Trichophyton rubrum Phenotypic Virulence Factors in Mexican Strains
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barac, A.; Stjepanovic, M.; Krajisnik, S.; Stevanovic, G.; Paglietti, B.; Milosevic, B. Milosevic Dermatophytes: Update on Clinical Epidemiology and Treatment. Mycopathologia 2024, 189, 101. [Google Scholar] [CrossRef] [PubMed]
- Bitencourt, T.A.; Neves-da-Rocha, J.; Martins, M.P.; Sanches, P.R.; Lang, E.A.S.; Bortolossi, J.C.; Rossi, A.; Martinez-Rossi, N.M. StuA-Regulated Processes in the Dermatophyte Trichophyton rubrum: Transcription Profile, Cell-Cell Adhesion, and Immunomodulation. Front. Cell. Infect. Microbiol. 2021, 11, 643659. [Google Scholar] [CrossRef]
- Simpanya, M.F. Dermatophytes: Their taxonomy, ecology and pathogenicity. Rev. Iberoam. Micol. 2000, 17, 1–11. [Google Scholar]
- Pérez-Rodríguez, A.; Duarte-Escalante, E.; Frías-De-León, M.G.; Altamirano, G.A.; Meraz-Ríos, B.; Martínez-Herrera, E.; Arenas, R.; Reyes-Montes, M.d.R. Phenotypic and Genotypic Identification of Dermatophytes from Mexico and Central American Countries. J. Fungi 2023, 9, 462. [Google Scholar] [CrossRef] [PubMed]
- de Hoog, G.S.; Dukik, K.; Monod, M.; Packeu, A.; Stubbe, D.; Hendrickx, M.; Kupsch, C.; Stielow, J.B.; Freeke, J.; Göker, M.; et al. Toward a Novel Multilocus Phylogenetic Taxonomy for the Dermatophytes. Mycopathologia 2017, 182, 5–31. [Google Scholar] [CrossRef] [PubMed]
- Guarro, J. Taxonomía y biología de los hongos causantes de infección en humanos [Taxonomy and biology of fungi causing human infection]. Enferm. Infecc. Microbiol. Clin. 2012, 30, 33–39. [Google Scholar] [CrossRef]
- Havlickova, B.; Czaika, V.A.; Friedrich, M. Epidemiological trends in skin mycoses worldwide. Mycoses 2008, 51, 2–15. [Google Scholar] [CrossRef]
- Arenas, R. Dermatophytoses in Mexico. Rev. Iberoam. Micol. 2002, 19, 63–67. [Google Scholar]
- Köhler, J.R.; Hube, B.; Puccia, R.; Casadevall, A.; Perfect, J.R. Fungi that Infect Humans. Microbiol. Spectr. 2017, 5, 813–843. [Google Scholar] [CrossRef]
- Coulibaly, O.; L’Ollivier, C.; Piarroux, R.; Ranque, S. Epidemiology of human dermatophytoses in Africa. Med. Mycol. 2018, 56, 145–161. [Google Scholar] [CrossRef]
- Vermout, S.; Tabart, J.; Baldo, A.; Mathy, A.; Losson, B.; Mignon, B. Pathogenesis of dermatophytosis. Mycopathologia 2008, 166, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Sharifzadeh, A.; Shokri, H.; Khosravi, A.R. In Vitro evaluation of antifungal susceptibility and keratinase, elastase, lipase and DNase activities of different dermatophyte species isolated from clinical specimens in Iran. Mycoses 2016, 59, 710–719. [Google Scholar] [CrossRef] [PubMed]
- Wiegand, C.; Burmester, A.; Tittelbach, J.; Darr-Foit, S.; Goetze, S.; Elsner, P.; Hipler, U.C. Dermatophytosis caused by rare anthropophilic and zoophilic agents. Hautarzt 2019, 70, 561–574. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Adhikari, L.; Sharma, R.L. Recurrent dermatophytosis: A rising problem in Sikkim, a Himalayan state of India. Indian J. Pathol. Microbiol. 2017, 60, 541–545. [Google Scholar] [CrossRef] [PubMed]
- López-Martínez, R.; Manzano-Gayosso, P.; Hernández-Hernández, F.; Bazán-Mora, E.; Méndez-Tovar, L.J. Dynamics of dermatophytosis frequency in Mexico: An analysis of 2084 cases. Med. Mycol. 2010, 48, 476–479. [Google Scholar] [CrossRef]
- Arenas, R.; del Rocío Reyes-Montes, M.; Duarte-Escalante, E.; Frías-De-León, M.G.; Martínez-Herrera, E. Dermatophytes and Dermatophytosis. In Current Progress in Medical Mycology; Mora-Montes, H., Lopes-Bezerra, L., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Chinnapun, D.; Thammarat, N.S. Virulence Factors Involved in Pathogenicity of Dermatophytes. Walailak J. 2015, 12, 573–580. [Google Scholar]
- Martínez-Herrera, E.; Moreno-Coutiño, G.; Fuentes-Venado, C.E.; Hernández-Castro, R.; Arenas, R.; Pinto-Almazán, R.; Rodríguez-Cerdeira, C. Main Phenotypic Virulence Factors Identified in Trichophyton rubrum. J. Biol. Regul. Homeost. Agents 2023, 37, 2345–2356. [Google Scholar] [CrossRef]
- Lopez-Martinez, R.; Manzano-Gayosso, P.; Mier, T.; Mendez-Tovar, L.J.; Hernandez-Hernandez, F. Exoenzymes of dermatophytes isolated from acute and chronic tinea. Rev. Latinoam. Microbiol. 1994, 36, 17–20. [Google Scholar]
- Schaufuss, P.; Steller, U. Haemolytic activities of Trichophyton species. Med. Mycol. 2003, 41, 511–516. [Google Scholar] [CrossRef]
- Hopsu-Havu, V.; Sonck, C.; Tunnela, E. Production of elastase by pathogenic and non-pathogenic fungi. Mykosen 1972, 15, 105–110. [Google Scholar] [CrossRef]
- Leitão, J.H. Microbial Virulence Factors. Int. J. Mol. Sci. 2020, 21, 5320. [Google Scholar] [CrossRef]
- Bitencourt, T.A.; Macedo, C.; Franco, M.E.; Rocha, M.C.; Moreli, I.S.; Cantelli, B.A.M.; Sanches, P.R.; Beleboni, R.O.; Malavazi, I.; Passos, G.A.; et al. Trans-chalcone activity against Trichophyton rubrum relies on an interplay between signaling pathways related to cell wall integrity and fatty acid metabolism. BMC Genom. 2019, 20, 411. [Google Scholar] [CrossRef]
- Hazen, K.C. Evaluation of in vitro susceptibility of dermatophytes to oral antifungal agents. J. Am. Acad. Dermatol. 2000, 43 (Suppl. 5), S125–S129. [Google Scholar] [CrossRef]
- Pakshir, K.; Zomorodian, K.; Karamitalab, M.; Jafari, M.; Taraz, H.; Ebrahimi, H. Phospholipase, esterase and hemolytic activities of Candida spp. isolated from onychomycosis and oral lichen planus lesions. J. Mycol. Med. 2013, 23, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Amini, N.; Mohammadi, R. Phospholipase Activity of Candida Species Isolated from Diabetic Patients. Adv. Biomed. Res. 2023, 12, 19. [Google Scholar] [CrossRef] [PubMed]
- Zeitoun, H.; Salem, R.A.; El-Guink, N.M.; Tolba, N.S.; Mohamed, N.M. Elucidation of the mechanisms of fluconazole resistance and repurposing treatment options against urinary Candida spp. isolated from hospitalized patients in Alexandria, Egypt. BMC Microbiol. 2024, 24, 383. [Google Scholar] [CrossRef] [PubMed]
- Vite-Garín, T.; Estrada-Cruz, N.A.; Hernández-Castro, R.; Fuentes-Venado, C.E.; Zarate-Segura, P.B.; Frías-De-León, M.G.; Martínez-Castillo, M.; Martínez-Herrera, E.; Pinto-Almazán, R. Remarkable Phenotypic Virulence Factors of Microsporum canis and Their Associated Genes: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 2533. [Google Scholar] [CrossRef]
- Martins, M.P.; Rossi, A.; Sanches, P.R.; Bortolossi, J.C.; Martinez-Rossi, N.M. Comprehensive analysis of the dermatophyte Trichophyton rubrum transcriptional profile reveals dynamic metabolic modulation. Biochem. J. 2020, 477, 873–885. [Google Scholar] [CrossRef]
- Santos, J.I.; Vicente, E.J.; Paula, C.R.; Gambale, W. Phenotypic characterization of Trichophyton rubrum isolates from two geographic locations in Brazil. Eur. J. Epidemiol. 2001, 17, 729–735. [Google Scholar] [CrossRef]
- Chen, J.; Gao, Y.; Xiong, S.; Peng, Z.; Zhan, P. Expression Profiles of Protease in Onychomycosis-Related Pathogenic Trichophyton rubrum and Tinea Capitis-Related Pathogenic Trichophyton violaceum. Mycopathologia 2024, 189, 14. [Google Scholar] [CrossRef]
- Park, M.; Park, S.; Jung, W. Skin Commensal Fungus Malassezia and Its Lipases. J. Microbiol. Biotechnol. 2021, 31, 637–644. [Google Scholar] [CrossRef]
- Wertz, P. Lipids and the Permeability and Antimicrobial Barriers of the Skin. J. Lipids 2018, 2018, 5954034. [Google Scholar] [CrossRef] [PubMed]
- Colla, L.; Rezzadori, K.; Câmara, S.; Debon, J.; Tibolla, M.; Bertolin, T.E.; Costa, J.A.V. A solid-state bioprocess for selecting lipase-producing filamentous fungi. Z. Naturforschung C J. Biosci. 2009, 64, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Mukhopadhyay, M. Overview of fungal lipase: A review. Appl. Biochem. Biotechnol. 2012, 166, 486–520. [Google Scholar] [CrossRef] [PubMed]
- Elavarashi, E.; Kindo, A.J.; Rangarajan, S. Enzymatic and Non-Enzymatic Virulence Activities of Dermatophytes on Solid Media. J. Clin. Diagn. Res. 2017, 11, DC23–DC25. [Google Scholar] [CrossRef]
- Ghannoum, M.A. Potential role of phospholipases in virulence and fungal pathogenesis. Clin. Microbiol. Rev. 2000, 13, 122–143. [Google Scholar] [CrossRef]
- Vázquez-Boland, J.A.; Kuhn, M.; Berche, P.; Chakrabocrty, T.; Dominguez-Bernal, G.; Goebel, W.; González-Zorn, B.; Wehland, J.; Kreft, J. Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 2001, 14, 584–640. [Google Scholar] [CrossRef]
- Nayak, A.P.; Green, B.J.; Beezhold, D.H. Fungal hemolysins. Med. Mycol. 2013, 51, 1–16. [Google Scholar] [CrossRef]
- Burmester, A.; Shelest, E.; Glockner, G.; Heddergott, C.; Schindler, S.; Staib, P.; Heidel, A.; Felder, M.; Petzold, A.; Szafranski, K.; et al. Comparative and functional genomics provide insights into the pathogenicity of dermatophytic fungi. Genome Biol. 2011, 12, R7. [Google Scholar] [CrossRef]
- Achterman, R.R.; White, T.C. Dermatophyte virulence factors: Identifying and analyzing genes that may contribute to chronic or acute skin infections. Int. J. Microbiol. 2012, 2012, 358305. [Google Scholar] [CrossRef]
- Dubljanin, E.; Zunic, J.; Vujcic, I.; Colovic Calovski, I.; Sipetic Grujicic, S.; Mijatovic, S.; Dzamic, A. Host-Pathogen Interaction and Resistance Mechanisms in Dermatophytes. Pathogens 2024, 13, 657. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.P.; Silva, L.G.; Rossi, A.; Sanches, P.R.; Souza, L.D.R.; Martinez-Rossi, N.M. Global Analysis of Cell Wall Genes Revealed Putative Virulence Factors in the Dermatophyte Trichophyton rubrum. Front. Microbiol. 2019, 10, 2168. [Google Scholar] [CrossRef] [PubMed]
- Rippon, J.; Varadi, D. The elastases of pathogenic fungi and actinomycetes. J. Investig. Dermatol. 1968, 50, 54–58. [Google Scholar] [CrossRef] [PubMed]
Media Type | Composition | Amounts |
---|---|---|
Blood agar for hemolysines evaluation | Casein peptone | 10 g |
Yeast extract | 3 g | |
Heart extract | 3 g | |
Sodium chloride | 5 g | |
Bacteriologic agar 15 gr, Defibrinated lambs blood | 15 g | |
50 mL | ||
Distilled water | 1000 mL | |
Agar for elastase evaluation | Bacteriologic agar | 20 g |
Casein peptone | 17 g | |
Soy peptone | 3 g | |
Dextrose | 2.5 g | |
Sodium chloride | 5 g | |
Dipotassic phosphate | 2.5 g | |
Distilled water | 1000 mL | |
Bovine elastine | 3 g | |
Agar for phospholipase evaluation | Peptone | 10 g |
Dextrose | 20 g | |
Sodium chloride | 57.3 g | |
Calcium chloride | 0.5 g | |
Agar | 20 g | |
Sterile egg yolk | 50 g | |
Distilled water | 1000 mL | |
Agar for lipase evaluation | Peptone 10 gr, | 10 g |
Sodium chloride 5 gr, | 5 g | |
Calcium chloride 0.1 gr, | g | |
Agar 20 gr, | 20 g | |
Tween 20 | 10 mL | |
Distilled water | 1000 mL |
Strain Number | Age (Years)/Sex | Occupation | Origin/Residence | Comorbidities | Localization | Evolution Time | Diagnosis |
---|---|---|---|---|---|---|---|
41-21 | 28/F | Housewife | Mexico City/Mexico City | NA | Toenails | 5 months | DSO |
43-21 | 28/M | Assistant Manager | Mexico City/Mexico City | NA | Toenails | 1 year | DSO |
48-21 | 35/F | Housewife | Mexico City/Mexico City | NA | Toenails | 1 year | Tinea unguium |
49-21 | 19/F | Student | Mexico City/Mexico City | NA | Toenails | 6 months | Tinea unguium |
79-20 | 43/F | Housewife | Puebla/Puebla | Breast Cancer/Diabetes Mellitus | Toenails | 1 year | DSO |
80-21 | 41/M | Tailor | Mexico City/Mexico City | Lymphoma no Hodgkin | Toenails | 5 years | DSO |
88-21 | 50/M | Bus driver | Mexico City/Mexico City | HIV | Toenails | 1 year | TDO |
90-B-21 | 13/M | Student | Mexico City/Mexico City | NA | Toenails | 4 years | LDSO |
102-B-21 | 51/M | Taxi driver | Mexico City/Mexico City | HIV/Epilepsy | Toenails and interdigital injuries | 4 months | TDO/tinea pedis |
103-21 | 34/F | Housewife | Mexico City/Mexico City | Dermatomyositis | First right foot ortho | 2 years | TDO |
113-A-21 | 29/M | Student | Mexico City/Mexico City | HIV | Toenails | 1½ years | TDO |
114-21 | 34/M | Government employee | Mexico City/Mexico City | NA | Soles of the feet | 6 months | Tinea pedis |
116-21 | 34/M | Government employee | Mexico City/Mexico City | NA | Toenails | 1 year | Tinea unguium |
119-21 | 62/M | Unemployed | Mexico City/Mexico City | Diabetes mellitus | Left toenail | 1 year | Tinea unguium |
122-20 | 53/M | Government employee | Tamaulipas/Tamaulipas | NA | Soles of the feet | 1 year | Tinea pedis |
124-20 | 26/M | Security guard | State of Mexico/Mexico City | NA | Soles of the feet | 1 year | Tinea pedis |
127-20 | 22/F | Student | Mexico City/Mexico City | NA | Toenails | 1 year | Tinea unguium |
139-A-20 | 71/F | Real estate advisor | Veracruz/Mexico City | Hypothyroidism | Toenails | 15 years | TDO |
31593-D | 7/M | Elementary student | Mexico City/Mexico City | NA | Scalp | 3 weeks | Tinea capitis |
30354-D | 5/M | Elementary student | Mexico City/Mexico City | NA | Scalp | 1 month | Tinea capitis |
Strain | Colony Size | Degradation Halo Size | Difference | Precipitation Zone | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L | P | H | E | L | P | H | E | L | P | H | E | L | P | H | E | |
114-21 | 0 | 17.6 | 35 | 31 | 0 | 21.3 | 43 | 31 | 0 | 3.7 | 8 | 0 | 0.00 | 0.83 | 0.81 | 1.00 |
30354-D | 8.3 | 47 | 27 | 9.3 | 50 | 57.8 | 30.7 | 10.5 | 41.7 | 10.8 | 3.7 | 1.2 | 0.17 | 0.81 | 0.88 | 0.89 |
43-21 | 15.8 | 65 | 26.4 | 30 | 80 | 74 | 37.3 | 30 | 64.2 | 9 | 10.9 | 0 | 0.20 | 0.88 | 0.71 | 1.00 |
103-21 | 20 | 31.9 | 21.3 | 14.1 | 64.7 | 37 | 29.6 | 14.1 | 44.7 | 5.1 | 8.3 | 0 | 0.31 | 0.86 | 0.72 | 1.00 |
119-21 | 21.6 | 68.1 | 35.8 | 12 | 68.3 | 72.9 | 43 | 12 | 46.7 | 4.8 | 7.2 | 0 | 0.32 | 0.93 | 0.83 | 1.00 |
79-20 | 21.4 | 43.5 | 31.1 | 39 | 64.6 | 48.2 | 42 | 49.2 | 43.2 | 4.7 | 10.9 | 10.2 | 0.33 | 0.90 | 0.74 | 0.79 |
31593-D | 13.5 | 21.9 | 26.4 | 11 | 41.3 | 25.3 | 32.8 | 13.3 | 27.8 | 3.4 | 6.4 | 2.3 | 0.33 | 0.87 | 0.80 | 0.83 |
113-A-21 | 23.4 | 75.6 | 40.4 | 36.4 | 66.5 | 80 | 45 | 41.6 | 43.1 | 4.4 | 4.6 | 5.2 | 0.35 | 0.95 | 0.90 | 0.88 |
41-21 | 23.8 | 67.4 | 35.7 | 33.3 | 65 | 79.6 | 45 | 33.3 | 41.2 | 12.2 | 9.3 | 0 | 0.37 | 0.85 | 0.79 | 1.00 |
88-21 | 22.7 | 65 | 38.7 | 24.6 | 61 | 76 | 41.6 | 28.4 | 38.3 | 11 | 2.9 | 3.8 | 0.37 | 0.86 | 0.93 | 0.87 |
102-B-21 | 23.3 | 19.6 | 33.9 | 11 | 63.4 | 29.9 | 45 | 11 | 40.1 | 10.3 | 11.1 | 0 | 0.37 | 0.66 | 0.75 | 1.00 |
116-21 | 24 | 37.5 | 43.3 | 18 | 64.9 | 46 | 49.9 | 18 | 40.9 | 8.5 | 6.6 | 0 | 0.37 | 0.82 | 0.87 | 1.00 |
127-20 | 23.5 | 66.7 | 31 | 25 | 63.4 | 77.3 | 43 | 28.9 | 39.9 | 10.6 | 12 | 3.9 | 0.37 | 0.86 | 0.72 | 0.87 |
48-21 | 28.6 | 42.8 | 35 | 40.3 | 71 | 46.4 | 42.9 | 40.3 | 42.4 | 3.6 | 7.9 | 0 | 0.40 | 0.92 | 0.82 | 1.00 |
122-20 | 24.7 | 28.7 | 28.3 | 29.3 | 61 | 55.8 | 43.7 | 29.3 | 36.3 | 27.1 | 15.4 | 0 | 0.40 | 0.51 | 0.65 | 1.00 |
139-A-20 | 24.4 | 34.3 | 35.8 | 34.7 | 61.4 | 44 | 49.8 | 34.7 | 37 | 9.7 | 14 | 0 | 0.40 | 0.78 | 0.72 | 1.00 |
80-21 | 26.5 | 69.6 | 33.8 | 32 | 64.7 | 78 | 43.2 | 39.6 | 38.2 | 8.4 | 9.4 | 7.6 | 0.41 | 0.89 | 0.78 | 0.81 |
90-B-21 | 27.3 | 71.7 | 36 | 35 | 65 | 77 | 43.7 | 35 | 37.7 | 5.3 | 7.7 | 0 | 0.42 | 0.93 | 0.82 | 1.00 |
124-20 | 24.9 | 40.5 | 37 | 14.9 | 58 | 47.9 | 46.8 | 14.9 | 33.1 | 7.4 | 9.8 | 0 | 0.43 | 0.85 | 0.79 | 1.00 |
49-21 | 25.6 | 34.2 | 32.2 | 15 | 56 | 45 | 42.2 | 15 | 30.4 | 10.8 | 10 | 0 | 0.46 | 0.76 | 0.76 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conde-Cuevas, E.; Hernández-Castro, R.; Fuentes-Venado, C.E.; Arenas, R.; Frías-De-León, M.G.; Moreno-Coutiño, G.; Ocharan-Hernández, M.E.; Farfan-Garcia, E.D.; Pinto-Almazán, R.; Martínez-Herrera, E. Trichophyton rubrum Phenotypic Virulence Factors in Mexican Strains. Biology 2025, 14, 661. https://doi.org/10.3390/biology14060661
Conde-Cuevas E, Hernández-Castro R, Fuentes-Venado CE, Arenas R, Frías-De-León MG, Moreno-Coutiño G, Ocharan-Hernández ME, Farfan-Garcia ED, Pinto-Almazán R, Martínez-Herrera E. Trichophyton rubrum Phenotypic Virulence Factors in Mexican Strains. Biology. 2025; 14(6):661. https://doi.org/10.3390/biology14060661
Chicago/Turabian StyleConde-Cuevas, Esther, Rigoberto Hernández-Castro, Claudia Erika Fuentes-Venado, Roberto Arenas, María Guadalupe Frías-De-León, Gabriela Moreno-Coutiño, María Esther Ocharan-Hernández, Eunice D. Farfan-Garcia, Rodolfo Pinto-Almazán, and Erick Martínez-Herrera. 2025. "Trichophyton rubrum Phenotypic Virulence Factors in Mexican Strains" Biology 14, no. 6: 661. https://doi.org/10.3390/biology14060661
APA StyleConde-Cuevas, E., Hernández-Castro, R., Fuentes-Venado, C. E., Arenas, R., Frías-De-León, M. G., Moreno-Coutiño, G., Ocharan-Hernández, M. E., Farfan-Garcia, E. D., Pinto-Almazán, R., & Martínez-Herrera, E. (2025). Trichophyton rubrum Phenotypic Virulence Factors in Mexican Strains. Biology, 14(6), 661. https://doi.org/10.3390/biology14060661