Biomolecular Characterization of Trichomonas vaginalis from Spain: Evaluating Genetic Correlation with Drug Resistance and Endobionts
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Trichomonas vaginalis Isolates
2.2. DNA Extraction
2.3. Microsatellite Loci Genotyping
2.4. Single-Copy Gene Loci Genotyping
2.5. Phylogenetic Analysis
2.6. Drug Resistance to 5-Nitroimidazoles
2.7. Determination of Trichomonas vaginalis Virus
2.8. Determination of Mycoplasma hominis
3. Results
3.1. Microsatellites
3.2. Single-Copy Genes
3.2.1. GP63a
3.2.2. PMS1
3.3. Biological Characterization
3.3.1. Drug Susceptibility
3.3.2. TVV Presence
3.3.3. Mycoplasma Presence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rowley, J.; Vander Hoorn, S.; Korenromp, E.; Low, N.; Unemo, M.; Abu-Raddad, L.J.; Chico, R.M.; Smolak, A.; Newman, L.; Gottlieb, S.; et al. Chlamydia, gonorrhoeae, trichomoniasis and syphilis: Global prevalence and incidence estimates, 2016. Bull. World Heath Organ. 2019, 97, 548–562. [Google Scholar] [CrossRef] [PubMed]
- Kissinger, P.J.; Gaydos, C.A.; Seña, A.C.; Scott McClelland, R.; Soper, D.; Secor, W.E.; Legendre, D.; Workowski, K.A.; Muzny, C.A. Diagnosis and Management of Trichomonas vaginalis: Summary of Evidence Reviewed for the 2021 Centers for Disease Control and Prevention Sexually Transmitted Infections Treatment Guidelines. Clin. Infect. Dis. 2022, 74, S152–S161. [Google Scholar] [CrossRef] [PubMed]
- Rein, M.F. Clinical manifestations of urogenital trichomoniasis in women. In Trichomonads Parasitics in Human; Honigberg, B.M., Ed.; Springer: New York, NY, USA; pp. 225–234.
- Silver, B.J.; Guy, R.J.; Kaldor, J.M.; Jamil, M.S.; Rumbold, A.R. Trichomonas vaginalis as a Cause of Perinatal Morbidity. A Systematic Review and Meta-Analysis. Sex. Transm. Dis. 2014, 41, 369–376. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, D.; Li, Y.; Zhang, R.; Xie, X.; Yao, Y.; Zhao, L.; Tian, X.; Yang, Z.; Wang, S.; et al. The correlation between Trichomonas vaginalis infection and reproductive system cancer: A systematic review and meta-analysis. Infect. Agent Cancer 2023, 18, 15. [Google Scholar] [CrossRef] [PubMed]
- Alderete, J.F.; Kasmala, L.; Metcalfe, E.; Garza, G.E. Phenotypic variation and diversity among Trichomonas vaginalis isolates and correlation of phenotype with trichomonal virulence determinants. Infect. Immun. 1986, 53, 285–293. [Google Scholar] [CrossRef]
- Conrad, M.; Gorman, A.W.; Schillinger, J.A.; Fiori, P.L.; Arroyo, R.; Malla, N.; Dubey, M.L.; Gonzalez, J.; Blank, S.; Secor, W.E.; et al. Extensive genetic diversity, unique population structure and evidence of genetic exchange in the sexually transmitted parasite Trichomonas vaginalis. PloS Negl. Trop. Dis. 2012, 6, e1573. [Google Scholar] [CrossRef]
- Carlton, J.M.; Hirt, R.P.; Silva, J.C.; Delcher, A.L.; Schatz, M.; Zhao, Q.; Wortman, J.R.; Bidwell, S.L.; Alsmark, U.C.M.; Besteiro, S.; et al. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 2007, 315, 207–212. [Google Scholar] [CrossRef]
- Conrad, M.; Zubacova, Z.; Dunn, L.A.; Upcroft, J.; Sullivan, S.A.; Tachezy, J.; Carlton, J.M. Microsatellite polymorphism in the sexually transmitted human pathogen Trichomonas vaginalis indicates a genetically diverse parasite. Mol. Biochem. Parasitol. 2011, 179, 30–38. [Google Scholar] [CrossRef]
- Wang, A.L.; Wang, C.C. The double-stranded RNA in Trichomonas vaginalis may originate from virus-like particles. Proc. Natl. Acad. Sci. USA 1986, 83, 7956–7960. [Google Scholar] [CrossRef]
- Fichorova, R.N.; Fraga, J.; Rappelli, P.; Fiori, P.L. Trichomonas vaginalis infection in symbiosis with Trichomonasvirus and Mycoplasma. Res. Microbiol. 2017, 168, 882–891. [Google Scholar] [CrossRef]
- Rappelli, P.; Addis, M.F.; Carta, F.; Fiori, P.L. Mycoplasma hominis parasitism Trichomonas vaginalis. Lancet 1998, 352, 1286. [Google Scholar] [CrossRef] [PubMed]
- Vancini, R.G.; Pereira-Neves, A.; Borojevic, R.; Benchimol, M. Trichomonas vaginalis harboring Mycoplasma hominis increases cytopathogenicity in vitro. Eur. J. Clin. Microbiol. Infect. Dis. 2008, 27, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Da Luz Becker, D.; dos Santos, O.; Piccoli Frasson, A.; de Vargas Rigo, G.; Macedo, A.J.; Tasca, T. High rates of double-stranded RNA viruses and Mycoplasma hominis in Trichomonas vaginalis clinical isolates in South Brazil. Infect. Gen. Evol. 2015, 2, 181–187. [Google Scholar] [CrossRef]
- Fürnkranz, U.; Henrich, B.; Walochnik, J. Mycoplasma hominis impacts gene expression in Trichomonas vaginalis. Parasitol. Res. 2018, 117, 841–847. [Google Scholar] [CrossRef]
- Goodman, R.P.; Ghabrial, S.A.; Fichorova, R.N.; Nibert, M.L. Trichomonasvirus: A new genus of protozoan viruses in the family Totiviridae. Arch. Virol. 2011, 156, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Rojas, L.; Fraga, J.; Sariego, I. Genetic variability between Trichomonas vaginalis isolates and correlation with clinical presentation. Infect. Gen. Evol. 2004, 4, 53–58. [Google Scholar] [CrossRef]
- Snipes, L.J.; Gamard, P.M.; Narcisi, E.M.; Beard, C.B.; Lehmann, T.; Secor, W.E. Molecular epidemiology of metronidazole resistance in a population of Trichomonas vaginalis clinical isolates. J. Clin. Microbiol. 2000, 38, 3004–3009. [Google Scholar] [CrossRef]
- Hampl, V.; Vnácová, S.; Kulda, J.; Flegr, J. Concordance between genetic relatedness and phenotypic similarities of Trichomonas vaginalis strains. BMC Evol. Biol. 2001, 1, 11. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Bolumburu, C.; Zamora, V.; Muñoz-Algarra, M.; Portero-Azorín, F.; Escario, J.A.; Ibáñez-Escribano, A. Trichomoniasis in a tertiary hospital of Madrid, Spain (2013–2017): Prevalence and pregnancy rate, coinfections, metronidazole resistance, and endosymbiosis. Parasitol. Res. 2020, 119, 1915–1923. [Google Scholar] [CrossRef]
- Ibáñez Escribano, A.; Meneses Marcel, A.; Machado Tugores, Y.; Nogal Ruiz, J.J.; Arán Redo, V.J.; Escario Garcia-Trevijano, J.A.; Gómez Barrio, A. Validation of a modified fluorimetric assay for the screening of trichomonacidal drugs. Mem. Inst. Oswaldo Cruz 2012, 107, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Narcisi, E.M.; Secor, W.E. In vitro effect of tinidazole and furazolidone on metronidazole-resistant Trichomonas vaginalis. Antimicrob. Agents Chemother. 1996, 40, 1121–1125. [Google Scholar] [CrossRef] [PubMed]
- Khoshnan, A.; Alderete, J.F. Trichomonas vaginalis with a double-stranded RNA virus has upregulated levels of phenotypically variable immunogen mRNA. J. Virol. 1994, 68, 4035–4038. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Barrio, A.; Nogal-Ruiz, J.J.; Montero-Pereira, D.; Rodríguez-Gallego, E.; Romero-Fernández, E.; Escario, J.A. Biological variability in clinical isolates of Trichomonas vaginalis. Mem. Ins. Oswaldo Cruz 2002, 97, 893–896. [Google Scholar] [CrossRef]
- Xiao, J.C.; Zhao, L.; Fang, S.L.; Lun, Z.R. The presence of Mycoplasma hominis in isolates of Trichomonas vaginalis impacts significantly on DNA fingerprinting results. Parasitol. Res. 2008, 102, 613–619. [Google Scholar] [CrossRef]
- Cornelius, D.C.; Robinson, D.A.; Muzny, C.A.; Mena, L.A.; Aanensen, D.M.; Lushbaugh, W.B.; Meade, J.C. Genetic characterization of Trichomonas vaginalis isolates by use of multilocus sequence typing. J. Clin. Microbiol. 2012, 50, 3293–3300. [Google Scholar] [CrossRef]
- Meade, J.C.; de Mestral, J.; Stiles, J.K.; Secor, W.E.; Finley, R.W.; Cleary, J.D.; Lushbaugh, W.B. Genetic diversity of Trichomonas vaginalis clinical isolates determined by EcoRI restriction fragment length polymorphism of heat-shock protein 70 genes. Am. J. Trop. Med. Hyg. 2009, 80, 245–251. [Google Scholar] [CrossRef]
- Fraga, J.; Rojas, L.; Sariego, I.; Fernández-Calienes, A. Double-stranded RNA viral infection of Trichomonas vaginalis and correlation with genetic polymorphism of isolates. Exp. Parasitol. 2011, 127, 593–599. [Google Scholar] [CrossRef]
- Jehee, I.; van der Veer, C.; Himschoot, M.; Hermans, M.; Bruisten, S. Direct detection of Trichomonas vaginalis virus in Trichomonas vaginalis positive clinical samples from the Netherlands. J. Virol. Methods 2017, 250, 1–5. [Google Scholar] [CrossRef]
- Vanácová, S.; Tachezy, J.A.N.; Kulda, J.; Flegr, J. Characterization of trichomonad species and strains by PCR fingerprinting. J. Eukayotic Microbiol. 1997, 44, 545–552. [Google Scholar]
- Graves, K.J.; Ghosh, A.P.; Schmidt, N.; Augostini, P.; Secor, W.E.; Schwebke, J.R.; Martin, D.H.; Kissinger, P.J.; Muzny, C.A. Trichomonas vaginalis Virus Among Women With Trichomoniasis and Associations With Demographics, Clinical Outcomes, and Metronidazole Resistance. Clin. Infect. Dis. 2019, 69, 2170–2176. [Google Scholar] [CrossRef] [PubMed]
- Fichorova, R.N.; Lee, Y.; Yamamoto, H.S.; Takagi, Y.; Hayes, G.R.; Goodman, R.P.; Chepa-Lotrea, X.; Buck, O.R.; Murray, R.; Kula, T.; et al. Endobiont viruses sensed by the human host—Beyond conventional antiparasitic therapy. PloS ONE 2012, 7, e48418. [Google Scholar] [CrossRef] [PubMed]
- Margarita, V.; Bailey, N.P.; Rappelli, P.; Diaz, N.; Dessì, D.; Fettweis, J.M.; Hirt, R.P.; Fiori, P.L. Two Different Species of Mycoplasma Endosymbionts Can Influence Trichomonas vaginalis Pathophysiology. MBio 2022, 13, e00918-22. [Google Scholar] [CrossRef] [PubMed]
Microsatellite Marker | Initial Denaturation | Amplification Cycle (×30) | Final Extension | ||
---|---|---|---|---|---|
Denaturation | Annealing | Extension | |||
MS006 | 95 °C, 3 min | 95 °C, 45 s | 60 °C, 1 min | 72 °C, 2 min | 72 °C, 7 min |
MS129/MS184 | 95 °C, 2 min | 95 °C, 30 s | 47 °C, 10 s | 60 °C, 10 s + 65 °C, 45 s | 72 °C, 1 min |
Primer | Forward/Reverse | Sequence |
---|---|---|
GP63D | Forward | 5′-TCTAAGATCTCAACAGCCAGAAA |
GP63R | Reverse | 5′-AATGTCCTTGCCATCTGCTGCAA |
PMS1D | Forward | 5′-GTCAAAAAAAATTTCAATCAAAATG |
PMS1R | Reverse | 5′-CTTCCGTCGGACAATTCC |
Characteristics | 11 | 1232 | 1807 | IR78 | JH31A4 | S/H | S019 | S351 | S760 | S852 |
---|---|---|---|---|---|---|---|---|---|---|
MS06 | 395 | 395 | 395 | 412 | 395 | 395 | 395 | 395 | 395 | 407 |
MS129 | 192 | 192 | 192 | 192 | 192 | 192 | 185 | 192 | 192 | 186 |
MS184 | 250 | 241 | 250 | 250 | 250 | 250 | 253 | 250 | 250 | 250 |
MTZ (µg/mL) 1 | 4 | 2 | 4 | 512 | 4 | 2 | 8 | 8 | 8 | 4 |
TDZ (µg/mL) 1 | 4 | 4 | 4 | 64 | 4 | 4 | 4 | 4 | 4 | 4 |
TVV | + | - | + | - | + | + | + | - | + | - |
Mycoplasma sp. | - | - | - | - | - | - | - | + | + | - |
Genetic MS Type | MS-A | MS-B | MS-A | MS-B | MS-A | MS-A | MS-B | MS-A | MS-A | MS-B |
Genetic GP63a Type | GP63a-A | GP63a-B | GP63a-A | GP63a-B | GP63a-A | GP63a-A | GP63a-B | GP63a-A | GP63a-A | GP63a-B |
Genetic PMS1 Type | PMS1-A | PMS1-B | PMS1-A | PMS1-B | PMS1-A | PMS1-A | PMS1-A | PMS1-A | PMS1-A | PMS1-B |
Isolate | Type | MS | GP63a | PMS1 | MLCMTZ 1 | TVV 1 | Mycoplasma 1 |
---|---|---|---|---|---|---|---|
T1 | 1 | nd | B | B | nd | + | nd |
C-1:NIH | 1 | nd | A | A | 8 | - | nd |
6 | 1 | nd | A | A | nd | + | nd |
B7268 | 1 | nd | A | A | nd | + | nd |
F1623 | 2 | nd | A | B | nd | - | nd |
B7RC2 | 2 | nd | B | B | 2 | - | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibáñez-Escribano, A.; Nogal-Ruiz, J.J.; Escario, J.A.; Ponce-Gordo, F. Biomolecular Characterization of Trichomonas vaginalis from Spain: Evaluating Genetic Correlation with Drug Resistance and Endobionts. Biology 2025, 14, 618. https://doi.org/10.3390/biology14060618
Ibáñez-Escribano A, Nogal-Ruiz JJ, Escario JA, Ponce-Gordo F. Biomolecular Characterization of Trichomonas vaginalis from Spain: Evaluating Genetic Correlation with Drug Resistance and Endobionts. Biology. 2025; 14(6):618. https://doi.org/10.3390/biology14060618
Chicago/Turabian StyleIbáñez-Escribano, Alexandra, Juan José Nogal-Ruiz, José Antonio Escario, and Francisco Ponce-Gordo. 2025. "Biomolecular Characterization of Trichomonas vaginalis from Spain: Evaluating Genetic Correlation with Drug Resistance and Endobionts" Biology 14, no. 6: 618. https://doi.org/10.3390/biology14060618
APA StyleIbáñez-Escribano, A., Nogal-Ruiz, J. J., Escario, J. A., & Ponce-Gordo, F. (2025). Biomolecular Characterization of Trichomonas vaginalis from Spain: Evaluating Genetic Correlation with Drug Resistance and Endobionts. Biology, 14(6), 618. https://doi.org/10.3390/biology14060618