Cadmium and Lead Tolerance of Filamentous Fungi Isolated from Contaminated Mining Soils
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Obtention and Morphological Identification of Fungal Isolates
2.2. Cd and Pb Tolerance Evaluation
2.3. Molecular Identification of Tolerant Fungi
2.4. Statistical Analysis
3. Results
3.1. Isolates’ Identification
3.2. Tolerance to Cd or Pb
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ITSs | Internal Transcribed Spacers |
Cd | Cadmium |
Pb | Lead |
MPLs | Maximum Permissible Limits |
IC50 | Half-Maximal Inhibitory Concentration |
bp | Base Pair |
References
- Wong, M.H. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 2003, 50, 775–780. [Google Scholar] [CrossRef] [PubMed]
- Covarrubias, S.A.; Berumen, J.A.G.; Cabriales, J.J.P. Microorganisms role in the bioremediation of contaminated soils with heavy metals. Acta Univ. 2015, 25, 40–45. [Google Scholar] [CrossRef]
- Aguirre, F.G. La minería en México. In Espacios para el capital a cielo abierto; INEGI: Aguascalientes, Mexico, 2012; pp. 128–136. [Google Scholar]
- NOM-147-SEMARNAT/SSA1-2004; Que establece criterios para determinar las concentraciones de remediación de suelos contaminados por arsénico, bario, cadmio, cromo hexavalente, mercurio, níquel, plata, selenio, talio y/o vanadio. DOF: Mexico City, Mexico, 2007; pp. 35–96.
- Flores-Amaro, O.A.; Ramos-Gómez, M.S.; Guerrero-Barrera, A.L.; Yamamoto-Flores, L.; Romo-Rodríguez, P.; Mitchell, K.; Avelar-González, F.J. Characterization and evaluation of the bioremediation potential of Rhizopus microsporus Os4 isolated from arsenic-contaminated soil. Water Air Soil Pollut. 2024, 235, 1–10. [Google Scholar] [CrossRef]
- Covarrubias, S.A.; Cabriales, J.J.P. Contaminación ambiental por metales pesados en México: Problemática y estrategias de fitorremediación. Rev. Int. Contam. Ambient. 2017, 33, 7–21. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry Sep. Toxicological Profile for Cadmium; ATSDR’s Toxicological Profiles; University of California Libraries: Berkeley, CA, USA, 2002. [Google Scholar] [CrossRef]
- Newsome, L.; Falagán, C. The Microbiology of Metal Mine Waste: Bioremediation Applications and Implications for Planetary Health. GeoHealth 2021, 5, 1–53. [Google Scholar] [CrossRef]
- Tian, D.; Jiang, Z.; Jiang, L.; Su, M.; Feng, Z.; Zhang, L.; Wang, S.; Li, Z.; Hu, S. A new insight into lead (II) tolerance of environmental fungi based on a study of Aspergillus niger and Penicillium oxalicum. Environ. Microbiol. 2019, 21, 471–479. [Google Scholar] [CrossRef]
- FAO; ITPS. Status of the World’s Soil Resources (SWSR)–Technical Summary; Food and Agriculture Organization of the United Nation and Intergovernmental Technical Panel on Soils: Rome, Italy, 2015. [Google Scholar]
- García, I.E. Microorganismos del suelo y sustentabilidad de los agroecosistemas. Rev. Argent Microbiol. 2011, 43, 1–3. [Google Scholar]
- Samaniego-Gaxiola, J.A.; Chew-Madinaveitia, Y. Diversidad de géneros de hongos del suelo en tres campos con diferente condición agrícola en La Laguna, México. Rev. Mex. Biodivers. 2007, 78, 383–390. [Google Scholar]
- Delgado, M. Los Microorganismos del Suelo en la Nutrición Vegetal; Investigación ORIUS Biotecnología: Miami, FL, USA, 2008; pp. 1–9. [Google Scholar]
- Burford, E.P.; Fomina, M.; Gadd, G.M. Fungal involvement in bioweathering and biotransformation of rocks and minerals. Miner. Mag. 2003, 67, 1127–1155. [Google Scholar] [CrossRef]
- Yu, X.; Zhan, Q. Phosphate-Mineralization Microbe Repairs Heavy Metal Ions That Formed Nanomaterials in Soil and Water. In Nanomaterials-Toxicity, Human Health and Environment; IntechOpen: London, UK, 2020; pp. 3–9. [Google Scholar] [CrossRef]
- Zhang, X.; Ding, S.; Lv, H.; Cui, G.; Yang, M.; Wang, Y.; Guan, T.; Li, X.-D. Microbial controls on heavy metals and nutrients simultaneous release in a seasonally stratified reservoir. Environ. Sci. Pollut. Res. 2022, 29, 1937–1948. [Google Scholar] [CrossRef]
- Ayangbenro, A.S.; Babalola, O.O. A new strategy for heavy metal polluted environments: A review of microbial biosorbents. Int. J. Environ. Res. Public Health 2017, 14, 94. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Song, X.; Li, S.; Zhu, B.; Chen, Y.; Zhang, L.; Li, Z. Experimental and modeling studies of competitive Pb (II) and Cd (II) bioaccumulation by Aspergillus niger. Appl. Microbiol. Biotechnol. 2021, 105, 6477–6488. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, A.; Viraraghavan, T.; Cullimore, D. Removal of heavy metals using the fungus Aspergillus niger. Bioresour. Technol. 1999, 70, 95–104. [Google Scholar] [CrossRef]
- Hassan, S.E.; Hijri, M.; St-Arnaud, M. Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil. New Biotechnol. 2013, 30, 780–787. [Google Scholar] [CrossRef]
- Xie, Y.; Luo, H.; Du, Z.; Hu, L.; Fu, J. Identification of cadmium-resistant fungi related to Cd transportation in bermudagrass [Cynodon dactylon (L.) Pers.]. Chemosphere 2014, 117, 786–792. [Google Scholar] [CrossRef]
- Refaey, M.; Abdel-Azeem, A.M.; Nahas, H.H.A.; Abdel-Azeem, M.A.; El-Saharty, A.A. Role of Fungi in Bioremediation of Soil Contaminated with Heavy Metals. In Industrially Important Fungi for Sustainable Development; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Trujillo, A.B. Micología Médica Básica, 4th ed.; Mc Graw-Hill: Ciudad de Mexico, Mexico, 2012. [Google Scholar]
- Văcar, C.L.; Covaci, E.; Chakraborty, S.; Li, B.; Weindorf, D.C.; Frențiu, T.; Pârvu, M.; Podar, D. Heavy metal-resistant filamentous fungi as potential mercury bioremediators. J. Fungi 2021, 7, 386. [Google Scholar] [CrossRef]
- Janicki, T.; Długoński, J.; Krupiński, M. Detoxification and simultaneous removal of phenolic xenobiotics and heavy metals with endocrine-disrupting activity by the non-ligninolytic fungus Umbelopsis isabellina. J. Hazard. Mater. 2018, 360, 661–669. [Google Scholar] [CrossRef]
- Le Berre, M.; Gerlach, J.Q.; Dziembała, I.; Kilcoyne, M. Calculating Half Maximal Inhibitory Concentration (IC50) Values from Glycomics Microarray Data Using GraphPad Prism. Methods Mol. Biol. 2022, 2460, 89–111. [Google Scholar] [CrossRef]
- Ye, F.; Gong, D.; Pang, C.; Luo, J.; Zeng, X.; Shang, C. Analysis of Fungal Composition in Mine-Contaminated Soils in Hechi City. Curr. Microbiol. 2020, 77, 2685–2693. [Google Scholar] [CrossRef]
- Deng, Z.; Cao, L.; Huang, H.; Jiang, X.; Wang, W.; Shi, Y.; Zhang, R. Characterization of Cd- and Pb-resistant fungal endophyte Mucor sp. CBRF59 isolated from rapes (Brassica chinensis) in a metal-contaminated soil. J. Hazard. Mater. 2010, 185, 717–724. [Google Scholar] [CrossRef]
- Salazar, M.J.; Menoyo, E.; Faggioli, V.; Geml, J.; Cabello, M.; Rodriguez, J.H.; Marro, N.; Pardo, A.; Pignata, M.L.; Becerra, A.G. Pb accumulation in spores of arbuscular mycorrhizal fungi. Sci. Total Environ. 2018, 643, 238–246. [Google Scholar] [CrossRef]
- Rangel-Muñoz, E.J.; Valdivia-Flores, A.G.; Hernández-Delgado, S.; Cruz-Vázquez, C.; De-Luna-López, M.C.; Quezada-Tristán, T.; Ortiz-Martínez, R.; Mayek-Pérez, N. Assessment of the Potential of a Native Non-Aflatoxigenic Aspergillus flavus Isolate to Reduce Aflatoxin Contamination in Dairy Feed. Toxins 2022, 14, 437. [Google Scholar] [CrossRef] [PubMed]
- Aljanabi, S.M.; Martinez, I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res. 1997, 25, 4692–4693. [Google Scholar] [CrossRef]
- Sambrook, J.; Russell, D.W. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Sring Harbor Laboratory: New York, NY, USA, 2001; Volume 2. [Google Scholar] [CrossRef]
- Hidalgo, N.; Fernández, P.; Bustos, D.; Rosa, M.; Senese, A. Heavy metals tolerant native strains isolated from mining waste of the Hualilán mine, Argentina. Rev. Colomb. De Mater. 2021, 18, 21–32. [Google Scholar] [CrossRef]
- Villalba-Villalba, A.G.; Cruz-Campas, M.E.; Azuara-Gómez, G.V. Aspergillus Niger Tiegh., aislado en Sonora, México: Evaluación de tolerancia a metales. Rev. Chapingo Ser. Cienc. For. Ambiente 2018, 24, 131–146. [Google Scholar] [CrossRef]
- Villalba-Villalba, A.G.; González-Méndez, B. Evaluating Aspergillus terreus tolerance to toxic metals. Rev. Chapingo Ser. Cienc. For. Ambiente 2021, 27, 449–464. [Google Scholar] [CrossRef]
- Gola, D.; Malik, A.; Namburath, M.; Ahammad, S.Z. Removal of industrial dyes and heavy metals by Beauveria bassiana: FTIR, SEM, TEM and AFM investigations with Pb(II). Environ. Sci. Pollut. Res. 2018, 25, 20486–20496. [Google Scholar] [CrossRef]
- Luo, D.; Qiang, S.; Geng, R.; Shi, L.; Song, J.; Fan, Q. Mechanistic study for mutual interactions of Pb2+ and Trichoderma viride. Ecotoxicol. Environ. Saf. 2022, 233, 113310. [Google Scholar] [CrossRef]
- Chen, S.H.; Ng, S.L.; Cheow, Y.L.; Ting, A.S.Y. A novel study based on adaptive metal tolerance behavior in fungi and SEM-EDX analysis. J. Hazard. Mater. 2017, 334, 132–141. [Google Scholar] [CrossRef]
- Noormohamadi, H.R.; Fat’Hi, M.R.; Ghaedi, M.; Ghezelbash, G.R. Potentiality of white-rot fungi in biosorption of nickel and cadmium: Modeling optimization and kinetics study. Chemosphere 2019, 216, 124–130. [Google Scholar] [CrossRef]
- Urquhart, A.S.; Chong, N.F.; Yang, Y.; Idnurm, A. A large transposable element mediates metal resistance in the fungus Paecilomyces variotii. Curr. Biol. 2022, 32, 937–950.e5. [Google Scholar] [CrossRef] [PubMed]
- Budamagunta, V.; Shameem, N.; Irusappan, S.; Parray, J.A.; Thomas, M.; Marimuthu, S.; Kirubakaran, R.; Jothi, K.A.; Sayyed, R.; Show, P.L. Nanovesicle and extracellular polymeric substance synthesis from the remediation of heavy metal ions from soil. Environ. Res. 2022, 219, 114997. [Google Scholar] [CrossRef]
- Naz, H.; Sayyed, R.; Khan, R.U.; Naz, A.; Wani, O.A.; Maqsood, A.; Maqsood, S.; Fahad, A.; Ashraf, S.; Show, P.L. Mesorhizobium improves chickpea growth under chromium stress and alleviates chromium contamination of soil. J. Environ. Manag. 2023, 338, 117779. [Google Scholar] [CrossRef]
- Słaba, M.; Gajewska, E.; Bernat, P.; Fornalska, M.; Długoński, J. Adaptive alterations in the fatty acids composition under induced oxidative stress in heavy metal-tolerant filamentous fungus Paecilomyces marquandii cultured in ascorbic acid presence. Environ. Sci. Pollut. Res. 2012, 20, 3423–3434. [Google Scholar] [CrossRef]
- Zeng, X.; Tang, J.; Yin, H.; Liu, X.; Jiang, P.; Liu, H. Isolation, identification and cadmium adsorption of a high cadmium-resistant Paecilomyces lilacinus. Afr. J. Biotechnol. 2010, 9, 6525–6533. [Google Scholar]
- Alori, E.; Fawole, O. Phytoremediation of Soils Contaminated with Aluminium and Manganese by Two Arbuscular Mycorrhizal Fungi. J. Agric. Sci. 2012, 4, 246. [Google Scholar] [CrossRef]
- Hassan, A.; Pariatamby, A.; Ossai, I.C.; Hamid, F.S. Bioaugmentation assisted mycoremediation of heavy metal and/metalloid landfill contaminated soil using consortia of filamentous fungi. Biochem. Eng. J. 2020, 157, 107550. [Google Scholar] [CrossRef]
- Joshi, P.K.; Swarup, A.; Maheshwari, S.; Kumar, R.; Singh, N. Bioremediation of Heavy Metals in Liquid Media Through Fungi Isolated from Contaminated Sources. Indian J. Microbiol. 2011, 51, 482–487. [Google Scholar] [CrossRef]
- Sey, E.; Belford, E.J.D. Heavy Metals Tolerance Potential of Fungi Species Isolated from Gold Mine Tailings in Ghana. J. Environ. Health Sustain. Dev. 2021, 6, 5765. [Google Scholar] [CrossRef]
- Chun, S.-J.; Kim, Y.-J.; Cui, Y.; Nam, K.-H. Ecological network analysis reveals distinctive microbial modules associated with heavy metal contamination of abandoned mine soils in Korea. Environ. Pollut. 2021, 289, 117851. [Google Scholar] [CrossRef]
- Liaquat, F.; Munis, M.F.H.; Haroon, U.; Arif, S.; Saqib, S.; Zaman, W.; Khan, A.R.; Shi, J.; Che, S.; Liu, Q. Evaluation of metal tolerance of fungal strains isolated from contaminated mining soil of Nanjing, China. Biology 2020, 9, 469. [Google Scholar] [CrossRef] [PubMed]
- Zotti, M.; Di Piazza, S.; Roccotiello, E.; Lucchetti, G.; Mariotti, M.G.; Marescotti, P. Microfungi in highly copper-contaminated soils from an abandoned Fe–Cu sulphide mine: Growth responses, tolerance and bioaccumulation. Chemosphere 2014, 117, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Oladipo, O.G.; Awotoye, O.O.; Olayinka, A.; Bezuidenhout, C.C.; Maboeta, M.S. Heavy metal tolerance traits of filamentous fungi isolated from gold and gemstone mining sites. Braz. J. Microbiol. 2018, 49, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Jarosławiecka, A.; Piotrowska-Seget, Z. Lead resistance in micro-organisms. Microbiology 2014, 160, 12–25. [Google Scholar] [CrossRef]
- Singh, A.; Roy, A. Fungal communities for the remediation of environmental pollutants. In Recent Trends in Mycological Research; Yadav, A.N., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; Volume 1. [Google Scholar] [CrossRef]
Isolate ID | Morphological Identification | Size (bp) | Molecular Identification | Coincidence (%) | Access |
---|---|---|---|---|---|
Os 1 Os 6 Os 7 | Penicillium sp. | 552 | P. simplicissimum | 99.4 | MW485753.1 |
Paecilomyces sp. | 641 | P. lilacinus | 99.8 | MT453285.1 | |
Rhizopus sp. | 664 | R. microsporus | 100 | MH473977.1 | |
Os 10 Os 27 | Rhizopus sp. | 666 | R. microsporus | 100 | MH473977.1 |
Fusarium sp. | 513 | F. oxysporum | 99.6 | KX655587.1 | |
Os 30 | Cuninghamella sp. | 715 | Cuninghamella sp. | 87.5 | OR096349.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos Suárez, D.E.; Valdivia-Flores, A.G.; Guerrero Barrera, A.L.; Flores Amaro, O.A.; Yamamoto Flores, L.; Gutierrez Corona, J.F.; Bautista Bautista, J.C.; Avelar González, F.J. Cadmium and Lead Tolerance of Filamentous Fungi Isolated from Contaminated Mining Soils. Biology 2025, 14, 688. https://doi.org/10.3390/biology14060688
Ramos Suárez DE, Valdivia-Flores AG, Guerrero Barrera AL, Flores Amaro OA, Yamamoto Flores L, Gutierrez Corona JF, Bautista Bautista JC, Avelar González FJ. Cadmium and Lead Tolerance of Filamentous Fungi Isolated from Contaminated Mining Soils. Biology. 2025; 14(6):688. https://doi.org/10.3390/biology14060688
Chicago/Turabian StyleRamos Suárez, Denisse Elibeth, Arturo Gerardo Valdivia-Flores, Alma Lilián Guerrero Barrera, Oscar Abraham Flores Amaro, Laura Yamamoto Flores, J. Felix Gutierrez Corona, Juan Carlos Bautista Bautista, and Francisco Javier Avelar González. 2025. "Cadmium and Lead Tolerance of Filamentous Fungi Isolated from Contaminated Mining Soils" Biology 14, no. 6: 688. https://doi.org/10.3390/biology14060688
APA StyleRamos Suárez, D. E., Valdivia-Flores, A. G., Guerrero Barrera, A. L., Flores Amaro, O. A., Yamamoto Flores, L., Gutierrez Corona, J. F., Bautista Bautista, J. C., & Avelar González, F. J. (2025). Cadmium and Lead Tolerance of Filamentous Fungi Isolated from Contaminated Mining Soils. Biology, 14(6), 688. https://doi.org/10.3390/biology14060688