | USD0.43–0.69, JPY62–100 | USD0.014, JPY2 |
70% ethanol 4 | USD0.34–0.52, JPY50–75 | USD0.01, JPY1.5 |
70% ethanol [10 mM EDTA (pH 8.0)] | USD0.62–0.83, JPY90–120 | USD0.017, JPY2.4 |
≥99.5% special grade ethanol 5 | USD3.1, JPY450 | USD0.062, JPY9 |
Propylene glycol (P.G.) | USD3.44, JPY500 | USD0.069, JPY10 |
DESS (DMSO/EDTA/Saturated Salt) | USD8.26, JPY1200 | USD0.17, JPY25 |
DESS-NMNS (DESS + Tris + Sodium Sulfite) | USD9.85, JPY1430 | USD0.20, JPY29 |
PE-SS (P.G./EDTA/Saturated Salt) 6 | USD7.64, JPY1110 | USD0.15, JPY22 |
PH-SS (P.G./HIDS®/Saturated Salt) 7 | USD3.79, JPY550 | USD0.076, JPY11 |
RNAlater (RNAprotect Reagent) 8 | USD134.96, JPY19,600 | USD1.35, JPY196 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogiso-Tanaka, E.; Shimada, D.; Ogawa, A.; Ishiyama, G.; Okumura, K.-i.; Hosaka, K.; Ishii, C.; Nam, K.-O.; Hoshino, M.; Nomura, S.; et al. DNA Specimen Preservation Using DESS and DNA Extraction in Museum Collections. Biology 2025, 14, 730. https://doi.org/10.3390/biology14060730
Ogiso-Tanaka E, Shimada D, Ogawa A, Ishiyama G, Okumura K-i, Hosaka K, Ishii C, Nam K-O, Hoshino M, Nomura S, et al. DNA Specimen Preservation Using DESS and DNA Extraction in Museum Collections. Biology. 2025; 14(6):730. https://doi.org/10.3390/biology14060730
Chicago/Turabian StyleOgiso-Tanaka, Eri, Daisuke Shimada, Akito Ogawa, Genki Ishiyama, Ken-ichi Okumura, Kentaro Hosaka, Chikako Ishii, Kyung-Ok Nam, Masakazu Hoshino, Shuhei Nomura, and et al. 2025. "DNA Specimen Preservation Using DESS and DNA Extraction in Museum Collections" Biology 14, no. 6: 730. https://doi.org/10.3390/biology14060730
APA StyleOgiso-Tanaka, E., Shimada, D., Ogawa, A., Ishiyama, G., Okumura, K.-i., Hosaka, K., Ishii, C., Nam, K.-O., Hoshino, M., Nomura, S., Kakizoe, S., Nakamura, Y., Nishiumi, I., Ito, M. A., Kitayama, T., Tanaka, N., Hosoya, T., & Jinbo, U. (2025). DNA Specimen Preservation Using DESS and DNA Extraction in Museum Collections. Biology, 14(6), 730. https://doi.org/10.3390/biology14060730