Spatiotemporal Assessment and Driving Factors of Ecosystem Health: A Case Study of Two Provinces in Southern China
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Framework
2.3. Data Source and Processing
2.4. Assessment of Ecosystem Health
2.4.1. Assessment of Ecosystem Physical Health
2.4.2. Assessment of Ecosystem Services
2.4.3. Assessment of Ecosystem Health
2.5. Analysis of Drivers
2.5.1. Random Forest
2.5.2. Shapley Additive Explanations
3. Results
3.1. Spatiotemporal Changes in Ecosystem Physical Health
3.2. Spatiotemporal Changes in Ecosystem Service
3.3. Spatial Distribution of Ecosystem Health and Their Driving Factors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rapport, D.J. What constitutes ecosystem health? Perspect. Biol. Med. 1989, 33, 120–132. [Google Scholar] [CrossRef]
- Costanza, R. Toward an operational definition of ecosystem health. Ecosyst. Health New Goals Environ. Manag. 1992, 239, 269. [Google Scholar]
- Rapport, D.J. Sustainability science: An ecohealth perspective. Sustain. Sci. 2007, 2, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Bridgewater, P.; Loyau, A.; Schmeller, D.S. The seventh plenary of the intergovernmental platform for biodiversity and ecosystem services (IPBES-7): A global assessment and a reshaping of IPBES. Biodivers. Conserv. 2019, 28, 2457–2461. [Google Scholar] [CrossRef]
- Charron, D.F. Ecosystem approaches to health for a global sustainability agenda. EcoHealth 2012, 9, 256–266. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, R.; Zhang, Y.; Su, H.; Wang, P.; Jenkins, A.; Ferrier, R.C.; Bailey, M.; Squire, G. Ecosystem health towards sustainability. Ecosyst. Health Sustain. 2015, 1, 1–15. [Google Scholar] [CrossRef]
- Rapport, D.J. Evaluating ecosystem health. J. Aquat. Ecosyst. Health 1992, 1, 15–24. [Google Scholar] [CrossRef]
- Chi, Y.; Zheng, W.; Shi, H.; Sun, J.; Fu, Z. Spatial heterogeneity of estuarine wetland ecosystem health influenced by complex natural and anthropogenic factors. Sci. Total Environ. 2018, 634, 1445–1462. [Google Scholar] [CrossRef]
- Costanza, R. Ecosystem health and ecological engineering. Ecol. Eng. 2012, 45, 24–29. [Google Scholar] [CrossRef]
- Peng, J.; Wang, Y.; Wu, J.; Zhang, Y. Evaluation for regional ecosystem health: Methodology and research progress. Acta Ecol. Sin. 2007, 27, 4877–4885. [Google Scholar] [CrossRef]
- Cheng, X.; Chen, L.; Sun, R.; Kong, P. Land use changes and socio-economic development strongly deteriorate river ecosystem health in one of the largest basins in China. Sci. Total Environ. 2018, 616, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Fath, B.D.; Yang, Z. Urban ecosystem health assessment: A review. Sci. Total Environ. 2010, 408, 2425–2434. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Chen, Y.; Ren, L.; Lü, H.; Zhao, W.; Yuan, F.; Xu, M. Ecosystem restoration and conservation in the arid inland river basins of Northwest China: Problems and strategies. Ecol. Eng. 2016, 94, 629–637. [Google Scholar] [CrossRef]
- Halpern, B.S.; Longo, C.; Hardy, D.; McLeod, K.L.; Samhouri, J.F.; Katona, S.K.; Kleisner, K.; Lester, S.E.; O’Leary, J.; Ranelletti, M. An index to assess the health and benefits of the global ocean. Nature 2012, 488, 615–620. [Google Scholar] [CrossRef]
- Guo, J.; Wei, X.; Zhang, F.; Cai, J.; Ding, Y. Remote Sensing Assessment of Ecosystem Health and Its Key Driving Factors: A Case Study of the Urban Agglomeration in the Middle Reaches of the Yangtze River. Environ. Sci. 2024, 1–15. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, A.; Liu, X.; Zhang, W.; Han, X. Analysis of Spatial and Temporal Evolution of Ecosystem Health and Its Driving Factors on the Loess Plateau. Environ. Sci. 2024, 1–15. [Google Scholar] [CrossRef]
- Shen, W.; Zheng, Z.; Pan, L.; Qin, Y.; Li, Y. A integrated method for assessing the urban ecosystem health of rapid urbanized area in China based on SFPHD framework. Ecol. Indic. 2021, 121, 107071. [Google Scholar] [CrossRef]
- Pan, Z.; He, J.; Liu, D.; Wang, J.; Guo, X. Ecosystem health assessment based on ecological integrity and ecosystem services demand in the Middle Reaches of the Yangtze River Economic Belt, China. Sci. Total Environ. 2021, 774, 144837. [Google Scholar] [CrossRef]
- He, J.; Pan, Z.; Liu, D.; Guo, X. Exploring the regional differences of ecosystem health and its driving factors in China. Sci. Total Environ. 2019, 673, 553–564. [Google Scholar] [CrossRef]
- Li, Y.; Dong, S.; Wen, L.; Wang, X.; Wu, Y. Three-dimensional framework of vigor, organization, and resilience (VOR) for assessing rangeland health: A case study from the alpine meadow of the Qinghai-Tibetan Plateau, China. EcoHealth 2013, 10, 423–433. [Google Scholar] [CrossRef]
- Lei, J.; Li, C.; Yang, W. Ecosystem health assessment and approaches to improve Sichuan Province based on an improved vigor organization resilience model. Ecol. Indic. 2023, 155, 110925. [Google Scholar] [CrossRef]
- Wiegand, J.; Raffaelli, D.; Smart, J.C.; White, P.C. Assessment of temporal trends in ecosystem health using an holistic indicator. J. Environ. Manag. 2010, 91, 1446–1455. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Huang, J.; Dong, J. Assessment of rural ecosystem health and type classification in Jiangsu province, China. Sci. Total Environ. 2018, 615, 1218–1228. [Google Scholar] [CrossRef]
- Yan, Y.; Zhao, C.; Wang, C.; Shan, P.; Zhang, Y.; Wu, G. Ecosystem health assessment of the Liao River Basin upstream region based on ecosystem services. Acta Ecol. Sin. 2016, 36, 294–300. [Google Scholar] [CrossRef]
- Ye, D.; Yang, L.; Zhou, M. Spatiotemporal variation in ecosystem health and its driving factors in Guizhou Province. Land 2023, 12, 1439. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Charlton, M.E.; Brunsdon, C. Spatial variations in school performance: A local analysis using geographically weighted regression. Geogr. Environ. Model. 2001, 5, 43–66. [Google Scholar] [CrossRef]
- Ren, Y.; Lü, Y.; Fu, B.; Comber, A.; Li, T.; Hu, J. Driving factors of land change in china’s loess plateau: Quantification using geographically weighted regression and management implications. Remote Sens. 2020, 12, 453. [Google Scholar] [CrossRef]
- Gao, B.; Yang, J.; Chen, Z.; Sugihara, G.; Li, M.; Stein, A.; Kwan, M.-P.; Wang, J. Causal inference from cross-sectional earth system data with geographical convergent cross mapping. Nat. Commun. 2023, 14, 5875. [Google Scholar] [CrossRef]
- Zhang, X.; Zeng, C.; Gou, P.; Huang, Y. The Spatio-Temporal Distribution of Ecosystem Health and Its Driving Factors in the Yunnan-Guizhou Plateau Region. Bull. Surv. Mapp. 2024, 37–41. [Google Scholar] [CrossRef]
- Xu, X.; Yu, J.; Wang, F. Analysis of ecosystem service drivers based on interpretive machine learning: A case study of Zhejiang Province, China. Environ. Sci. Pollut. Res. 2022, 29, 64060–64076. [Google Scholar] [CrossRef]
- Shi, S.; Qiu, H.; Ji, S.; Luo, Z. The combined effects of topography and climate factors dominate the spatiotemporal evolution of the ecological environment in the Yangtze River Economic Belt. Land Degrad. Dev. 2025. [Google Scholar] [CrossRef]
- Chen, D.; Jiang, P.; Li, M. Assessing potential ecosystem service dynamics driven by urbanization in the Yangtze River Economic Belt, China. J. Environ. Manag. 2021, 292, 112734. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yao, M.; Tang, Y.; Li, W.; Yu, T.; Ma, W.; Geng, X. Assessing the Relative and Combined Effect of Climate and Land Use on Water-Related Ecosystem Services in the Yangtze River Economic Belt, China. Water 2024, 16, 2126. [Google Scholar] [CrossRef]
- Huang, X.; Yang, J. The 30 m annual land cover datasets and its dynamics in China from 1985 to 2022. Earth Syst. Sci. Data 2023, 13, 3907–3925. [Google Scholar]
- Yan, F.; Shangguan, W.; Zhang, J.; Hu, B. Depth-to-bedrock map of China at a spatial resolution of 100 meters. Sci. Data 2020, 7, 2. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, G.; Pan, J.; Feng, X. Distribution of available soil water capacity in China. J. Geogr. Sci. 2005, 15, 3–12. [Google Scholar] [CrossRef]
- Shangguan, W.; Dai, Y.; Liu, B.; Zhu, A.; Duan, Q.; Wu, L.; Ji, D.; Ye, A.; Yuan, H.; Zhang, Q. A China data set of soil properties for land surface modeling. J. Adv. Model. Earth Syst. 2013, 5, 212–224. [Google Scholar] [CrossRef]
- Liu, F.; Wu, H.; Zhao, Y.; Li, D.; Yang, J.-L.; Song, X.; Shi, Z.; Zhu, A.-X.; Zhang, G.-L. Mapping high resolution national soil information grids of China. Sci. Bull. 2022, 67, 328–340. [Google Scholar] [CrossRef]
- Feng, X. Research on the Identification of Key Areas for Ecological Restoration of Dexing City’s Territorial Space Based on Ecological Network. Master’s Thesis, Jiangxi Agricultural University, Nanchang, China, 2023. [Google Scholar]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Song, M.; Liu, X.; Liu, Y. Global 1 km× 1 km gridded revised real gross domestic product and electricity consumption during 1992–2019 based on calibrated nighttime light data. Sci. Data 2022, 9, 202. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, X.; Yan, C.; Liu, Y.; Su, X.; Zhang, C. Identification of Key Areas for Ecological Protection and Restoration in National Land Space by Integrating Time-Series Remote Sensing Analysis. Trans. Chin. Soc. Agric. Mach. 2023, 54, 161–170. [Google Scholar]
- Chen, W.; Gu, T.; Zeng, J. Urbanisation and ecosystem health in the Middle Reaches of the Yangtze River urban agglomerations, China: A U-curve relationship. J. Environ. Manag. 2022, 318, 115565. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gou, P.; Chen, W.; Li, G.; Huang, Y.; Zhou, T.; Liu, Y.; Nie, W. Spatiotemporal distribution characteristics of ecosystem health and the synergetic impact of its driving factors in the Yangtze River Delta, China. Environ. Sci. Pollut. Res. 2023, 30, 85184–85197. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Fang, B.; Xu, H.; He, S.; Li, X. Study on the coordinated relationship between Urban Land use efficiency and ecosystem health in China. Land Use Policy 2021, 102, 105235. [Google Scholar] [CrossRef]
- Phillips, L.B.; Hansen, A.J.; Flather, C.H. Evaluating the species energy relationship with the newest measures of ecosystem energy: NDVI versus MODIS primary production. Remote Sens. Environ. 2008, 112, 4381–4392. [Google Scholar] [CrossRef]
- Yi, L.; Sun, Y.; Ouyang, X.; Yin, S. Identifying the impacts of climate change and human activities on vegetation cover changes: A case study of the Yangtze River Basin, China. Int. J. Environ. Res. Public Health 2022, 19, 6239. [Google Scholar] [CrossRef]
- Liu, J.; Fu, J.; Qin, J.; Su, B.; Hong, Y. Effects of climate variability and urbanization on spatiotemporal patterns of vegetation in the middle and lower Yangtze River Basin, China. Front. Plant Sci. 2024, 15, 1459058. [Google Scholar] [CrossRef]
- Li, Y.; Shi, Y.; Qureshi, S.; Bruns, A.; Zhu, X. Applying the concept of spatial resilience to socio-ecological systems in the urban wetland interface. Ecol. Indic. 2014, 42, 135–146. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Y.; Li, T.; Wu, J. Regional ecosystem health response to rural land use change: A case study in Lijiang City, China. Ecol. Indic. 2017, 72, 399–410. [Google Scholar] [CrossRef]
- Sha, H.; Zhang, D.; Shi, S.; Liu, X. Ecosystem health assessment of coastal zone in central Jiangsu Province based on coupling model and remote sensing technology. Acta Ecol. Sin. 2018, 38, 7102–7112. [Google Scholar]
- Huang, X.; Zhao, X.; Guo, X.; Jiang, Y.; Lai, X. The natural ecological spatial management zoning based on ecosystem service function and ecological sensitivity. Acta Ecol. Sin. 2020, 40, 1065–1076. [Google Scholar]
- Li, Q.; Li, W.; Wang, S.; Wang, J. Assessing heterogeneity of trade-offs/synergies and values among ecosystem services in Beijing-Tianjin-Hebei urban agglomeration. Ecol. Indic. 2022, 140, 109026. [Google Scholar] [CrossRef]
- Lei, J.; Zhang, L.; Chen, Z.; Wu, T.; Chen, X.; Li, Y. The impact of land use change on carbon storage and multi-scenario prediction in Hainan Island using InVEST and CA-Markov models. Front. For. Glob. Change 2024, 7, 1349057. [Google Scholar] [CrossRef]
- Sun, W.; Liu, X. Spatio-temporal evolution and multi-scenario prediction of ecosystem carbon storage in Chang-Zhu-Tan Urban agglomeration based on the FLUS-InVEST Model. Sustainability 2024, 16, 7025. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Kang, P.; Chen, W.; Hou, Y.; Li, Y. Linking ecosystem services and ecosystem health to ecological risk assessment: A case study of the Beijing-Tianjin-Hebei urban agglomeration. Sci. Total Environ. 2018, 636, 1442–1454. [Google Scholar] [CrossRef]
- Chen, W.; Chi, G.; Li, J. The spatial association of ecosystem services with land use and land cover change at the county level in China, 1995–2015. Sci. Total Environ. 2019, 669, 459–470. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, E. An evaluation of the ecological and environmental security on China’s terrestrial ecosystems. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Gordon, A.; Simondson, D.; White, M.; Moilanen, A.; Bekessy, S.A. Integrating conservation planning and landuse planning in urban landscapes. Landsc. Urban Plan. 2009, 91, 183–194. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Wu, J.; Cheng, D.; Xu, Y.; Huang, Q.; Feng, Z. Spatial-temporal change of ecosystem health across China: Urbanization impact perspective. J. Clean. Prod. 2021, 326, 129393. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, H.; Ou, W.; Guo, J. A land-cover-based approach to assessing ecosystem services supply and demand dynamics in the rapidly urbanizing Yangtze River Delta region. Land Use Policy 2018, 72, 250–258. [Google Scholar] [CrossRef]
- Chuai, X.; Huang, X.; Wu, C.; Li, J.; Lu, Q.; Qi, X.; Zhang, M.; Zuo, T.; Lu, J. Land use and ecosystems services value changes and ecological land management in coastal Jiangsu, China. Habitat Int. 2016, 57, 164–174. [Google Scholar] [CrossRef]
- Qiu, B.; Li, H.; Zhou, M.; Zhang, L. Vulnerability of ecosystem services provisioning to urbanization: A case of China. Ecol. Indic. 2015, 57, 505–513. [Google Scholar] [CrossRef]
Data Name | Period | Resolution | Data Source |
---|---|---|---|
Land use/land cover (LULC) | 2000–2020 | 30 m | [34] |
Normalised Difference Vegetation Index | 2000–2020 | 30 m | National Ecological Science Data Centre (https://www.nesdc.org.cn, on 22 December 2024) |
Carbon density of land cover types | / | 1000 m | |
Mean annual precipitation | 2000–2020 | 1000 m | National Earth System Science Data Centre (https://www.geodata.cn, on 23 December 2024) |
Digital elevation model | / | 250 m | |
Rainfall erosivity factor | 2000–2020 | 1000 m | |
Annual average potential Evapotranspiration | 2000–2020 | 1000 m | National Tibetan Plateau/Third Pole Environment Data Centre (https://data.tpdc.ac.cn, on 23 December 2024) |
Soil data (soil texture, soil organic carbon, and soil bulk density) | 1980s/2010s | 1000 m/250 m | [37,38] |
Plant-available water content | / | / | [36] |
Root depth | / | / | [35] |
Maximum root depth, vegetation transpiration coefficient, soil and water conservation measures factor, and vegetation cover factor | / | / | [35,36]; FAO crop reference values and InVEST model user guide |
Soil erosion factor | 1980s/2010s | 1000 m/250 m | Calculated from soil texture data [39] |
Driving Factors | Abbreviation | Time Period | Resolution | Data Source |
---|---|---|---|---|
Mean annual press | MAPS | 2000–2020 | 1000 m | National Tibetan Plateau/Third Pole Environment Data Centre (https://data.tpdc.ac.cn, on 23 December 2024) |
Mean annual wind | MAW | 2000–2020 | 1000 m | |
Mean annual temperature | MAT | 2000–2020 | 1000 m | |
Annual minimum temperature | LMAT | 2000–2020 | 1000 m | |
Night light | NL | 2000–2020 | 1000 m | |
Aspect | Aspect | / | 250 m | National Earth System Science Data Centre (https://www.geodata.cn, on 23 December 2024) |
Slope | Slope | / | 250 m | |
Slope length | SL | / | 250 m | |
Terrain ruggedness index | TRI | / | 30 m | |
Profile curvature | PCE | / | 250 m | |
Plan curvature | PC | / | 250 m | |
General curvature | GC | / | 250 m | |
Digital elevation model | DEM | / | 250 m | |
Multiresolution index of ridge top flatness | MRRTF | / | 250 m | |
Multiresolution index of valley bottom flatness | MRVBF | / | 250 m | |
Net primary productivity | NEP | 2000–2020 | 900 m | |
Net ecosystem productivity | NPP | 2000–2020 | 900 m | |
Gross primary productivity | GPP | 2000–2020 | 900 m | |
Aridity index | AI | 2000–2020 | 1000 m | |
Mean annual precipitation | MAP | 2000–2020 | 1000 m | |
Potential crop yield | PCY | 2000–2020 | 1000 m | Resource and Environment Science Data Platform (http://www.resdc.cn, on 23 December 2024) |
Tree cover | TC | 2000–2020 | 1000 m | |
Population density | PD | 2000–2022 | 1000 m | (https://landscan.ornl.gov, on 23 December 2024) |
Fractional vegetation cover | FVC | 2000–2020 | 250 m | National Ecological Science Data Centre (https://www.nesdc.org.cn, on 22 December 2024) |
Soil total phosphorus | TP | 1980s/2010s | 1000 m/250 m | [37,38] |
Soil pH | pH | 1980s/2010s | 1000 m/250 m | |
Soil total nitrogen | TN | 1980s/2010s | 1000 m/250 m | |
Cation exchange capacity | CEC | 1980s/2010s | 1000 m/250 m | |
Soil total potassium | TK | 1980s/2010s | 1000 m/250 m | |
Soil bulk density | BD | 1980s/2010s | 1000 m/250 m | |
Real GDP | GDP | 2000–2019 | 1000 m | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Y.; Zhang, Y.; Jiang, Y.; Guo, X. Spatiotemporal Assessment and Driving Factors of Ecosystem Health: A Case Study of Two Provinces in Southern China. Biology 2025, 14, 671. https://doi.org/10.3390/biology14060671
Cai Y, Zhang Y, Jiang Y, Guo X. Spatiotemporal Assessment and Driving Factors of Ecosystem Health: A Case Study of Two Provinces in Southern China. Biology. 2025; 14(6):671. https://doi.org/10.3390/biology14060671
Chicago/Turabian StyleCai, Yujun, Yu Zhang, Yefeng Jiang, and Xi Guo. 2025. "Spatiotemporal Assessment and Driving Factors of Ecosystem Health: A Case Study of Two Provinces in Southern China" Biology 14, no. 6: 671. https://doi.org/10.3390/biology14060671
APA StyleCai, Y., Zhang, Y., Jiang, Y., & Guo, X. (2025). Spatiotemporal Assessment and Driving Factors of Ecosystem Health: A Case Study of Two Provinces in Southern China. Biology, 14(6), 671. https://doi.org/10.3390/biology14060671