Radon Exposure and Cancer Risk: Assessing Genetic and Protein Markers in Affected Populations
Simple Summary
Abstract
1. Introduction
2. Background on Radon Exposure and Its Relevance to Public Health
3. Overview of Radon-Induced Carcinogenesis
4. Importance of Identifying Genetic and Protein Markers
- DNA damage biomarkers: Radon exposure can cause DNA damage in lung cells, and specific biomarkers can indicate such damage. For example, measuring DNA adducts, (chemical modifications of DNA) or DNA strand breaks can provide insight into the extend of DNA damage caused by radon exposure [35].
- Genetic biomarkers: Certain genetic variations, including single nucleotide polymorphisms (SNPs), have been studied as potential biomarkers for increased susceptibility to radon-induced lung cancer. For instance, polymorphisms in DNA repair genes such as ERCC1 (rs3212986), XRCC1 (rs25487), and OGG1 (rs1052133) have been associated with heightened lung cancer risk among individuals exposed to radon. These genetic variations may influence DNA repair capabilities, inflammatory responses, and other processes involved in lung cancer development [36].
- Protein biomarkers: Proteins involved in various cellular processes, such as cell proliferation, apoptosis (programmed cell death), or inflammation, can serve as biomarkers for lung cancer. Researchers studied protein biomarkers in blood, sputum, or lung tissue samples to identify potential signs of radon-induced lung cancer [37].
- MicroRNA biomarkers: MicroRNA’s (miRNAs) are small RNA molecules that regulate gene expression. They also play a crucial role in various cellular processes, including cell development, proliferation, differentiation, growth control, and apoptosis. Studying miRNA expression profiles can help identify potential biomarkers for lung cancer caused by radon exposure [38,39].
4.1. Understanding Carcinogenesis
4.2. Early Detection and Diagnosis
4.3. Prognostic Value
4.4. Targeted Therapies and Personalized Medicine
5. Genetic and Protein Markers in Radon-Induced Cancer
6. Genomic Studies and Findings
7. Comparison of Genetic Markers in Radon-Induced Cancer Versus Other Radiation-Induced Cancers
8. Protein Markers in Radon-Induced Cancer
- Carcinoembryonic antigen (CEA): CEA is a protein that often increases in lung cancer and is associated with tumor growth and metastasis. It can be measured in blood samples and used as a marker for lung cancer progression and treatment response [87].
- Cyfra 21-1: This protein biomarker, derived from cytokeratins 19 and 21, is elevated in certain types of lung cancer, particularly squamous cell carcinoma. It can be detected in blood samples and may assist in diagnosing and monitoring the disease [88].
- Progastrin-releasing peptide (ProGRP): ProGRP is a protein biomarker that may be elevated in small cell lung cancer (SCLC). It is used to aid in the diagnosis and monitoring of SCLC and to assess treatment response [89].
- Napsin A: Napsin A is an enzyme expressed in lung adenocarcinomas. It can be measured in tumor tissue or blood samples and serves as a biomarker to distinguish adenocarcinoma from other types of lung cancer [90].
9. Discussion
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ICRP (International Commission on Radiological Protection). Radiological Protection Against Radon Exposure; ICRP Publication 126. Ann. ICRP; SAGE Publication: London, UK, 2014; Volume 43. [Google Scholar]
- ICRP (International Commission on Radiological Protection). Protection Against Radon-222 at Home and at Work; ICRP Publication 65. Ann ICRP; SAGE Publication: London, UK, 1993; Volume 23. [Google Scholar]
- Kashkinbayev, Y.; Bakhtin, M.; Kazymbet, P.; Lesbek, A.; Kazhiyakhmetova, B.; Hoshi, M.; Altaeva, N.; Omori, Y.; Tokonami, S.; Sato, H.; et al. Influence of Meteorological Parameters on Indoor Radon Concentration Levels in the Aksu School. Atmosphere 2024, 15, 1067. [Google Scholar] [CrossRef]
- World Health Organization. Radon and Health. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/radon-and-health (accessed on 23 December 2024).
- Bersimbaev, R.; Pulliero, A.; Bulgakova, O.; Kussainova, A.; Aripova, A.; Izzotti, A. Radon Biomonitoring and microRNA in Lung Cancer. Int. J. Mol. Sci. 2020, 21, 2154. [Google Scholar] [CrossRef] [PubMed]
- Passaro, A.; Al Bakir, M.; Hamilton, E.G.; Diehn, M.; André, F.; Roy-Chowdhuri, S.; Mountzios, G.; Wistuba, I.I.; Swanton, C.; Peters, S. Cancer biomarkers: Emerging trends and clinical implications for personalized treatment. Cell 2024, 187, 1617–1635. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Health Effects of Exposure to Radon: BEIR VI; National Academies Press: Washington, DC, USA, 1999. [Google Scholar]
- Darby, S.; Hill, D.; Auvinen, A.; Barros-Dios, J.M.; Baysson, H.; Bochicchio, F.; Deo, H.; Falk, R.; Forastiere, F.; Hakama, M.; et al. Radon in homes and risk of lung cancer: Collaborative analysis of individual data from 13 European case-control studies. BMJ 2005, 330, 223. [Google Scholar] [CrossRef]
- Environmental Protection Agency. Radon and Cancer. Available online: https://www.epa.gov/radon/health-risk-radon (accessed on 20 December 2022).
- Tchorz-Trzeciakiewicz, D.E.; Kłos, M. Factors affecting atmospheric radon concentration, human health. Sci. Total Environ. 2017, 584–585, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Bulut, H.A.; Şahin, R. Radon, Concrete, Buildings and Human Health—A Review Study. Buildings 2024, 14, 510. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Status of Radon Related Activities in Member States Participating in Technical Cooperation Projects in Europe, IAEA-TECDOC-1810; IAEA: Vienna, Austria, 2017. [Google Scholar]
- Baeza, A.; García-Paniagua, J.; Guillén, J.; Montalbán, B. Influence of architectural style on indoor radon concentration in a radon prone area: A case study. Sci. Total Environ. 2018, 610, 258–266. [Google Scholar] [CrossRef]
- Bersimbev, R.I.; Bulgakova, O. The health effects of radon and uranium on the population of Kazakhstan. Genes Environ. Off. J. Jpn. Environ. Mutagen Soc. 2015, 37, 18. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. State and Tribal Indoor Radon Grant (SIRG) Programm Handbook; EPA 402/B-24-August; U.S. Environmental Protection Agency: Washington, DC, USA, 2024.
- Robertson, A.; Allen, J.; Laney, R.; Curnow, A. The Cellular and Molecular Carcinogenic Effects of Radon Exposure: A Review. Int. J. Mol. Sci. 2013, 14, 14024–14063. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Curado, A.; da Graça, L.C.C.; Soares, S.; Lopes, S.I. Impacts of Indoor Radon on Health: A Comprehensive Review on Causes, Assessment and Remediation Strategies. Int. J. Environ. Res. Public Health 2022, 19, 3929. [Google Scholar] [CrossRef]
- Hei, T.K.; Wu, L.J.; Liu, S.X.; Vannais, D.; Waldren, C.A.; Randers-Pehrson, G. Mutagenic effects of a single and an exact number of alpha particles in mammalian cells. Proc. Natl. Acad. Sci. USA 1997, 94, 3765–3770. [Google Scholar] [CrossRef] [PubMed]
- Metter, F.A., Jr.; Upton, A.C. Medical Effects of Ionizing Radiation, 3rd ed. AJNR Am. J. Neuroradiol. 2009, 30, e30. [Google Scholar] [CrossRef]
- Jostes, R.F. Genetic, cytogenetic, and carcinogenic effects of radon: A review. Mutat. Res. 1996, 340, 125–139. [Google Scholar] [CrossRef]
- Lubin, J.H.; Boice, J.D., Jr.; Edling, C.; Hornung, R.W.; Howe, G.R.; Kunz, E.; Kusiak, R.A.; Morrison, H.I.; Radford, E.P.; Samet, J.M. Lung cancer in radon-exposed miners and estimation of risk from indoor exposure. J. Natl. Cancer Inst. 1995, 87, 817–827. [Google Scholar] [CrossRef] [PubMed]
- Rabkin, M.A.; Bodansky, D. Indoor Radon. In Advances in Nuclear Science and Technology; Lewins, J., Becker, M., Eds.; Springer: Boston, MA, USA, 1988; Volume 20. [Google Scholar] [CrossRef]
- Druzhinin, V.G.; Akhmat’ianova, V.R.; Golovina, T.A.; Volkov, A.N.; Minina, V.I.; Larionov, A.V.; Makeeva, E.A. Genome sensitivity and genotoxic effects features in children-teenagers affected by radon radiation in living and educational environment. Radiats. Biol. Radioecol. 2009, 49, 568–573. [Google Scholar] [PubMed]
- Cogliano, V.J.; Baan, R.; Straif, K.; Grosse, Y.; Lauby-Secretan, B.; Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Freeman, C.; et al. Preventatble exposure associated with human cancers. J. Natl. Cancer Inst. 2011, 103, 1827–1839. [Google Scholar] [CrossRef]
- Stigum, H.; Strand, T.; Magnus, P. Should radon be reduced in homes? A cost-effect analysis. Health Phys. 2003, 84, 227–235. [Google Scholar] [CrossRef]
- Leenhouts, H.P.; Brugmans, M.J.P. Calculation of the 1995 lung cancer incidence in the Netherlands and Sweden caused by smoking and radon: Risk implications for radon. Radiat. Environ. Biophys. 2001, 40, 11–21. [Google Scholar] [CrossRef]
- Lubin, J.H.; Tomasek, L.; Edling, C.; Hornung, R.W.; Howe, G.; Kunz, E.; Kusiak, R.A.; Morrison, H.I.; Radford, E.P.; Samet, J.M.; et al. Estimating lung cancer mortality from residential radon using data for low exposures of miners. Radiat. Res. 1997, 147, 126–134. [Google Scholar] [CrossRef]
- Steindorf, K.; Lubin, J.; Wichmann, H.E.; Becher, H. Lung cancer deaths attributable to indoor radon exposure in West Germany. Int. J. Epidemiol. 1995, 24, 485–492. [Google Scholar] [CrossRef]
- Gaskin, J.; Coyle, D.; Whyte, J.; Krewksi, D. Global estimate of lung cancer mortality attributable to residential radon. Environ. Health Perspect. 2018, 126, 057009. [Google Scholar] [CrossRef] [PubMed]
- Qiang, Z.; Yao, Y.; Li, Z.; Lin, D.; Li, H.; Kan, H.; Zhuo, W.; Chen, B. Risk Assessment of Lung Cancer Caused by Indoor Radon Exposure in China during 2006–2016: A Multicity, Longitudinal Analysis. Indoor Air 2023, 2023, 6943333. [Google Scholar] [CrossRef]
- Tirmarche, M.; Harrison, J.D.; Laurier, D.; Paquet, F.; Blanchardon, E.; Marsh, J.W. International Commission on Radiological Protection. ICRP Publication 115. Lung cancer risk from radon and progeny and statement on radon. Ann. ICRP 2010, 40, 1–64. [Google Scholar] [CrossRef]
- Gray, A.; Read, S.; McGale, P.; Darby, S. Lung cancer deaths from indoor radon and the cost effectiveness and potential of policies to reduce them. BMJ 2009, 338, a3110. [Google Scholar] [CrossRef]
- Radon. European Environment Agency. Available online: https://www.eea.europa.eu/publications/environmental-burden-of-cancer/radon (accessed on 1 July 2023).
- World Health Organization. WHO Handbook on Indoor Radon: A Public Health Perspective; WHO Press: Geneva, Switzerland, 2009. [Google Scholar]
- Meenakshi, C.; Sivasubramanian, K.; Venkatraman, B. Nucleoplasmic bridges as a biomarker of DNA damage exposed to radon. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2017, 814, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Enjo-Barreiro, J.R.; Ruano-Ravina, A.; Pérez-Ríos, M.; Kelsey, K.; Varela-Lema, L.; Torres-Durán, M.; Parente-Lamelas, I.; Provencio-Pulla, M.; Vidal-García, I.; Piñeiro-Lamas, M.; et al. Radon, Tobacco Exposure and Non-Small Cell Lung Cancer Risk Related to BER and NER Genetic Polymorphisms. Arch. Bronconeumol. 2022, 58, 311–322. [Google Scholar] [CrossRef]
- Helmig, S.; Lochnit, G.; Schneider, J. Comparative proteomic analysis in serum of former uranium miners with and without radon induced squamous lung cancer. J. Occup. Med. Toxicol. 2019, 14, 9. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, Z.S.; Khalili, S.; Forouzandeh Moghadam, M.; Sadroddiny, E. Lung cancer and miRNAs: A possible remedy for anti-metastatic, therapeutic and diagnostic applications. Expert Rev. Respir. Med. 2017, 11, 147–157. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Chen, C.; Chu, X. New insights into the regulatory role of microRNA in tumor angiogenesis and clinical implications. Mol. Cancer 2018, 17, 22. [Google Scholar] [CrossRef]
- Riudavets, M.; Garcia de Herreros, M.; Besse, B.; Mezquita, L. Radon and Lung Cancer: Current Trends and Future Perspectives. Cancers 2022, 14, 3142. [Google Scholar] [CrossRef]
- Dama, E.; Colangelo, T.; Fina, E.; Cremonesi, M.; Kallikourdis, M.; Veronesi, G.; Bianchi, F. Biomarkers and Lung Cancer Early Detection: State of the Art. Cancers 2021, 13, 3919. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, F.R.; Varella-Garcia, M.; Bunn, P.A., Jr.; Di Maria, M.V.; Veve, R.; Bremmes, R.M.; Barón, A.E.; Zeng, C.; Franklin, W.A. Epidermal growth factor receptor in non-small-cell lung carcinomas: Correlation between gene copy number and protein expression and impact on prognosis. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2003, 21, 3798–3807. [Google Scholar] [CrossRef]
- Lynch, T.J.; Bell, D.W.; Sordella, R.; Gurubhagavatula, S.; Okimoto, R.A.; Brannigan, B.W.; Harris, P.L.; Haserlat, S.M.; Supko, J.G.; Haluska, F.G.; et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 2004, 350, 2129–2139. [Google Scholar] [CrossRef] [PubMed]
- Vähäkangas, K.H.; Samet, J.M.; Metcalf, R.A.; Welsh, J.A.; Bennett, W.P.; Lane, D.P.; Harris, C.C. Mutations of p53 and ras genes in radon-associated lung cancer from uranium miners. Lancet 1992, 339, 576–580. [Google Scholar] [CrossRef]
- Craig, D.J.; Crawford, E.L.; Chen, H.; Grogan, E.L.; Deppen, S.A.; Morrison, T.; Antic, S.L.; Massion, P.P.; Willey, J.C. TP53 mutation prevalence in normal airway epithelium as a biomarker for lung cancer risk. BMC Cancer 2023, 23, 783. [Google Scholar] [CrossRef]
- National Research Council (US) Committee on Risk Assessment of Exposure to Radon in Drinking Water. Risk Assessment of Radon in Drinking Water. In Molecular and Cellular Mechanisms of Radon-Induced Carcinogenesis; National Academies Press: Washington, DC, USA, 1999. [Google Scholar]
- McDonald, J.W.; Taylor, J.A.; Watson, M.A.; Saccomanno, G.; Devereux, T.R. p53 and K-ras in radon-associated lung adenocarcinoma. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 1995, 4, 791–793. [Google Scholar]
- Ruano-Ravina, A.; Torres-Durán, M.; Kelsey, K.T.; Parente-Lamelas, I.; Leiro-Fernández, V.; Abdulkader, I.; Abal-Arca, J.; Montero-Martínez, C.; Vidal-García, I.; Amenedo, M.; et al. Residential radon, EGFR mutations and ALK alterations in never-smoking lung cancer cases. Eur. Respir. J. 2016, 48, 1462–1470. [Google Scholar] [CrossRef]
- Lim, S.M.; Choi, J.W.; Hong, M.H.; Jung, D.; Lee, C.Y.; Park, S.Y.; Shim, H.S.; Sheen, S.; Kwak, K.I.; Kang, D.R.; et al. Indoor radon exposure increases tumor mutation burden in never-smoker patients with lung adenocarcinoma. Lung Cancer (Amst. Neth.) 2019, 131, 139–146. [Google Scholar] [CrossRef]
- Choi, J.R.; Koh, S.B.; Kim, H.R.; Lee, H.; Kang, D.R. Radon Exposure-induced Genetic Variations in Lung Cancers among Never Smokers. J. Korean Med. Sci. 2018, 33, e207. [Google Scholar] [CrossRef]
- Shaw, A.T.; Ou, S.H.; Bang, Y.J.; Camidge, D.R.; Solomon, B.J.; Salgia, R.; Riely, G.J.; Varella-Garcia, M.; Shapiro, G.I.; Costa, D.B.; et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N. Engl. J. Med. 2014, 371, 1963–1971. [Google Scholar] [CrossRef]
- Bergethon, K.; Shaw, A.T.; Ou, S.H.; Katayama, R.; Lovly, C.M.; McDonald, N.T.; Massion, P.P.; Siwak-Tapp, C.; Gonzalez, A.; Fang, R.; et al. ROS1 rearrangements define a unique molecular class of lung cancers. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2012, 30, 863–870. [Google Scholar] [CrossRef]
- Ozaki, T.; Nakagawara, A. Role of p53 in Cell Death and Human Cancers. Cancers 2011, 3, 994–1013. [Google Scholar] [CrossRef] [PubMed]
- Rikova, K.; Guo, A.; Zeng, Q.; Possemato, A.; Yu, J.; Haack, H.; Nardone, J.; Lee, K.; Reeves, C.; Li, Y.; et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 2007, 131, 1190–1203. [Google Scholar] [CrossRef]
- Taga, M.; Mechanic, L.E.; Hagiwara, N.; Vähäkangas, K.H.; Bennett, W.P.; Alavanja, M.C.; Welsh, J.A.; Khan, M.A.; Lee, A.; Diasio, R.; et al. Harris EGFR Somatic Mutations in Lung Tumors: Radon Exposure and Passive Smoking in Former- and Never-Smoking U.S. Women. Cancer Epidemiol Biomark. Prev. 2012, 21, 988–992. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Zhang, X.; Li, N.; Zhang, Y.; Jing, P.; Chang, N.; Wu, J.; Ren, X.; Zhang, J. ALK and ROS1 as targeted therapy paradigms and clinical implications to overcome crizotinib resistance. Oncotarget 2016, 7, 12289–12304. [Google Scholar] [CrossRef] [PubMed]
- Tomasini, P.; Mascaux, C.; Jao, K.; Labbe, C.; Kamel-Reid, S.; Stockley, T.; Hwang, D.M.; Leighl, N.B.; Liu, G.; Bradbury, P.A.; et al. Effect of Coexisting KRAS and TP53 Mutations in Patients Treated With Chemotherapy for Non-small-cell Lung Cancer. Clin. Lung Cancer 2019, 20, e338–e345. [Google Scholar] [CrossRef]
- Aran, V.; Omerovic, J. Current Approaches in NSCLC Targeting K-RAS and EGFR. Int. J. Mol. Sci. 2019, 20, 5701. [Google Scholar] [CrossRef]
- Mansfield, A.S.; Wei, Z.; Mehra, R.; Shaw, A.T.; Lieu, C.H.; Forde, P.M.; Drilon, A.E.; Mitchell, E.P.; Wright, J.J.; Takebe, N.; et al. Crizotinib in patients with tumors harboring ALK or ROS1 rearrangements in the NCI-MATCH trial. NPJ Precis. Oncol. 2022, 6, 13. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Y.; Xu, W.; He, Z.; Fu, C.; Du, F. Radon and lung cancer: Current status and future prospects. Crit. Rev. Oncol./Hematol. 2024, 198, 104363. [Google Scholar] [CrossRef]
- Alexandrov, L.B.; Ju, Y.S.; Haase, K.; Van Loo, P.; Martincorena, I.; Nik-Zainal, S.; Totoki, Y.; Fujimoto, A.; Nakagawa, H.; Shibata, T.; et al. Mutational signatures associated with tobacco smoking in human cancer. Science 2016, 354, 618–622. [Google Scholar] [CrossRef]
- Sánchez-Torres, J.M.; Viteri, S.; Molina, M.A.; Rosell, R. BRAF mutant non-small cell lung cancer and treatment with BRAF inhibitors. Transl. Lung Cancer Res. 2013, 2, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Dano, L.; Guilly, M.N.; Muleris, M.; Morlier, J.P.; Altmeyer, S.; Vielh, P.; El-Naggar, A.K.; Monchaux, G.; Dutrillaux, B.; Chevillard, S. CGH analysis of radon-induced rat lung tumors indicates similarities with human lung cancers. Genes Chromosomes Cancer 2000, 29, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Harada, G.; Santini, F.C.; Wilhelm, C.; Drilon, A. NTRK fusions in lung cancer: From biology to therapy. Lung Cancer 2021, 161, 108–113. [Google Scholar] [CrossRef]
- Rizvi, H.; Sanchez-Vega, F.; La, K.; Chatila, W.; Jonsson, P.; Halpenny, D.; Plodkowski, A.; Long, N.; Sauter, J.L.; Rekhtman, N.; et al. Molecular Determinants of Response to Anti-Programmed Cell Death (PD)-1 and Anti-Programmed Death-Ligand 1 (PD-L1) Blockade in Patients With Non-Small-Cell Lung Cancer Profiled With Targeted Next-Generation Sequencing. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 633–641. [Google Scholar] [CrossRef]
- Skoulidis, F.; Goldberg, M.E.; Greenawalt, D.M.; Hellmann, M.D.; Awad, M.M.; Gainor, J.F.; Schrock, A.B.; Hartmaier, R.J.; Trabucco, S.E.; Gay, L.; et al. STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma. Cancer Discov. 2018, 8, 822–835. [Google Scholar] [CrossRef]
- Riely, G.J.; Kris, M.G.; Rosenbaum, D.; Marks, J.; Li, A.; Chitale, D.A.; Nafa, K.; Riedel, E.R.; Hsu, M.; Pao, W.; et al. Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2008, 14, 5731–5734. [Google Scholar] [CrossRef]
- Harrison, P.T.; Vyse, S.; Huang, P.H. Rare epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer. Semin. Cancer Biol. 2020, 61, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Vaishnavi, A.; Capelletti, M.; Le, A.T.; Kako, S.; Butaney, M.; Ercan, D.; Mahale, S.; Davies, K.D.; Aisner, D.L.; Pilling, A.B.; et al. Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat. Med. 2013, 19, 1469–1472. [Google Scholar] [CrossRef]
- Llorens-Agost, M.; Luessing, J.; van Beneden, A.; Eykelenboom, J.; O’Reilly, D.; Bicknell, L.S.; Reynolds, J.J.; van Koegelenberg, M.; Hurles, M.E.; Brady, A.F.; et al. Analysis of novel missense ATR mutations reveals new splicing defects underlying Seckel syndrome. Hum. Mutat. 2018, 39, 1847–1853. [Google Scholar] [CrossRef]
- Argentaro, A.; Yang, J.C.; Chapman, L.; Kowalczyk, M.S.; Gibbons, R.J.; Higgs, D.R.; Neuhaus, D.; Rhodes, D. Structural consequences of disease-causing mutations in the ATRX-DNMT3-DNMT3L (ADD) domain of the chromatin-associated protein ATRX. Proc. Natl. Acad. Sci. USA 2007, 104, 11939–11944. [Google Scholar] [CrossRef]
- Hawsawi, Y.M.; Shams, A.; Theyab, A.; Abdali, W.A.; Hussien, N.A.; Alatwi, H.E.; Alzahrani, O.R.; Oyouni, A.A.A.; Babalghith, A.O.; Alreshidi, M. BARD1 mystery: Tumor suppressors are cancer susceptibility genes. BMC Cancer 2022, 22, 599. [Google Scholar] [CrossRef] [PubMed]
- Mosor, M.; Ziółkowska-Suchanek, I.; Nowicka, K.; Dzikiewicz-Krawczyk, A.; Januszkiewicz-Lewandowska, D.; Nowak, J. Germline variants in MRE11/RAD50/NBN complex genes in childhood leukemia. BMC Cancer 2013, 13, 457. [Google Scholar] [CrossRef]
- Tischkowitz, M.; Huang, S.; Banerjee, S.; Hague, J.; Hendricks, W.P.D.; Huntsman, D.G.; Lang, J.D.; Orlando, K.A.; Oza, A.M.; Pautier, P.; et al. Small-Cell Carcinoma of the Ovary, Hypercalcemic Type-Genetics, New Treatment Targets, and Current Management Guidelines. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2020, 26, 3908–3917. [Google Scholar] [CrossRef]
- Palakurthy, R.K.; Wajapeyee, N.; Santra, M.K.; Gazin, C.; Lin, L.; Gobeil, S.; Green, M.R. Epigenetic silencing of the RASSF1A tumor suppressor gene through HOXB3-mediated induction of DNMT3B expression. Mol. Cell 2009, 36, 219–230. [Google Scholar] [CrossRef]
- Xu, N.; Liu, F.; Zhou, J.; Bai, C. CHD4 is associated with poor prognosis of non-small cell lung cancer patients through promoting tumor cell proliferation. Eur. Respir. Soc. 2016, 48, PA2862. [Google Scholar] [CrossRef]
- Dufner Almeida, L.G.; Nanhoe, S.; Zonta, A.; Hosseinzadeh, M.; Kom-Gortat, R.; Elfferich, P.; Schaaf, G.; Kenter, A.; Kümmel, D.; Migone, N.; et al. Comparison of the functional and structural characteristics of rare TSC2 variants with clinical and genetic findings. Hum. Mutat. 2020, 41, 759–773. [Google Scholar] [CrossRef] [PubMed]
- Dalal, S.; Petersen, J.; Jhala, D. Liquid Biopsies in a Veteran Patient Population With Advanced Prostate and Lung Non-Small Cell Carcinomas: A New Paradigm and Unique Challenge in Personalized Medicine. Fed. Pract. 2021, 38, 8–14. [Google Scholar] [CrossRef]
- De Gruijl, F.R. Skin cancer and solar UV radiation. Eur. J. Cancer 1999, 35, 2003–2009. [Google Scholar] [CrossRef]
- Taylor, J.A.; Watson, M.A.; Devereux, T.R.; Michels, R.Y.; Saccomanno, G.; Anderson, M. p53 mutation hotspot in radon-associated lung cancer. Lancet 1994, 343, 86–87. [Google Scholar] [CrossRef]
- Nikiforova, M.N.; Kimura, E.T.; Gandhi, M.; Biddinger, P.W.; Knauf, J.A.; Basolo, F.; Zhu, Z.; Giannini, R.; Salvatore, G.; Fusco, A.; et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J. Clin. Endocrinol. Metab. 2003, 88, 5399–5404. [Google Scholar] [CrossRef]
- Hamatani, K.; Mukai, M.; Takahashi, K.; Hayashi, Y.; Nakachi, K.; Kusunoki, Y. Rearranged anaplastic lymphoma kinase (ALK) gene in adult-onset papillary thyroid cancer amongst atomic bomb survivors. Thyroid Off. J. Am. Thyroid Assoc. 2012, 22, 1153–1159. [Google Scholar] [CrossRef] [PubMed]
- Behjati, S.; Gundem, G.; Wedge, D.C.; Roberts, N.D.; Tarpey, P.S.; Cooke, S.L.; Van Loo, P.; Alexandrov, L.B.; Ramakrishna, M.; Davies, H.; et al. Mutational signatures of ionizing radiation in second malignancies. Nat. Commun. 2016, 7, 12605. [Google Scholar] [CrossRef]
- Rose Li, Y.; Halliwill, K.D.; Adams, C.J.; Iyer, V.; Riva, L.; Mamunur, R.; Jen, K.Y.; Del Rosario, R.; Fredlund, E.; Hirst, G.; et al. Mutational signatures in tumours induced by high and low energy radiation in Trp53 deficient mice. Nat. Commun. 2020, 11, 394. [Google Scholar] [CrossRef] [PubMed]
- Mezquita, L.; Barlesi, F.; Auclin, E.; Planchard, D.; Botticella, A.; Gazzah, A.; Lavaud, P.; Aboubakar Nana, F.; Lepéchoux, C.; Besse, B.; et al. OA09.06 molecular alterations and estimated indoor radon in NSCLC patients from the French National Cancer Institute Registry: Radon France Study. J. Thorac. Oncol. 2018, 13, S342. [Google Scholar] [CrossRef]
- Subsomwong, P.; Kranrod, C.; Sakai, Y.; Asano, K.; Nakane, A.; Tokonami, S. Impact of intermittent high-dose radon exposures on lung epithelial cells: Proteomic analysis and biomarker identification. J. Radiat. Res. 2025, 66, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Wu, L.; Zhang, N.; Liu, X.; Zhang, J.; Kuang, L.; Chen, J.; Chen, Y.; Li, D.; Li, Y. Carcinoembryonic antigen potentiates non-small cell lung cancer progression via PKA-PGC-1a axis. Mol. Biomed. 2024, 5, 19. [Google Scholar] [CrossRef]
- Miyadera, K.; Kakuto, S.; Sugai, M.; Tsugitomi, R.; Amino, Y.; Uchibori, K.; Yanagitani, N.; Sugiura, H.; Seike, M.; Nishio, M.; et al. Serum CYFRA 21-1 as a Prognostic Marker in Non-Small-Cell Lung Cancer Patients Treated with Immune Checkpoint Inhibitors. Cancers 2024, 16, 3712. [Google Scholar] [CrossRef]
- Yu, M.; Wang, P. A comparative study of ProGRP and CEA as serological markers in small cell lung cancer treatment. Discov. Oncol. 2024, 15, 485. [Google Scholar] [CrossRef]
- Cintrón, R.V.; Jusino, J.A.; Conte-Miller, M.; Martínez, A.J.; Mendoza, A. Automated Immunohistochemistry Assay for the Detection of Napsin-A in Formalin-Fixed Paraffin-Embedded Tissues from Lung Tumors. Methods Mol. Biol. 2021, 2279, 23–33. [Google Scholar] [CrossRef]
- Vousden, K.H.; Lane, D.P. p53 in health and disease. Nat. Rev. Mol. Cell Biol. 2007, 8, 275–283. [Google Scholar] [CrossRef]
- He, X.Z.; Chen, W.; Liu, Z.Y.; Chapman, R.S. An epidemiological study of lung cancer in Xuan Wei County, China: Current progress. Case-control study on lung cancer and cooking fuel. Environ. Health Perspect. 1991, 94, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Shiloh, Y.; Ziv, Y. The ATM protein kinase: Regulating the cellular response to genotoxic stress, and more. Nat. Rev. Mol. Cell Biol. 2013, 14, 197–210. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Chun, J.; Powell, S.N. BRCA1 and BRCA2: Different roles in a common pathway of genome protection. Nat. Rev. Cancer 2011, 12, 68–78. [Google Scholar] [CrossRef]
- Bartek, J.; Lukas, J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 2003, 3, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Rudin, C.M.; Avila-Tang, E.; Harris, C.C.; Herman, J.G.; Hirsch, F.R.; Pao, W.; Schwartz, A.G.; Vahakangas, K.H.; Samet, J.M. Lung cancer in never smokers: Molecular profiles and therapeutic implications. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2009, 15, 5646–5661. [Google Scholar] [CrossRef]
- Rogakou, E.P.; Pilch, D.R.; Orr, A.H.; Ivanova, V.S.; Bonner, W.M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 1998, 273, 5858–5868. [Google Scholar] [CrossRef]
- Mo, W.; Xu, W.; Hong, M.; Yang, T.; Shi, Y.; Jiao, Y.; Nie, J.; Cui, F.; Cao, J.; Zhang, S. Proteomic and miRNA profiling of radon-induced skin damage in mice: FASN regulated by miRNAs. J. Radiat. Res. 2022, 63, 706–718. [Google Scholar] [CrossRef]
Gene | Function | Common Mutations | Clinical Significance | References |
---|---|---|---|---|
TP53 | Tumor suppressor gene involved in DNA repair, cell cycle regulation, and apoptosis. | Transversions, missense mutations, and nonsense mutations. | Loss of p53 function leads to impaired DNA repair and increased cancer risk. | Craig et al., 2023 [45] |
KRAS | Oncogene involved in cell proliferation and survival. | Codon 12 mutations (e.g., G12C, G12V). | Constitutive activation of KRAS leads to uncontrolled cell proliferation. | Riely et al., 2008 [67] |
EGFR | Receptor tyrosine kinase involved in cell growth and survival. | Exon 19 deletions, L858R mutation in exon 21. | Mutations lead to constitutive activation of EGFR. | Lynch et al., 2004 [43] Harrison et al., 2020 [68] |
ALK | Receptor tyrosine kinase involved in cell growth and survival. | Rearrangements | Rearrangements lead to constitutive activation of ALK. | Ye et al., 2016 [56] Mansfield et al., 2022 [59] |
ROS1 | Receptor tyrosine kinases involved in neuronal development. | Rearrangements | Rearrangements lead to constitutive activation of ROS1. | Ye et al., 2016 [56] Mansfield et al., 2022 [59] |
BRAF | Serine/threonine kinase involved in the MAPK signaling pathway. | V600E mutation | V600E mutation leads to constitutive kinase activity. | Sánchez-Torres et al., 2013 [62] |
MET | Receptor tyrosine kinase involved in cell growth, survival, and metastasis. | Chromosomal deletions involving the MET locus. | Losses of the MET region contribute to dysregulated signaling associated with radon-induced lung tumorigenesis. | Dano et al., 2000 [63] |
NTRK1 | Receptor tyrosine kinase involved in neuronal development and differentiation. | Rearrangements leading to NTRK1 fusions. | NTRK1 fusions lead to constitutive kinase activity. | Vaishnavi et al., 2013 [69] |
ATR | Encodes a protein that responds to DNA damage and replication stress, ensuring genome stability. | Somatic ATR mutations are also found in cancers such as endometrial and colorectal, often impairing DNA damage repair. | Given ATR’s role in DDR, inhibitors of ATR (e.g., in combination with chemotherapy or radiation) are being developed as cancer treatments to exploit synthetic lethality in tumors with pre-existing DDR defects. | Llorens-Agost et al., 2018 [70] |
ATRX | Encodes a protein involved in chromatin remodeling regulating gene expression, and maintaining genome stability. | Frameshift, nonsense, and missense mutations that lead to loss of function. These are frequently associated with ATRX-syndrome and cancers such as gliomas and pancreatic neuroendocrine tumors, often causing disrupted chromatin remodeling and maintenance. | ATRX mutations lead to genomic instability and abnormal telomere maintenance, contributing to tumor progression. | Argentaro et al., 2007 [71] |
BARD1 | Gene encodes a protein that partners with BRCA1 to maintain genome stability. | Include missense, nonsense and frameshift mutations which can disrupt its interaction with BRCA1 or impair its DNA repair and tumor suppression functions. A missense mutation affecting protein function. | Their association with increased risks of breast ovarian and other cancers. They impair DNA repair and tumor suppression, contributing to genomic instability and cancer. | Hawsawi et al., 2022 [72] |
RAD50 | Encodes a protein that is part of the MRN complex (MRE11-RAD50-NBS1), essential for DNA repair and maintaining genomic stability. | Include missense, nonsense, and frameshift mutations, which impair DNA repair and genomic stability. | Increase can risk, particularly for breast and ovarian cancers, by impairing DNA repair and causing genomic instability. | Mosor et al., 2013 [73] |
SMARCA4 | Its primary functions include: Chromatin remodeling, tumor suppression, development and differentiation. | Include missense, nonsense and frameshift mutations. | Contribute to cancer development, particularly in small cell carcinoma of the ovary and lung adenocarcinomas. | Tischkowitz et al., 2020 [74] |
RASSF1A | Tumor suppressor gene that encodes a protein involved in regulating cell growth and apoptosis. | Promoter hypermethylation, which silences the gene and leads to loss of function. This methylation is frequently observed in cancers loke lung, breast and colon cancers, contributing to tumorigenesis. | Result in the loss of tumor-suppressive functions, contributing to cancer development. This mutation is linked to various cancers, lung, breast, and colon cancers, and is a potential biomarker for early detection and prognosis. | Palakurthy et al., 2009 [75] |
CHD4 | Protein involved in chromatin remodeling. | Missense, nonsense and frameshift mutations, leading to altered protein function. These are associated with cancers such as glioblastoma, breast cancer and AML, as well as neurodevelopmental disorders due to impaired gene regulation. | Contribute to cancer development by disrupting chromatin remodeling and gene expression. | Xu et al., 2016 [76] |
TSC2 | Encodes a protein called tuberin, which is a key regulator of cell growth and proliferation. | Include nonsense, frameshift, and missense mutations, which result in the loss of tuberin function. | They cause tuberous sclerosis complex (TSC), leading to the development of benign tumors in organs such as the brain, kidneys, and heart. These mutations disrupt the regulation of the mTOR pathway, contributing to uncontrolled cell growth. | Dufner Almeida et al., 2020 [77] |
AR | Encodes a protein that is essential for mediating the effects of androgens. | Include CAG repeat expansions in the polyglutamine tract of the receptor, which can affect its function. Longer repeats are associated with androgen insensitivity syndrome and can influence the development of prostate cancer. Other mutations include missense and nonsense mutations that can alter AR activity. | Mutations in AR can affect reproductive health, development, and cancer susceptibility. | Dalal et al., 2021 [78] |
Genetic Variations | Radon-Induced Cancer | Other Radiation-Induced Cancers |
---|---|---|
TP53 mutations | Frequently observed with a high prevalence of transversions [80]. | TP53 mutations are also common in cancers induced by other forms of radiation, such as gamma rays and X-rays. In studies of atomic bomb survivors and patients treated with radiation, therapy for other cancers have shown a high frequency of TP53 mutations, often involving deletions and missense mutations [53]. |
KRAS mutations | KRAS mutations, particularly at codon 12, are prevalent and are associated with adenocarcinomas [67]. | KRAS mutations are similarly found in other radiation-induced lung cancers, though the mutation spectrum may vary slightly depending on the radiation type. For example, UV radiation-induced skin cancers often exhibit different mutation patterns compared to ionizing radiation-induced lung cancers [79]. |
EGFR mutations | Mutation in the EGFR gene are observed, leading to the activation of the receptor tyrosine kinase pathway [40]. | EGFR mutations are also common in radiation-induced lung cancers and gliomas resulting from therapeutic radiation exposure. These mutations can influence response to target therapies [68]. |
BRAF mutations | The BRAF V600E mutation, though common in other cancers, is less frequently associated with radon-induced lung cancer [62]. | BRAF mutations are more commonly associated with radiation-induced thyroid cancer, particularly in patients exposed to fallout from nuclear accidents [81]. |
ALK and ROS1 rearrangements | ALK and ROS1 rearrangements are significant markers in radon-induced lung cancer, offering targets for specific inhibitors [52]. | These rearrangements are also found in other radiation-induced cancers, but their prevalence and types of fusion partners may differ. For example, ALK rearrangements are common in radiation-induced anaplastic large cell lymphoma [82]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kashkinbayev, Y.; Kazhiyakhmetova, B.; Altaeva, N.; Bakhtin, M.; Tarlykov, P.; Saifulina, E.; Aumalikova, M.; Ibrayeva, D.; Bolatov, A. Radon Exposure and Cancer Risk: Assessing Genetic and Protein Markers in Affected Populations. Biology 2025, 14, 506. https://doi.org/10.3390/biology14050506
Kashkinbayev Y, Kazhiyakhmetova B, Altaeva N, Bakhtin M, Tarlykov P, Saifulina E, Aumalikova M, Ibrayeva D, Bolatov A. Radon Exposure and Cancer Risk: Assessing Genetic and Protein Markers in Affected Populations. Biology. 2025; 14(5):506. https://doi.org/10.3390/biology14050506
Chicago/Turabian StyleKashkinbayev, Yerlan, Baglan Kazhiyakhmetova, Nursulu Altaeva, Meirat Bakhtin, Pavel Tarlykov, Elena Saifulina, Moldir Aumalikova, Danara Ibrayeva, and Aidos Bolatov. 2025. "Radon Exposure and Cancer Risk: Assessing Genetic and Protein Markers in Affected Populations" Biology 14, no. 5: 506. https://doi.org/10.3390/biology14050506
APA StyleKashkinbayev, Y., Kazhiyakhmetova, B., Altaeva, N., Bakhtin, M., Tarlykov, P., Saifulina, E., Aumalikova, M., Ibrayeva, D., & Bolatov, A. (2025). Radon Exposure and Cancer Risk: Assessing Genetic and Protein Markers in Affected Populations. Biology, 14(5), 506. https://doi.org/10.3390/biology14050506