Wildfire-Driven Shifts in Bird and Red Fox Activity: A Case Study from Biebrza National Park
Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Area
2.2. The Fire in the Biebrza National Park
2.3. Fieldwork
2.3.1. Assessment of the Number of Fire Victims
2.3.2. Assessment of Bird Activity in Burned and Unburned Areas
2.3.3. Penetration Intensity of Burned and Unburned Areas by the Red Fox
2.4. Statistical Analysis
3. Results
3.1. Number of Fire Victims
3.2. Bird Activity in the Burned and Unburned Areas
3.3. Penetration Intensity of Burned and Unburned Areas by the Red Fox
4. Discussion
4.1. Fire-Induced Mortality
4.2. Bird Activity as a Response to Fire Occurrence
4.3. Response to Fire Occurrence by the Red Fox
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Point_ID | Fire Event | Season | Rodent-Eating Raptors and Owls | Wading Birds | Corvids | Other Raptors |
---|---|---|---|---|---|---|
1 | fire | 2020 spring | 3 | 2 | 4 | 0 |
2 | fire | 2020 spring | 1 | 3 | 2 | 1 |
3 | fire | 2020 spring | 1 | 3 | 3 | 2 |
4 | fire | 2020 spring | 1 | 1 | 3 | 0 |
5 | fire | 2020 spring | 1 | 1 | 3 | 0 |
6 | fire | 2020 spring | 0 | 2 | 3 | 0 |
7 | fire | 2020 spring | 2 | 5 | 1 | 1 |
8 | fire | 2020 spring | 1 | 2 | 3 | 1 |
9 | fire | 2020 spring | 2 | 4 | 6 | 0 |
10 | fire | 2020 spring | 1 | 2 | 3 | 0 |
11 | control | 2020 spring | 1 | 2 | 2 | 0 |
12 | control | 2020 spring | 3 | 2 | 2 | 0 |
13 | control | 2020 spring | 1 | 1 | 0 | 1 |
14 | control | 2020 spring | 6 | 0 | 1 | 0 |
15 | control | 2020 spring | 3 | 1 | 1 | 4 |
16 | control | 2020 spring | 4 | 2 | 0 | 0 |
17 | control | 2020 spring | 2 | 2 | 1 | 0 |
18 | control | 2020 spring | 0 | 2 | 1 | 2 |
19 | control | 2020 spring | 1 | 4 | 1 | 0 |
20 | control | 2020 spring | 1 | 1 | 5 | 1 |
1 | fire | 2020 summer | 5 | 3 | 2 | 1 |
2 | fire | 2020 summer | 5 | 2 | 1 | 1 |
3 | fire | 2020 summer | 3 | 1 | 4 | 2 |
4 | fire | 2020 summer | 3 | 2 | 0 | 1 |
5 | fire | 2020 summer | 3 | 2 | 2 | 1 |
6 | fire | 2020 summer | 2 | 3 | 1 | 0 |
7 | fire | 2020 summer | 4 | 6 | 2 | 0 |
8 | fire | 2020 summer | 2 | 4 | 2 | 0 |
9 | fire | 2020 summer | 5 | 0 | 2 | 0 |
10 | fire | 2020 summer | 3 | 0 | 0 | 0 |
11 | control | 2020 summer | 3 | 4 | 3 | 1 |
12 | control | 2020 summer | 2 | 2 | 1 | 0 |
13 | control | 2020 summer | 1 | 5 | 1 | 1 |
14 | control | 2020 summer | 0 | 1 | 1 | 0 |
15 | control | 2020 summer | 1 | 3 | 1 | 0 |
16 | control | 2020 summer | 2 | 4 | 2 | 0 |
17 | control | 2020 summer | 3 | 5 | 1 | 1 |
18 | control | 2020 summer | 1 | 3 | 3 | 0 |
19 | control | 2020 summer | 3 | 3 | 2 | 0 |
20 | control | 2020 summer | 1 | 4 | 1 | 0 |
1 | fire | 2020 autumn | 2 | 1 | 4 | 1 |
2 | fire | 2020 autumn | 0 | 0 | 1 | 0 |
3 | fire | 2020 autumn | 2 | 0 | 2 | 0 |
4 | fire | 2020 autumn | 0 | 0 | 0 | 1 |
5 | fire | 2020 autumn | 0 | 1 | 1 | 0 |
6 | fire | 2020 autumn | 2 | 0 | 2 | 1 |
7 | fire | 2020 autumn | 0 | 0 | 3 | 1 |
8 | fire | 2020 autumn | 0 | 0 | 9 | 1 |
9 | fire | 2020 autumn | 1 | 0 | 6 | 1 |
10 | fire | 2020 autumn | 0 | 0 | 1 | 0 |
11 | control | 2020 autumn | 3 | 1 | 0 | 1 |
12 | control | 2020 autumn | 2 | 0 | 1 | 1 |
13 | control | 2020 autumn | 0 | 0 | 2 | 0 |
14 | control | 2020 autumn | 1 | 1 | 8 | 0 |
15 | control | 2020 autumn | 0 | 0 | 9 | 0 |
16 | control | 2020 autumn | 1 | 0 | 4 | 0 |
17 | control | 2020 autumn | 1 | 0 | 0 | 0 |
18 | control | 2020 autumn | 0 | 0 | 5 | 0 |
19 | control | 2020 autumn | 0 | 0 | 2 | 0 |
20 | control | 2020 autumn | 2 | 0 | 2 | 0 |
1 | fire | 2021 spring | 5 | 3 | 2 | 1 |
2 | fire | 2021 spring | 1 | 1 | 3 | 0 |
3 | fire | 2021 spring | 2 | 2 | 2 | 1 |
4 | fire | 2021 spring | 5 | 2 | 1 | 1 |
5 | fire | 2021 spring | 1 | 2 | 1 | 0 |
6 | fire | 2021 spring | 1 | 1 | 0 | 0 |
7 | fire | 2021 spring | 3 | 7 | 5 | 1 |
8 | fire | 2021 spring | 1 | 11 | 0 | 1 |
9 | fire | 2021 spring | 2 | 3 | 1 | 0 |
10 | fire | 2021 spring | 0 | 1 | 0 | 0 |
11 | control | 2021 spring | 2 | 5 | 0 | 2 |
12 | control | 2021 spring | 2 | 4 | 4 | 1 |
13 | control | 2021 spring | 3 | 3 | 0 | 0 |
14 | control | 2021 spring | 2 | 4 | 4 | 0 |
15 | control | 2021 spring | 1 | 3 | 1 | 0 |
16 | control | 2021 spring | 1 | 3 | 2 | 2 |
17 | control | 2021 spring | 1 | 2 | 1 | 0 |
18 | control | 2021 spring | 4 | 2 | 1 | 0 |
19 | control | 2021 spring | 4 | 4 | 6 | 1 |
20 | control | 2021 spring | 3 | 1 | 2 | 0 |
References
- Bowman, D.M.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; d’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth System. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Kelly, L.T.; Giljohann, K.M.; Duane, A.; Aquilué, N.; Archibald, S.; Batllori, E.; Bennett, A.F.; Buckland, S.T.; Canelles, Q.; Clarke, M.F.; et al. Fire and biodiversity in the Anthropocene. Science 2020, 370, eabb0355. [Google Scholar] [CrossRef]
- Rodríguez-Jiménez, E.; Cruz-Pérez, N.; Koritnik, J.; García-Gil, A.; Marazuela, M.; Juan, C.; Santamarta, J. Revealing the Impact of Wildfires on Groundwater Quality: Insights from Sierra de la Culebra (Spain). Chemosphere 2024, 365, 143375. [Google Scholar] [CrossRef]
- Running, S.W. Is global warming causing more, larger wild-fires? Science 2006, 313, 927–928. [Google Scholar] [CrossRef] [PubMed]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- El Garroussi, S.; Di Giuseppe, F.; Barnard, C.; Wetterhall, F. Europe faces up to tenfold increase in extreme fires in a warming climate. NPJ Clim. Atmos. Sci. 2024, 7, 30. [Google Scholar] [CrossRef]
- Bobbink, R.; Whigham, D.F.; Beltman, B.; Verhoeven, J.T. Wetland functioning in relation to biodiversity conservation and restoration. In Wetlands: Functioning, Biodiversity Conservation, and Restoration; Bobbink, R., Verhoeven, J.T.A., Beltman, B., Whigham, D.F., Eds.; Springer: Berlin, Germany, 2006; pp. 1–12. [Google Scholar]
- Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.J.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod, S.J.; et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 2019, 94, 849–873. [Google Scholar] [CrossRef]
- Okruszko, T.; Duel, H.; Acreman, M.; Grygoruk, M.; Flörke, M.; Schneider, C. Broad-scale ecosystem services of European wetlands—Overview of the current situation and future perspectives under different climate and water management scenarios. Hydrol. Sci. J. 2011, 56, 1501–1517. [Google Scholar] [CrossRef]
- Mérő, T.O.; Lontay, L.; Lengyel, S. Habitat management varying in space and time: The effects of grazing and fire management on marshland birds. J. Ornithol. 2015, 156, 579–590. [Google Scholar] [CrossRef]
- Kettridge, N.; Turetsky, M.R.; Sherwood, J.H.; Thompson, D.K.; Miller, C.A.; Benscoter, B.W.; Flannigan, M.D.; Wotton, B.M. Moderate drop in water table increases peatland vulnerability to post-fire regime shift. Sci. Rep. 2015, 5, 8063. [Google Scholar] [CrossRef]
- Pocknee, A.; Legge, S.M.; McDonald, J.; Fisher, D.O. Modeling mammal response to fire based on species’ traits. Conserv. Biol. 2023, 37, e14062. [Google Scholar] [CrossRef] [PubMed]
- Walesiak, M.; Mikusiński, G.; Borowski, Z.; Żmihorski, M. Large fire initially reduces bird diversity in Poland’s largest wetland biodiversity hotspot. Biodivers. Conserv. 2022, 31, 1037–1056. [Google Scholar] [CrossRef]
- Vogl, R.J. Effects of fire on the plants and animals of a Florida wetland. Am. Midl. Nat. 1973, 89, 334–347. [Google Scholar] [CrossRef]
- Singer, F.J.; Schreier, W.; Oppenheim, J.; Garton, E.O. Drought, fires, and large mammals. BioSci 1989, 39, 716–722. [Google Scholar] [CrossRef]
- Tomas, W.M.; Berlinck, C.N.; Chiaravalloti, R.M.; Faggioni, G.P.; Strüssmann, C.; Libonati, R.; Abrahão, C.R.; do Valle Alvarenga, G.; de Faria Bacellar, A.E.; de Queiroz Batista, F.R.; et al. Distance sampling surveys reveal 17 million vertebrates directly killed by the 2020’s wildfires in the Pantanal, Brazil. Sci. Rep. 2021, 11, 23547. [Google Scholar] [CrossRef]
- Jolly, C.J.; Dickman, C.R.; Doherty, T.S.; van Eeden, L.M.; Geary, W.L.; Legge, S.M.; Woinarski, J.C.Z.; Nimmo, D.G. Animal mortality during fire. Global Change Biol. 2022, 28, 2053–2065. [Google Scholar] [CrossRef]
- Barnard, P. Foraging site selection by three raptors in relation to grassland burning in a montane habitat. Afr. J. Ecol. 1987, 25, 35–45. [Google Scholar] [CrossRef]
- Watchorn, D.J.; Doherty, T.S.; Wilson, B.A.; Garkaklis, M.J.; Driscoll, D.A. How do invasive predators and their native prey respond to prescribed fire? Ecol. Evol. 2024, 14, e11450. [Google Scholar] [CrossRef]
- Doherty, T.S.; Geary, W.L.; Jolly, C.J.; Macdonald, K.J.; Miritis, V.; Watchorn, D.J.; Cherry, M.J.; Conner, L.M.; González, T.M.; Legge, S.M.; et al. Fire as a driver and mediator of predator–prey interactions. Biol. Rev. 2022, 97, 1539–1558. [Google Scholar] [CrossRef]
- Fordyce, A.; Hradsky, B.; Ritchie, E.G.; Stefano, J.D. Fire affects microhabitat selection, movement patterns, and body condition of an Australian rodent (Rattus fuscipes). J. Mamm. 2016, 97, 102–111. [Google Scholar] [CrossRef]
- Hovick, T.J.; McGranahan, D.A.; Elmore, R.D.; Weir, J.R.; Fuhlendorf, S.D. Pyric-carnivory: Raptor use of prescribed fires. Ecol. Evol. 2017, 7, 9144–9150. [Google Scholar] [CrossRef] [PubMed]
- Nimmo, D.G.; Avitabile, S.; Banks, S.C.; Bliege Bird, R.; Callister, K.; Clarke, M.F.; Dickman, C.R.; Doherty, T.S.; Driscoll, D.A.; Greenville, A.C.; et al. Animal movements in fire-prone landscapes. Biol. Rev. 2019, 94, 981–998. [Google Scholar] [CrossRef]
- Newsome, T.M.; Spencer, E.E. Megafires attract avian scavenging but carcasses still persist. Divers. Distrib. 2022, 28, 515–528. [Google Scholar] [CrossRef]
- Sharp Bowman, T.R.; McMillan, B.R.; St Clair, S.B. A comparison of the effects of fire on rodent abundance and diversity in the Great Basin and Mojave Deserts. PLoS ONE 2017, 12, 20–22. [Google Scholar] [CrossRef] [PubMed]
- Szczygieł, R.; Kwiatkowski, M.; Kołakowski, B. The attempt to assess the fire risk of non-forest terrestrial ecosystems of Biebrza National park—A case study. Folia For. Pol. Ser. A For. 2021, 63, 167–175. [Google Scholar] [CrossRef]
- Venne, L.S.; Frederick, P.C. Foraging Wading Bird (Ciconiiformes) Attraction to Prescribed Burns in an Oligotrophic Wetland. Fire Ecol. 2013, 9, 78–95. [Google Scholar] [CrossRef]
- Panek, M.; Bresiński, W. Red fox Vulpes vulpes density and habitat use in a rural area of western Poland in the end of 1990s, compared with the turn of 1970s. Acta Theriol. 2002, 47, 433–442. [Google Scholar] [CrossRef]
- Goszczyński, J.; Misiorowska, M.; Juszko, S. Changes in the density and spatial distribution of red fox dens and cub numbers in central Poland following rabies vaccination. Acta Theriol. 2008, 53, 121–127. [Google Scholar] [CrossRef]
- Krauze-Gryz, D.; Gryz, J.B.; Goszczyński, J.; Chylarecki, P.; Żmihorski, M. The good, the bad, and the ugly: Space use and intraguild interactions among three opportunistic predators—Cat (Felis catus), dog (Canis lupus familiaris), and red fox (Vulpes vulpes)—Under human pressure. Can. J. Zool. 2012, 90, 1402–1413. [Google Scholar] [CrossRef]
- Krauze-Gryz, D.; Jackowiak, M.; Klich, D.; Gryz, J.; Jasińska, K.D. Following urban predators—long-term snow-tracking data reveal changes in their abundance and habitat use. J. Zool. 2024, 323, 213–224. [Google Scholar] [CrossRef]
- Goszczyński, J. Diet of foxes and martens in central Poland. Acta Theriol. 1986, 31, 491–506. [Google Scholar] [CrossRef]
- Lanszki, J.; Zalewski, A.; Horváth, G. Comparison of Red Fox Vulpes vulpes and Pine Marten Martes martes Food Habits in a Deciduous Forest in Hungary. Wildl. Biol. 2007, 13, 258–271. [Google Scholar] [CrossRef]
- González, T.M.; González-Trujillo, J.D.; Muñoz, A.; Armenteras, D. Effects of fire history on animal communities: A systematic review. Ecol. Process 2022, 11, 11. [Google Scholar] [CrossRef]
- Żurek, S. Rzeźba i budowa geologiczna Doliny Biebrzy. In Przyroda Biebrzańskiego Parku Narodowego; Dyrcz, A., Werpachowski, C., Eds.; Biebrzański Park Narodowy: Osowiec-Twierdza, Poland, 2005; pp. 19–32. [Google Scholar]
- Biebrza National Park. The Land of Marshes. Available online: https://bbpn.gov.pl/przyroda-ozywiona (accessed on 20 December 2024).
- Acewicz, R. Lasy. Biebrzański Park Narodowy. W Trosce o Bagna i Ludzi. 2020. Available online: https://archiwum2.biebrza.org.pl/47,lasy (accessed on 20 December 2024).
- Ramsar Convention Secretariat. The Ramsar Convention Manual: A guide to the Convention on Wetlands (Ramsar, Iran, 1971), 6th ed.; Ramsar Convention Secretariat: Gland, Switzerland, 2013. [Google Scholar]
- Ignar, S.; Maksymiuk-Dziuban, A.; Mirosław-Świątek, D.; Chormański, J.; Okruszko, T.; Wysocki, P. Temporal variability of the selected flood parameters in the Biebrza River valley. Ann. Warsaw Univ. of Life Sci. SGGW Land. Reclam. 2011, 43, 135–142. [Google Scholar] [CrossRef]
- Grygoruk, A. Skrajnie Suchy i Ciepły Rok nad Biebrzą. Biebrzański Park Narodowy. W Trosce o Bagna. 2020. Available online: https://archiwum2.biebrza.org.pl/275,news-pt?tresc=8528 (accessed on 3 February 2025).
- Iwińska, K.; Wirowska, M.; Borowski, Z.; Boratyński, Z.; Solecki, P.; Ciesielski, M.; Boratyński, J.S. Energy allocation is revealed while behavioural performance persists after fire disturbance. J. Exp. Biol. 2024, 227, jeb247114. [Google Scholar] [CrossRef]
- Durka, M. Wpływ Pożaru w Biebrzańskim Parku Narodowym w Kwietniu 2020 r. Na Zmienność Wskaźnika NDVI; Jagiellonian University: Kraków, Poland, 2020. [Google Scholar]
- Śmietanka, K.; Woźniakowski, G.; Kozak, E.; Niemczuk, K.; Fraczyk, M.; Bocian, Ł.; Kowalczyk, A.; Pejsak, Z. African swine fever epidemic, Poland, 2014–2015. Emerg. Infect. Dis. 2016, 22, 1201–1207. [Google Scholar] [CrossRef]
- Morelle, K.; Bubnicki, J.; Churski, M.; Gryz, J.; Podgórski, T.; Kuijper, D. Disease-Induced Mortality Outweighs Hunting in Causing Wild Boar Population Crash After African Swine Fever Outbreak. Front. Vet. Sci. 2020, 7, 378. [Google Scholar] [CrossRef]
- Goszczyński, J.; Gryz, J.; Krauze, D. Fluctuations of a Common Buzzard Buteo buteo population in Central Poland. Acta Ornithol. 2005, 40, 75–78. [Google Scholar] [CrossRef]
- Gryz, J.; Krauze-Gryz, D. Common buzzard Buteo buteo population in a changing environment, central Poland as a case study. Diversity 2019, 11, 11. [Google Scholar] [CrossRef]
- Gryz, J.; Krauze-Gryz, D. Food niche overlap of avian predators (Falconiformes, Strigiformes) in a field and forest mosaic in Central Poland. Animals 2021, 11, 479. [Google Scholar] [CrossRef]
- Pugacewicz, E.; Zub, K. Liczebność, rozród oraz pokarm sowy błotnej Asio flammeus w Kotlinie Biebrzańskiej. Not. Orn 1999, 40, 69–77. [Google Scholar]
- Lesiński, G.; Romanowski, J.; Budek, S. Winter diet of the long-eared owl Asio otus in various habitats of central and north-eastern Poland. Ann. Warsaw Univ. Life Sci. SGGW Anim. Sci. 2016, 55, 81–88. [Google Scholar]
- Zawadzka, D. Feeding habits of the Black Kite Milvus migrans, Red Kite Milvus milvus, White-tailed Eagle Haliaeetus albicilla and Lesser Spotted Eagle Aquila pomarina in Wigry National Park (NE Poland). Acta Orn 1999, 34, 65–75. [Google Scholar]
- Dombrovski, V. The diet of the greater spotted eagle (Aquila clanga) in Belarusian Polesie. Slovak. Rap. J. 2010, 4, 23–36. [Google Scholar] [CrossRef]
- Brzeziński, M.; Żmihorski, M. Nestling diet and parental provisioning behaviour in the Marsh Harrier (Circus aeruginosus). Acta Zool. Lit. 2009, 19, 93–98. [Google Scholar] [CrossRef]
- Kitowski, I.; Jakubas, D.; Mirski, P.; Pitucha, G.; Markowska, K. Changes in the montagu’s harrier Circus pygargus diet in Eastern Poland across decades promote insects and reptilians, but not birds and rodents. Ecol. Evol. 2021, 11, 5265–5280. [Google Scholar] [CrossRef]
- Picozzi, N. A study of the carrion/hooded crow in north-east Scotland. British Birds 1975, 68, 409–419. [Google Scholar]
- Tatner, P. The diet of urban Magpies Pica pica. Ibis 1983, 125, 90–107. [Google Scholar] [CrossRef]
- Vorgin, M.; Vorgin, N. Hooded Crow Corvus corone cornix takes a Common Toad Bufo bufo. Orn Svecica 1998, 8, 42–43. [Google Scholar]
- Soler, J.; Soler, M. The diet of Ravens, Carrion Crows and Magpies in the same area during the autumn-winter period. Ardeola 1991, 38, 69–89. [Google Scholar]
- Zduniak, P. The prey of hooded crow (Corvus cornix L.) in wetland: Study of damaged egg shells of birds. Pol. J. Ecol. 2006, 54, 491–498. [Google Scholar]
- Zduniak, P.; Kosicki, J.; Gołdyn, B. Un-paint it black: Avian prey as a component of the diet of nestling Hooded Crows Corvus cornix. Belg. J. Zool. 2008, 138, 85–89. [Google Scholar]
- Hampl, R.; Bureš, S.; Baláž, P.; Bobek, M.; František Pojer, F. Food Provisioning and Nestling Diet of the Black Stork in the Czech Republic. Waterbirds 2005, 28, 35–40. [Google Scholar] [CrossRef]
- Tamás, E.; Kalocsa, B. The diet of young and feeding places of adult’s Black Storks Ciconia nigra in Gemenc. Biota 2006, 7, 1–2. [Google Scholar]
- Cieślińska, K.; Manikowska-Ślepowrońska, B.; Zbyryt, A.; Jakubas, D. Foraging Habitat Availability and the Non-Fish Diet Composition of the Grey Heron (Ardea cinerea) at Two Spatial Scales. Animals 2024, 14, 2461. [Google Scholar] [CrossRef]
- Kosicki, J.; Profus, P.; Dolata, P.; Tobółka, M. Food composition and energy demand of the White Stork Ciconia ciconia breeding population. Literature survey and preliminary results from Poland. In The White Stork in Poland: Studies in Biology, Ecology and Conservation; Tryjanowski, P., Sparks, T.H., Jerzak, L., Eds.; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2006. [Google Scholar]
- Nowald, G.; Fanke, J.; Hansbauer, M. Linking Crane Life History and Feeding Ecology with Natural Habitats and Agricultural Lands. In Cranes and Agriculture: A Global Guide for Sharing the Landscape; Austin, J., Morrison, K., James, T.J., Eds.; International Crane Foundation: Baraboo, WI, USA, 2018; pp. 18–34. [Google Scholar]
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. Vegan: Community Ecology Package. R package Version. 2025, 2.7-0. Available online: https://vegandevs.github.io/vegan/ (accessed on 1 March 2025).
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing 2024, Vienna, Austria. Available online: https://www.R-project.org/ (accessed on 1 March 2025).
- Predictive Solutions. PS IMAGO PRO 7.0 [Computer Software]. 2021, IBM Corp. Available online: https://predictivesolutions.pl/ps-imago-pro (accessed on 1 March 2025).
- Borowski, Z. The Impact of Predation on Small Rodent Population as Exemplified by Root Vole (Microtus oeconomus); Forest Research Institute, Dissertation and Monographs: Sękocin Stary, Poland, 2011; 124p. [Google Scholar]
- Jędrzejewska, B.; Jędrzejewski, W. Predation in Vertebrate Communities. The Bialowieza Primeval Forest as a Case Study; Ecological Studies; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Heim, R.J.; Hölzel, N.; Heinken, T.; Kamp, J.; Thomas, A.; Darman, G.F.; Smirenski, S.M.; Heim, W. Post-burn and long-term fire effects on plants and birds in floodplain wetlands of the Russian Far East. Biodivers. Conserv. 2019, 28, 1611–1628. [Google Scholar] [CrossRef]
- Jiguet, F.; Villarubias, S. Satellite tracking of breeding black storks Ciconia nigra: New incomes for spatial conservation issues. Biol. Conserv. 2004, 120, 153–160. [Google Scholar] [CrossRef]
- Manikowska-Ślepowrońska, B.; Mokwa, T.; Jakubas, D. Wintering and Stop-Over Areas of Grey Herons (Ardea cinerea) Breeding in Central Europe: A Ring-Recovery Analysis. Ann. Zool. Fenn. 2018, 55, 277–285. [Google Scholar] [CrossRef]
- Siekiera, J.; Jankowiak, Ł.; Siekiera, A.; Chmura, N.; Profus, P.; Sparks, T.H.; Tryjanowski, P. Post-breeding flocks of White Storks Ciconia ciconia in southern Poland: Size, age composition and the geographical origin of birds. Bird. Study 2021, 68, 190–197. [Google Scholar] [CrossRef]
- Polak, M.; Mikusek, R. The Past, Present and Future of the Common Crane (Grus grus) in Poland. Birds 2024, 5, 671–684. [Google Scholar] [CrossRef]
- Forney, R.; Peacock, M. The effects of fire on large- and medium-sized mammal communities: What do we know? A review. Mamm. Rev. 2024, 54, 357–372. [Google Scholar] [CrossRef]
- Geary, W.L.; Doherty, T.S.; Nimmo, D.G.; Tulloch, A.I.T.; Ritchie, E.G. Predator responses to fire: A global systematic review and meta-analysis. J. Anim. Ecol. 2020, 89, 955–971. [Google Scholar] [CrossRef] [PubMed]
- Payne, C.J.; Ritchie, E.G.; Kelly, L.T.; Nimmo, D.G. Does Fire Influence the Landscape-Scale Distribution of an Invasive Mesopredator? PLoS ONE 2014, 9, e107862. [Google Scholar] [CrossRef] [PubMed]
Fire Victim | N |
---|---|
Lepus europaeus (juv.) | 1 |
Erinaceus sp. | 1 |
Vulpes vulpes | 1 |
Talpa europaea | 2 |
Sorex sp. | 1 |
Small rodents unidentified | 5 |
Pica pica | 1 |
Ciconia ciconia | 1 |
Bird unidentified | 3 |
Bufo spp. | 9 |
Ranidae | 6 |
Triturus/Lissotriton | 1 |
Amphibian unident. | 3 |
Anguis fragilis | 1 |
Natrix natrix | 1 |
Lacerta/Zootoca | 1 |
Fish | 3 |
Unidentified vertebrates (excl. birds) | 2 |
bird nests | 4 |
Total | 47 |
Season | Birds’ Group (N Records) | |||||
---|---|---|---|---|---|---|
Rodent-Eating Raptors and Owls | Corvids | Wading Birds | Other Raptors | Total | ||
Spring 2020 | F | 13 | 31 | 25 | 5 | 74 |
C | 22 | 14 | 17 | 8 | 61 | |
Summer 2020 | F | 35 | 16 | 23 | 6 | 80 |
C | 17 | 16 | 34 | 3 | 70 | |
Autumn 2020 | F | 7 | 29 | 2 | 6 | 44 |
C | 10 | 33 | 2 | 2 | 47 | |
Spring 2021 | F | 21 | 15 | 33 | 5 | 74 |
C | 23 | 21 | 31 | 6 | 81 |
Model Term | β | SE | t | p | 95% CI | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
Intercept | 0.833 | 0.2085 | 3.997 | <0.001 | 0.418 | 1.249 |
Fire = fire | −0.551 | 0.3448 | −1.599 | 0.114 | −1.239 | 0.136 |
Fire = control | 0 * | |||||
[Fire = fire] × [Season = Summer_2020] | 0.972 | 0.3224 | 3.015 | 0.004 | 0.329 | 1.615 |
[Fire = fire] × [Season = Autumn_2020] | −0.301 | 0.4212 | −0.715 | 0.477 | −1.141 | 0.538 |
[Fire = fire] × [Season = Spring_2021] | 0.504 | 0.3478 | 1.450 | 0.151 | −0.189 | 1.198 |
[Fire = fire] × [Season = Spring_2020] | 0 * | |||||
[Fire = control] × [Season = Summer_2020] | −0.281 | 0.3179 | −0.885 | 0.379 | −0.915 | 0.352 |
[Fire = control] × [Season = Autumn_2020] | −0.681 | 0.3597 | −1.894 | 0.062 | −1.398 | 0.036 |
[Fire = control] × [Season = Spring_2021] | 0.006 | 0.2944 | 0.021 | 0.983 | −0.581 | 0.593 |
[Fire = control] × [Season = Spring_2020] | 0 * |
Model Term | β | SE | t | p | 95% CI | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
Intercept | 0.320 | 0.2835 | 1.130 | 0.262 | −0.245 | 0.885 |
Fire = fire | 0.794 | 0.3486 | 2.277 | 0.026 | 0.099 | 1.489 |
Fire = control | 0 * | |||||
[Fire = fire] × [Season = Summer_2020] | −0.661 | 0.3078 | −2.149 | 0.035 | −1.275 | −0.048 |
[Fire = fire] × [Season = Autumn_2020] | −0.067 | 0.2583 | −0.258 | 0.797 | −0.582 | 0.448 |
[Fire = fire] × [Season = Spring_2021] | −0.726 | 0.3145 | −2.308 | 0.024 | −1.353 | −0.099 |
[Fire = fire] × [Season = Spring_2020] | 0 * | |||||
[Fire = control] × [Season = Summer_2020] | 0.134 | 0.3660 | 0.365 | 0.716 | −0.596 | 0.863 |
[Fire = control] × [Season = Autumn_2020] | 0.857 | 0.3190 | 2.688 | 0.009 | 0.222 | 1.493 |
[Fire = control] × [Season = Spring_2021] | 0.405 | 0.3450 | 1.175 | 0.244 | −0.282 | 1.093 |
[Fire = control] × [Season = Spring_2020] | 0 * |
Model Term | β | SE | t | p | 95% CI | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
Intercept | 0.526 | 0.2585 | 2.037 | 0.045 | 0.011 | 1.042 |
Fire = fire | 0.364 | 0.3392 | 1.072 | 0.287 | −0.313 | 1.040 |
Fire = control | 0 * | |||||
[Fire = fire] × [Season = Summer_2020] | −0.083 | 0.2889 | −0.289 | 0.774 | −0.659 | 0.493 |
[Fire = fire] × [Season = Autumn_2020] | −2.526 | 0.7348 | −3.437 | <0.001 | −3.991 | −1.061 |
[Fire = fire] × [Season = Spring_2021] | 0.278 | 0.2651 | 1.047 | 0.299 | −0.251 | 0.806 |
[Fire = fire] × [Season = Spring_2020] | 0 * | |||||
[Fire = control] × [Season = Summer_2020] | 0.693 | 0.2970 | 2.333 | 0.022 | 0.101 | 1.285 |
[Fire = control] × [Season = Autumn_2020] | −2.140 | 0.7475 | −2.863 | 0.005 | −3.630 | −0.650 |
[Fire = control] × [Season = Spring_2021] | 0.601 | 0.3018 | 1.991 | 0.050 | −0.001 | 1.202 |
[Fire = control] × [Season = Spring_2020] | 0 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gryz, J.; Krauze-Gryz, D.; Brach, M. Wildfire-Driven Shifts in Bird and Red Fox Activity: A Case Study from Biebrza National Park. Biology 2025, 14, 685. https://doi.org/10.3390/biology14060685
Gryz J, Krauze-Gryz D, Brach M. Wildfire-Driven Shifts in Bird and Red Fox Activity: A Case Study from Biebrza National Park. Biology. 2025; 14(6):685. https://doi.org/10.3390/biology14060685
Chicago/Turabian StyleGryz, Jakub, Dagny Krauze-Gryz, and Michał Brach. 2025. "Wildfire-Driven Shifts in Bird and Red Fox Activity: A Case Study from Biebrza National Park" Biology 14, no. 6: 685. https://doi.org/10.3390/biology14060685
APA StyleGryz, J., Krauze-Gryz, D., & Brach, M. (2025). Wildfire-Driven Shifts in Bird and Red Fox Activity: A Case Study from Biebrza National Park. Biology, 14(6), 685. https://doi.org/10.3390/biology14060685