Haploid Production in Cannabis sativa: Recent Updates, Prospects, and Perspectives
Simple Summary
Abstract
1. Introduction
2. The Mechanistic and Molecular Background of Haploid and Double Haploid Culture
3. Some Recent Advancements of Haploid Culture in Cannabis sativa
4. Prospects of RNAi and CRISPR/Cas-Mediated Tools for Genome Editing Towards Haploid Cannabis sativa Development and Secondary Metabolism Biosynthesis
5. The Morphoregulatory Role of Thidiazuron In Vitro Regeneration of Cannabis sativa: An Unexplored Potential for Haploid Production in Cannabis sativa
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mohammad, T.; Ghogare, R.; Morton, L.B.; Dhingra, A.; Potlakayala, S.; Rudrabhatla, S.; Dhir, S.K. Evaluation of Parameters Affecting Agrobacterium-Mediated Transient Gene Expression in Industrial Hemp (Cannabis sativa L.). Plants 2024, 13, 664. [Google Scholar] [CrossRef] [PubMed]
- Campbell, L.G.; Peach, K.; Wizenberg, S.B. Dioecious hemp (Cannabis sativa L.) plants do not express significant sexually dimorphic morphology in the seedling stage. Sci. Rep. 2021, 11, 16825. [Google Scholar] [CrossRef] [PubMed]
- Deguchi, M.; Bogush, D.; Weeden, H.; Spuhler, Z.; Potlakayala, S.; Kondo, T.; Zhang, Z.J.; Rudrabhatla, S. Establishment and optimization of a hemp (Cannabis sativa L.) agroinfiltration system for gene expression and silencing studies. Sci. Rep. 2020, 10, 3504. [Google Scholar] [CrossRef] [PubMed]
- Galán-Ávila, A.; Gramazio, P.; Ron, M.; Prohens, J.; Herraiz, F.J. A novel and rapid method for Agrobacterium-mediated production of stably transformed Cannabis sativa L. plants. Ind. Crops Prod. 2021, 170, 113691. [Google Scholar] [CrossRef]
- Freeman, T.P.; Craft, S.; Wilson, J.; Stylianou, S.; ElSohly, M.; Di Forti, M.; Lynskey, M.T. Changes in delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) concentrations in cannabis over time: Systematic review and meta-analysis. Addiction 2021, 116, 1000–1010. [Google Scholar] [CrossRef]
- Pennypacker, S.D.; Cunnane, K.; Cash, M.C.; Romero-Sandoval, E.A. Potency and Therapeutic THC and CBD Ratios: U.S. Cannabis Markets Overshoot. Front. Pharmacol. 2022, 13, 921493. [Google Scholar] [CrossRef]
- ElSohly, M.A.; Chandra, S.; Radwan, M.; Majumdar, C.G.; Church, J.C. A Comprehensive Review of Cannabis Potency in the United States in the Last Decade. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021, 6, 603–606. [Google Scholar] [CrossRef]
- Tahir, M.N.; Shahbazi, F.; Rondeau-Gagné, S.; Trant, J.F. The biosynthesis of the cannabinoids. J. Cannabis Res. 2021, 3, 7. [Google Scholar] [CrossRef]
- Alter, H.; Peer, R.; Dombrovsky, A.; Flaishman, M.; Spitzer-Rimon, B. Tobacco Rattle Virus as a Tool for Rapid Reverse-Genetics Screens and Analysis of Gene Function in Cannabis sativa L. Plants 2022, 11, 327. Plants 2022, 11, 327. [Google Scholar] [CrossRef]
- Deguchi, M.; Dhir, S.; Potlakayala, S.; Dhir, S.; Curtis, W.R.; Rudrabhatla, S. In planta Female Flower Agroinfiltration Alters the Cannabinoid Composition in Industrial Hemp (Cannabis sativa L.). Front. Plant Sci. 2022, 13, 921970. [Google Scholar] [CrossRef]
- Gülck, T.; Møller, B.L. Phytocannabinoids: Origins and Biosynthesis. Trends Plant Sci. 2020, 25, 985–1004. [Google Scholar] [CrossRef]
- Degenhardt, F.; Stehle, F.; Kayser, O. Chapter 2-The Biosynthesis of Cannabinoids. In Handbook of Cannabis and Related Pathologies; Preedy, V.R., Ed.; Academic Press: San Diego, CA, USA, 2017; pp. 13–23. [Google Scholar]
- Xie, Z.; Mi, Y.; Kong, L.; Gao, M.; Chen, S.; Chen, W.; Meng, X.; Sun, W.; Chen, S.; Xu, Z. Cannabis sativa: Origin and history, glandular trichome development, and cannabinoid biosynthesis. Hortic. Res. 2023, 10, uhad150. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.L.; Yun, Y.J.; Choi, H.W.; Hong, C.-H.; Shim, H.J.; Lee, J.H.; Kim, Y.-C. Profiling Cannabinoid Contents and Expression Levels of Corresponding Biosynthetic Genes in Commercial Cannabis (Cannabis Sativa L.) Cultivars. Plants 2022, 11, 3088. [Google Scholar] [CrossRef]
- Jin, D.; Dai, K.; Xie, Z.; Chen, J. Secondary Metabolites Profiled in Cannabis Inflorescences, Leaves, Stem Barks, and Roots for Medicinal Purposes. Sci. Rep. 2020, 10, 3309. [Google Scholar] [CrossRef] [PubMed]
- Lange, B.M.; Zager, J.J. Comprehensive inventory of cannabinoids in Cannabis sativa L.: Can we connect genotype and chemotype? Phytochem. Rev. 2022, 21, 1273–1313. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, J.; Tang, Q.; Dai, Z.; Deng, C.; Chen, Y.; Cheng, C.; Yang, Z.; Zhang, X.; Chen, J.; et al. Integrated metabolomic and transcriptomic analysis revealed the regulation of yields, cannabinoid, and terpene biosynthesis in Cannabis sativa L. under different photoperiods. South Afr. J. Bot. 2024, 174, 735–746. [Google Scholar] [CrossRef]
- Desaulniers Brousseau, V.; Wu, B.-S.; MacPherson, S.; Morello, V.; Lefsrud, M. Cannabinoids and Terpenes: How Production of Photo-Protectants Can Be Manipulated to Enhance Cannabis sativa L. Phytochemistry. Front. Plant Sci. 2021, 12, 620021. [Google Scholar] [CrossRef] [PubMed]
- Chacon, F.T.; Raup-Konsavage, W.M.; Vrana, K.E.; Kellogg, J.J. Secondary Terpenes in Cannabis sativa L.: Synthesis and Synergy. Biomedicines 2022, 10, 3142. [Google Scholar] [CrossRef] [PubMed]
- Bautista, J.L.; Yu, S.; Tian, L. Flavonoids in Cannabis sativa: Biosynthesis, Bioactivities, and Biotechnology. ACS Omega 2021, 6, 5119–5123. [Google Scholar] [CrossRef]
- Kumar, P.; Mahato, D.K.; Kamle, M.; Borah, R.; Sharma, B.; Pandhi, S.; Tripathi, V.; Yadav, H.S.; Devi, S.; Patil, U.; et al. Pharmacological properties, therapeutic potential, and legal status of Cannabis sativa L.: An overview. Phytother. Res. 2021, 35, 6010–6029. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, G.; Cheng, C.; Lei, L.; Sun, J.; Xu, Y.; Deng, C.; Dai, Z.; Yang, Z.; Chen, X.; et al. Establishment of an Agrobacterium-mediated genetic transformation and CRISPR/Cas9-mediated targeted mutagenesis in Hemp (Cannabis Sativa, L.). Plant Biotechnol. J. 2021, 19, 1979–1987. [Google Scholar] [CrossRef] [PubMed]
- Matchett-Oates, L.; Spangenberg, G.C.; Cogan, N.O.I. Manipulation of Cannabinoid Biosynthesis via Transient RNAi Expression. Front. Plant Sci. 2021, 12, 773474. [Google Scholar] [CrossRef] [PubMed]
- Shujat, S.; Robinson, G.I.; Norouzkhani, F.; Kovalchuk, I. Using advanced biotechnological techniques to improve cannabis cultivars. Biocatal. Agric. Biotechnol. 2024, 60, 103250. [Google Scholar] [CrossRef]
- Hurgobin, B.; Tamiru-Oli, M.; Welling, M.T.; Doblin, M.S.; Bacic, A.; Whelan, J.; Lewsey, M.G. Recent advances in Cannabis sativa genomics research. New Phytol. 2021, 230, 73–89. [Google Scholar] [CrossRef]
- Hooghvorst, I.; Nogués, S. Chromosome doubling methods in doubled haploid and haploid inducer-mediated genome-editing systems in major crops. Plant Cell Rep. 2021, 40, 255–270. [Google Scholar] [CrossRef]
- Mayakaduwa, R.; Silva, T. Haploid Induction in Indica Rice: Exploring New Opportunities. Plants 2023, 12, 3118. [Google Scholar] [CrossRef]
- Song, J.; Datla, R.; Zou, J.; Xiang, D. Haploid induction: An overview of parental factor manipulation during seed formation. Front. Plant Sci. 2024, 15, 1439350. [Google Scholar] [CrossRef]
- Eliby, S.; Bekkuzhina, S.; Kishchenko, O.; Iskakova, G.; Kylyshbayeva, G.; Jatayev, S.; Soole, K.; Langridge, P.; Borisjuk, N.; Shavrukov, Y. Developments and prospects for doubled haploid wheat. Biotechnol. Adv. 2022, 60, 108007. [Google Scholar] [CrossRef]
- Weyen, J. Applications of Doubled Haploids in Plant Breeding and Applied Research. In Doubled Haploid Technology: Volume 1: General Topics, Alliaceae, Cereals; Segui-Simarro, J.M., Ed.; Springer: New York, NY, USA, 2021; pp. 23–39. [Google Scholar]
- Maqbool, M.A.; Beshir, A.; Khokhar, E.S. Doubled haploids in maize: Development, deployment, and challenges. Crop Sci. 2020, 60, 2815–2840. [Google Scholar] [CrossRef]
- Zargar, M.; Zavarykina, T.; Voronov, S.; Pronina, I.; Bayat, M. The Recent Development in Technologies for Attaining Doubled Haploid Plants In Vivo. Agriculture 2022, 12, 1595. [Google Scholar] [CrossRef]
- Bhowmik, P.; Bilichak, A. Advances in Gene Editing of Haploid Tissues in Crops. Genes 2021, 12, 1410. [Google Scholar] [CrossRef] [PubMed]
- Shen, K.; Qu, M.; Zhao, P. The Roads to Haploid Embryogenesis. Plants 2023, 12, 243. [Google Scholar] [CrossRef] [PubMed]
- Hale, B.; Ferrie, A.M.R.; Chellamma, S.; Samuel, J.P.; Phillips, G.C. Androgenesis-Based Doubled Haploidy: Past, Present, and Future Perspectives. Front. Plant Sci. 2022, 12, 751230. [Google Scholar] [CrossRef]
- Zou, J.; Zou, X.; Gong, Z.; Song, G.; Ren, J.; Feng, H. Thidiazuron Promoted Microspore Embryogenesis and Plant Regeneration in Curly Kale (Brassica oleracea L. convar. acephala var. sabellica). Horticulturae 2023, 9, 327. [Google Scholar] [CrossRef]
- Jin, C.; Dong, L.; Wei, C.; Wani, M.A.; Yang, C.; Li, S.; Li, F. Creating novel ornamentals via new strategies in the era of genome editing. Front. Plant Sci. 2023, 14, 1142866. [Google Scholar] [CrossRef]
- Starosta, E.; Szwarc, J.; Niemann, J.; Szewczyk, K.; Weigt, D. Brassica napus Haploid and Double Haploid Production and Its Latest Applications. Curr. Issues Mol. Biol. 2023, 45, 4431–4450. [Google Scholar] [CrossRef]
- Hooghvorst, I.; Nogués, S. Opportunities and Challenges in Doubled Haploids and Haploid Inducer-Mediated Genome-Editing Systems in Cucurbits. Agronomy 2020, 10, 1441. [Google Scholar] [CrossRef]
- Khan, P.S.S.V.; Vijayalakshmi, G.; Raja, M.M.; Naik, M.L.; Germanà, M.A.; Terry, R.G. Doubled haploid production in onion (Allium cepa L.): From gynogenesis to chromosome doubling. Plant Cell Tissue Organ Cult. 2020, 142, 1–22. [Google Scholar] [CrossRef]
- Guan, X.; Peng, J.; Fu, D. Technology for Production of Wheat Doubled Haploid via Maize Pollen Induction—Updated Review. Agronomy 2024, 14, 375. [Google Scholar] [CrossRef]
- Jacquier, N.M.A.; Gilles, L.M.; Pyott, D.E.; Martinant, J.-P.; Rogowsky, P.M.; Widiez, T. Puzzling out plant reproduction by haploid induction for innovations in plant breeding. Nat. Plants 2020, 6, 610–619. [Google Scholar] [CrossRef]
- Thakur, P.; Kumari, N.; Kumar, A.; Sharma, P.; Chadha, S. Recent advances in development and utilization of double haploids (DHs) in economically important vegetable crops. Plant Cell Tissue Organ Cult. 2023, 156, 15. [Google Scholar] [CrossRef]
- Shariatpanahi, M.E.; Niazian, M.; Ahmadi, B. Methods for Chromosome Doubling. In Doubled Haploid Technology: Volume 1: General Topics, Alliaceae, Cereals; Segui-Simarro, J.M., Ed.; Springer: New York, NY, USA, 2021; pp. 127–148. [Google Scholar]
- Quiroz, L.F.; Gondalia, N.; Brychkova, G.; McKeown, P.C.; Spillane, C. Haploid rhapsody: The molecular and cellular orchestra of in vivo haploid induction in plants. New Phytol. 2024, 241, 1936–1949. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.B.; Kim, M.J.; Choi, C.W.; Park, S.M.; Yun, S.H. Anther Culture-Derived Haploids of Citrus aurantium L. (Sour Orange) and Genetic Verification of Haploid-Derived Regenerated Plants. Plants 2022, 11, 3022. [Google Scholar] [CrossRef]
- dos Santos Soares, W.; Bruckner, C.H.; da Cruz, A.C.F.; Rocha, D.I.; de Matos, E.M.; Koehler, A.D.; Viccini, L.F.; Otoni, W.C. Shining light on anther culture, a poorly understood regeneration route in passion fruit (Passiflora Gibertii N. E. Brown): Histological, hormonal, and phytochemical aspects. Vitr. Cell. Dev. Biol. Plant 2021, 57, 998–1008. [Google Scholar] [CrossRef]
- Islam, M.T.; Arif, M.R.; Hasan, M.T.; Robin, A.H.K. Anther Culture in Crop Plants: Progress and Perspectives. Plant Breed. Biotech. 2023, 11, 69–96. [Google Scholar] [CrossRef]
- Kiełkowska, A.; Kiszczak, W. History and Current Status of Haploidization in Carrot (Daucus carota L.). Agronomy 2023, 13, 676. [Google Scholar] [CrossRef]
- Soares, N.R.; Mollinari, M.; Oliveira, G.K.; Pereira, G.S.; Vieira, M.L.C. Meiosis in Polyploids and Implications for Genetic Mapping: A Review. Genes 2021, 12, 1517. [Google Scholar] [CrossRef]
- Rai, A.; Dubey, K.; Han, S.S. CENH3 mediated haploid induction: Application and future perspectives in crop plants. Hortic. Environ. Biotechnol. 2023, 64, 1055–1069. [Google Scholar] [CrossRef]
- Meng, D.; Liu, C.; Chen, S.; Jin, W. Haploid induction and its application in maize breeding. Mol. Breed. 2021, 41, 20. [Google Scholar] [CrossRef]
- Banerjee, S.; Roy, S. An insight into understanding the coupling between homologous recombination mediated DNA repair and chromatin remodeling mechanisms in plant genome: An update. Cell Cycle 2021, 20, 1760–1784. [Google Scholar] [CrossRef]
- Bolaños-Villegas, P. The Role of Structural Maintenance of Chromosomes Complexes in Meiosis and Genome Maintenance: Translating Biomedical and Model Plant Research Into Crop Breeding Opportunities. Front. Plant Sci. 2021, 12, 659558. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Moradi, A.B.; Dovzhenko, O.; Touraev, A.; Palme, K.; Welsch, R. Molecular Control of Sporophyte-Gametophyte Ontogeny and Transition in Plants. Front. Plant Sci. 2022, 12, 789789. [Google Scholar] [CrossRef]
- Becker, A.; Chen, X.; Dresselhaus, T.; Gutsche, N.; Müller-Schüssele, S.J.; Sprunck, S.; Theißen, G.; de Vries, S.; Zachgo, S. Sexual reproduction in land plants: An evolutionary perspective. Plant Reprod. 2025, 38, 12. [Google Scholar] [CrossRef] [PubMed]
- Jha, P.; Kumar, V. BABY BOOM (BBM): A candidate transcription factor gene in plant biotechnology. Biotechnol. Lett. 2018, 40, 1467–1475. [Google Scholar] [CrossRef]
- Underwood, C.J.; Vijverberg, K.; Rigola, D.; Okamoto, S.; Oplaat, C.; Camp, R.H.M.O.d.; Radoeva, T.; Schauer, S.E.; Fierens, J.; Jansen, K.; et al. A PARTHENOGENESIS allele from apomictic dandelion can induce egg cell division without fertilization in lettuce. Nat. Genet. 2022, 54, 84–93. [Google Scholar] [CrossRef]
- Gawande, N.D.; Bhalla, H.; Watts, A.; Shelake, R.M.; Sankaranarayanan, S. Application of genome editing in plant reproductive biology: Recent advances and challenges. Plant Reprod. 2024, 37, 441–462. [Google Scholar] [CrossRef]
- Ren, J.; Wu, P.; Trampe, B.; Tian, X.; Lübberstedt, T.; Chen, S. Novel technologies in doubled haploid line development. Plant Biotechnol. J. 2017, 15, 1361–1370. [Google Scholar] [CrossRef] [PubMed]
- Sheng, H.; Gao, P.; Yang, C.; Quilichini, T.D.; Kochian, L.V.; Datla, R.; Xiang, D. Advances in Genome Editing Through Haploid Induction Systems. Int. J. Mol. Sci. 2025, 26, 4779. [Google Scholar] [CrossRef] [PubMed]
- Gilles, L.M.; Martinant, J.-P.; Rogowsky, P.M.; Widiez, T. Haploid induction in plants. Curr. Biol. 2017, 27, R1095–R1097. [Google Scholar] [CrossRef]
- Galán-Ávila, A.; García-Fortea, E.; Prohens, J.; Herraiz, F.J. Microgametophyte Development in Cannabis sativa L. and First Androgenesis Induction Through Microspore Embryogenesis. Front. Plant Sci. 2021, 12, 669424. [Google Scholar] [CrossRef]
- Camacho-Fernández, C.; Corral-Martínez, P.; Calabuig-Serna, A.; Arjona-Mudarra, P.; Sancho-Oviedo, D.; Boutilier, K.; Seguí-Simarro, J.M. The different response of Brassica napus genotypes to microspore embryogenesis induced by heat shock and trichostatin A is not determined by changes in cell wall structure and composition but by different stress tolerance. Physiol. Plant. 2024, 176, e14405. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Zhao, Z.; Yang, F.; Zhang, L.; Li, S.; Qiao, Y.; Zhang, L.; Yang, M.; Zhou, X.; Zhao, L.; et al. Stress-Induced Autophagy Is Essential for Microspore Cell Fate Transition to the Initial Cell of Androgenesis. Plant Cell Environ. 2025, 48, 421–434. [Google Scholar] [CrossRef] [PubMed]
- Valero-Rubira, I.; Vallés, M.P.; Echávarri, B.; Fustero, P.; Costar, M.A.; Castillo, A.M. New Epigenetic Modifier Inhibitors Enhance Microspore Embryogenesis in Bread Wheat. Plants 2024, 13, 772. [Google Scholar] [CrossRef] [PubMed]
- Arabzai, M.G.; Huang, D.; Mohammadi, N.K.; Gao, J.; Wang, X.; Zheng, P.; Qin, Y.; Wang, L. Techniques and advantages of microspore culture for crop improvement. Plant Growth Regul. 2025. [Google Scholar] [CrossRef]
- Bednarek, P.T.; Pachota, K.A.; Dynkowska, W.M.; Machczyńska, J.; Orłowska, R. Understanding In Vitro Tissue Culture-Induced Variation Phenomenon in Microspore System. Int. J. Mol. Sci. 2021, 22, 7546. [Google Scholar] [CrossRef]
- Adhikary, D.; Kulkarni, M.; El-Mezawy, A.; Mobini, S.; Elhiti, M.; Gjuric, R.; Ray, A.; Polowick, P.; Slaski, J.J.; Jones, M.P.; et al. Medical Cannabis and Industrial Hemp Tissue Culture: Present Status and Future Potential. Front. Plant Sci. 2021, 12, 627240. [Google Scholar] [CrossRef]
- Seguí-Simarro, J.M.; Jacquier, N.M.A.; Widiez, T. Overview of In Vitro and In Vivo Doubled Haploid Technologies. In Doubled Haploid Technology: Volume 1: General Topics, Alliaceae, Cereals; Segui-Simarro, J.M., Ed.; Springer: New York, NY, USA, 2021; pp. 3–22. [Google Scholar]
- Koleva-Gudeva, L.R.; Spasenoski, M.; Trajkova, F. Somatic embryogenesis in pepper anther culture: The effect of incubation treatments and different media. Sci. Hortic. 2007, 111, 114–119. [Google Scholar] [CrossRef]
- Cardoso, J.C.; Abdelgalel, A.M.; Chiancone, B.; Latado, R.R.; Lain, O.; Testolin, R.; Germanà, M.A. Gametic and somatic embryogenesis through in vitro anther culture of different Citrus genotypes. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2016, 150, 304–312. [Google Scholar] [CrossRef]
- Wiese, A.J.; Torutaeva, E.; Honys, D. The transcription factors and pathways underpinning male reproductive development in Arabidopsis. Front. Plant Sci. 2024, 15, 1354418. [Google Scholar] [CrossRef]
- Qian, Z.; Shi, D.; Zhang, H.; Li, Z.; Huang, L.; Yan, X.; Lin, S. Transcription Factors and Their Regulatory Roles in the Male Gametophyte Development of Flowering Plants. Int. J. Mol. Sci. 2024, 25, 566. [Google Scholar] [CrossRef]
- Tonolo, F. Double haploid development in drug-type Cannabis sativa L. through microspore indirect de-novo plant regeneration. bioRxiv 2024. [Google Scholar] [CrossRef]
- Li, G.; Liu, R.; Xu, R.; Varshney, R.K.; Ding, H.; Li, M.; Yan, X.; Huang, S.; Li, J.; Wang, D.; et al. Development of an Agrobacterium-mediated CRISPR/Cas9 system in pea (Pisum sativum L.). Crop J. 2023, 11, 132–139. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Li, C.; Yang, Y.; Duan, Y.; Yang, Y.; Sun, X. Establishment of Agrobacterium-mediated genetic transformation and application of CRISPR/Cas9 genome-editing system to Brassica rapa var. rapa. Plant Methods 2022, 18, 98. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Fu, X.; Qi, X.; Xiao, B.; Liu, C.; Wu, Q.; Zhu, J.; Xie, C. Harnessing haploid-inducer mediated genome editing for accelerated maize variety development. Plant Biotechnol. J. 2025, 23, 1604–1614. [Google Scholar] [CrossRef]
- Gajecka, M.; Szarejko, I. Haploid Mutagenesis: An Old Concept and New Achievements. In Mutation Breeding for Sustainable Food Production and Climate Resilience; Penna, S., Jain, S.M., Eds.; Springer Nature: Singapore, 2023; pp. 129–150. [Google Scholar]
- Niazian, M.; Shariatpanahi, M.E. In Vitro-based doubled haploid production: Recent improvements. Euphytica 2020, 216, 69. [Google Scholar] [CrossRef]
- Wijerathna-Yapa, A.; Ramtekey, V.; Ranawaka, B.; Basnet, B.R. Applications of In Vitro Tissue Culture Technologies in Breeding and Genetic Improvement of Wheat. Plants 2022, 11, 2273. [Google Scholar] [CrossRef]
- Hesami, M.; Pepe, M.; Baiton, A.; Jones, A.M.P. Current status and future prospects in cannabinoid production through in vitro culture and synthetic biology. Biotechnol. Adv. 2023, 62, 108074. [Google Scholar] [CrossRef]
- Ding, X.; Yu, L.; Chen, L.; Li, Y.; Zhang, J.; Sheng, H.; Ren, Z.; Li, Y.; Yu, X.; Jin, S.; et al. Recent Progress and Future Prospect of CRISPR/Cas-Derived Transcription Activation (CRISPRa) System in Plants. Cells 2022, 11, 3045. [Google Scholar] [CrossRef]
- Rabeh, K.; Hnini, M.; Oubohssaine, M. A comprehensive review of transcription factor-mediated regulation of secondary metabolites in plants under environmental stress. Stress Biol. 2025, 5, 15. [Google Scholar] [CrossRef]
- Anjali; Kumar, S.; Korra, T.; Thakur, R.; Arutselvan, R.; Kashyap, A.S.; Nehela, Y.; Chaplygin, V.; Minkina, T.; Keswani, C. Role of plant secondary metabolites in defence and transcriptional regulation in response to biotic stress. Plant Stress 2023, 8, 100154. [Google Scholar] [CrossRef]
- Trono, D. Elicitation as a tool to improve the accumulation of secondary metabolites in Cannabis sativa. Phytochem. Rev. 2024. [Google Scholar] [CrossRef]
- Hashemi, A. CRISPR–Cas9/CRISPRi tools for cell factory construction in E. coli. World J. Microbiol. Biotechnol. 2020, 36, 96. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, K.C.F.; Silva Souza, A.d.; Silva Ledo, C.A.d.; Costa Nobre, L.V.; de Souza, M.D.H.; Verde, D.d.S.V.; Filho, W.d.S.S. Different culture media on the induction and multiplication of calluses from citrus anthers. South Afr. J. Bot. 2023, 155, 383–392. [Google Scholar] [CrossRef]
- Bind, S.; Bind, S.; Sharma, A.K.; Chaturvedi, P. Epigenetic Modification: A Key Tool for Secondary Metabolite Production in Microorganisms. Front. Microbiol. 2022, 13, 784109. [Google Scholar] [CrossRef] [PubMed]
- Goell, J.H.; Hilton, I.B. CRISPR/Cas-Based Epigenome Editing: Advances, Applications, and Clinical Utility. Trends Biotechnol. 2021, 39, 678–691. [Google Scholar] [CrossRef]
- Hung, Y.-H.; Slotkin, R.K. The initiation of RNA interference (RNAi) in plants. Curr. Opin. Plant Biol. 2021, 61, 102014. [Google Scholar] [CrossRef]
- Bharathi, J.K.; Anandan, R.; Benjamin, L.K.; Muneer, S.; Prakash, M.A.S. Recent trends and advances of RNA interference (RNAi) to improve agricultural crops and enhance their resilience to biotic and abiotic stresses. Plant Physiol. Biochem. 2023, 194, 600–618. [Google Scholar] [CrossRef]
- Koeppe, S.; Kawchuk, L.; Kalischuk, M. RNA Interference Past and Future Applications in Plants. Int. J. Mol. Sci. 2023, 24, 9755. [Google Scholar] [CrossRef]
- Brant, E.; Zuniga-Soto, E.; Altpeter, F. RNAi and genome editing of sugarcane: Progress and prospects. Plant J. 2025, 121, e70048. [Google Scholar] [CrossRef]
- Manape, T.K.; Satheesh, V.; Somasundaram, S.; Soumia, P.S.; Khade, Y.P.; Mainkar, P.; Mahajan, V.; Singh, M.; Anandhan, S. RNAi-mediated downregulation of AcCENH3 can induce in vivo haploids in onion (Allium cepa L.). Sci. Rep. 2024, 14, 14481. [Google Scholar] [CrossRef]
- Jang, J.H.; Seo, H.S.; Widiez, T.; Lee, O.R. Loss-of-function of gynoecium-expressed phospholipase pPLAIIγ triggers maternal haploid induction in Arabidopsis. New Phytol. 2023, 238, 1813–1824. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, S.; Li, R.; Qiu, X.; Fan, T.; Wang, B.; Zhang, B.; Zhang, L. Advances in application of CRISPR-Cas13a system. Front. Cell. Infect. Microbiol. 2024, 14, 1291557. [Google Scholar] [CrossRef] [PubMed]
- Hillary, V.E.; Ceasar, S.A. CRISPR/Cas system-mediated base editing in crops: Recent developments and future prospects. Plant Cell Rep. 2024, 43, 271. [Google Scholar] [CrossRef] [PubMed]
- Shou, J.; Li, J.; Liu, Y.; Wu, Q. Precise and Predictable CRISPR Chromosomal Rearrangements Reveal Principles of Cas9-Mediated Nucleotide Insertion. Mol. Cell 2018, 71, 498–509.e494. [Google Scholar] [CrossRef]
- Paul, B.; Montoya, G. CRISPR-Cas12a: Functional overview and applications. Biomed. J. 2020, 43, 8–17. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Kancharla, N.; Javalkote, V.S.; Dasgupta, S.; Brutnell, T.P. CRISPR-Cas12a (Cpf1): A Versatile Tool in the Plant Genome Editing Tool Box for Agricultural Advancement. Front. Plant Sci. 2020, 11, 584151. [Google Scholar] [CrossRef]
- Qu, Y.; Fernie, A.R.; Liu, J.; Yan, J. Doubled haploid technology and synthetic apomixis: Recent advances and applications in future crop breeding. Mol. Plant 2024, 17, 1005–1018. [Google Scholar] [CrossRef]
- Chen, D.; Liao, T.; Ye, W.; Jin, Z.; Ren, S. Research progress on the synthesis of phenylurea derived plant growth regulators. Adv. Agrochem 2024, 3, 143–150. [Google Scholar] [CrossRef]
- Seka, J.S.S.; Kouassi, M.K.; Yéo, E.F.; Saki, F.M.; Otron, D.H.; Tiendrébéogo, F.; Eni, A.; Kouassi, N.K.; Pita, J.S. Removing recalcitrance to the micropropagation of five farmer-preferred cassava varieties in Côte d’Ivoire by supplementing culture medium with kinetin or thidiazuron. Front. Plant Sci. 2025, 16, 1538799. [Google Scholar] [CrossRef]
- Ochatt, S.J.; Akin, M.; Chan, M.T.; Dolgov, S.V.; Eimert, K.; Flachowsky, H.; Guo, W.W.; Jiménez, V.M.; Lambardi, M.; Moncaleán, P.; et al. Research is rendering the recalcitrant woody plants amenable to biotechnological approaches. Plant Cell Tissue Organ Cult. 2025, 161, 48. [Google Scholar] [CrossRef]
- Ali, H.M.; Khan, T.; Khan, M.A.; Ullah, N. The multipotent thidiazuron: A mechanistic overview of its roles in callogenesis and other plant cultures in vitro. Biotechnol. Appl. Biochem. 2022, 69, 2624–2640. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Li, Y.; Pang, Y.; Hu, J.; Kang, X.; Qian, C. Thidiazuron Enhances Strawberry Shoot Multiplication by Regulating Hormone Signal Transduction Pathways. Int. J. Mol. Sci. 2025, 26, 4060. [Google Scholar] [CrossRef]
- Erland, L.A.E.; Giebelhaus, R.T.; Victor, J.M.R.; Murch, S.J.; Saxena, P.K. The Morphoregulatory Role of Thidiazuron: Metabolomics-Guided Hypothesis Generation for Mechanisms of Activity. Biomolecules 2020, 10, 1253. [Google Scholar] [CrossRef]
- Çelikel, F.G.; Zhang, Q.; Zhang, Y.; Reid, M.S.; Jiang, C.-Z. A Cytokinin Analog Thidiazuron Suppresses Shoot Growth in Potted Rose Plants via the Gibberellic Acid Pathway. Front. Plant Sci. 2021, 12, 639717. [Google Scholar] [CrossRef]
- Al-Mayahi, A.M.W. In Vitro propagation and assessment of genetic stability in date palm as affected by chitosan and thidiazuron combinations. J. Genet. Eng. Biotechnol. 2022, 20, 165. [Google Scholar] [CrossRef] [PubMed]
- Zayachkovskaya, T.; Alyokhina, K.; Mineykina, A.; Romanova, O.; Vjurtts, T.; Tukuser, Y.; Zayachkovsky, V.; Ermolaev, A.; Kan, L.; Fomicheva, M.; et al. Optimizing Different Medium Component Concentration and Temperature Stress Pretreatment for Gynogenesis Induction in Unpollinated Ovule Culture of Sugar Beet (Beta vulgaris L.). Horticulturae 2023, 9, 900. [Google Scholar] [CrossRef]
- Miler, N.; Tymoszuk, A.; Rewers, M.; Kulus, D. In Vitro Regeneration of Chrysanthemum from Ovaries and Ovules Treated with Thermal and Chemical Stimuli: Morphogenic and Cytogenetic Effects. Agriculture 2023, 13, 2069. [Google Scholar] [CrossRef]
- Bansal, Y.; Mujib, A.; Mamgain, J.; Dewir, Y.H.; Rihan, H.Z. Phytochemical Composition and Detection of Novel Bioactives in Anther Callus of Catharanthus roseus L. Plants 2023, 12, 2186. [Google Scholar] [CrossRef] [PubMed]
- Rahman, Z.A.; Seman, Z.A.; Othman, A.N.; Ab Ghaffar, M.B.; Razak, S.A.; Mohd Yusof, M.F.; Nasir, K.H.; Ahmad, K.; Chow, Y.L.; Subramaniam, S. Efficient callus induction and plant regeneration of Malaysian indica rice MR219 using anther culture. Biocatal. Agric. Biotechnol. 2021, 31, 101865. [Google Scholar] [CrossRef]
- Baktemur, G.; Keleş, D.; Kara, E.; Yıldız, S.; Taşkın, H. Effects of genotype and nutrient medium on obtaining haploid plants through ovary culture in cucumber. Mol. Biol. Rep. 2022, 49, 5451–5458. [Google Scholar] [CrossRef]
- Li, Z.; Hosotani, M.; Yagi, M.; Koyama, R.; Uno, Y. Anther-based regeneration of carnation (Dianthus caryophyllus L.) for haploid production. Vitr. Cell. Dev. Biol. Plant 2025. [Google Scholar] [CrossRef]
- Maurya, S.; Sharma, B.; Thakur, K.; Rawte, S.; Patel, N.B.; Bisen, R.; Rajkumar, S.; Jha, Z.; Sujatha, M. In Vitro double haploid production through anther culture in niger (Guizotia abyssinica L.F. Cass). Vitr. Cell. Dev. Biol. Plant 2024, 60, 50–66. [Google Scholar] [CrossRef]
- Zayachkovskaya, T.; Domblides, E.; Zayachkovsky, V.; Kan, L.; Domblides, A.; Soldatenko, A. Production of Gynogenic Plants of Red Beet (Beta vulgaris L.) in Unpollinated Ovule Culture In Vitro. Plants 2021, 10, 2703. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, S.M.; Kwon, D.B.; Injamum-Ul-Hoque, M.; Rahman, M.M.; Yeam, I.; Choi, H.W. De Novo Regeneration of Cannabis sativa cv. Cheungsam and Evaluation of Secondary Metabolites of Its Callus. Horticulturae 2024, 10, 1331. [Google Scholar] [CrossRef]
- Sorokin, A.; Kovalchuk, I. Development of efficient and scalable regeneration tissue culture method for Cannabis sativa. Plant Sci. 2025, 350, 112296. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahsan, S.M.; Injamum-Ul-Hoque, M.; Howlader, N.C.; Rahman, M.M.; Rahman, M.M.; Haque, M.A.; Choi, H.W. Haploid Production in Cannabis sativa: Recent Updates, Prospects, and Perspectives. Biology 2025, 14, 701. https://doi.org/10.3390/biology14060701
Ahsan SM, Injamum-Ul-Hoque M, Howlader NC, Rahman MM, Rahman MM, Haque MA, Choi HW. Haploid Production in Cannabis sativa: Recent Updates, Prospects, and Perspectives. Biology. 2025; 14(6):701. https://doi.org/10.3390/biology14060701
Chicago/Turabian StyleAhsan, S.M., Md. Injamum-Ul-Hoque, Nayan Chandra Howlader, Md. Mezanur Rahman, Md Mahfuzur Rahman, Md Azizul Haque, and Hyong Woo Choi. 2025. "Haploid Production in Cannabis sativa: Recent Updates, Prospects, and Perspectives" Biology 14, no. 6: 701. https://doi.org/10.3390/biology14060701
APA StyleAhsan, S. M., Injamum-Ul-Hoque, M., Howlader, N. C., Rahman, M. M., Rahman, M. M., Haque, M. A., & Choi, H. W. (2025). Haploid Production in Cannabis sativa: Recent Updates, Prospects, and Perspectives. Biology, 14(6), 701. https://doi.org/10.3390/biology14060701