Mutagenesis Targeting the S153 Residue Within the Transmembrane β-Hairpin of Mosquito-Larvicidal Mpp46Ab Affects Its Toxicity and the Synergistic Toxicity with Cry4Aa
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Construction of a Random Mutant Library Targeting the S153 Residue
2.2. Primary Screening of Mpp46Ab S153 Random Mutants
2.3. Preparation of Mpp46Ab and Cry4Aa Toxin Proteins
2.4. Measurement of Mosquito-Larvicidal Activity
2.5. Electrophysiologic Analysis
3. Results
3.1. Mpp46Ab Mutant Library
3.2. Mosquito-Larvicidal Activity of Mpp46Ab Mutants
3.3. Mosquito-Larvicidal Synergy Between the Mpp46Ab Mutants and Cry4Aa
3.4. Single-Channel Analysis of Toxin Pores Formed by Selected Mpp46Ab Mutants
3.5. Anion-Cation Selectivity of Toxin Pores Formed by Selected Mpp46Ab Mutants
3.6. Cation Preference of Toxin Pores Formed by Selected Mpp46Ab Mutants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aronson, A.I.; Shai, Y. Why Bacillus thuringiensis insecticidal toxins are so effective: Unique features of their mode of action. FEMS Microbiol. Lett. 2001, 195, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Crickmore, N.; Berry, C.; Panneerselvam, S.; Mishra, R.; Connor, T.R.; Bonning, B.C. A structure-based nomenclature for Bacillus thuringiensis and other bacteria-derived pesticidal proteins. J. Invertebr. Pathol. 2021, 186, 107438. [Google Scholar] [CrossRef]
- Hayakawa, T.; Sakakibara, A.; Ueda, S.; Azuma, Y.; Ide, T.; Takebe, S. Cry46Ab from Bacillus thuringiensis TK-E6 is a new mosquitocidal toxin with aerolysin-type architecture. Insect. Biochem. Mol. Biol. 2017, 87, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Ito, A.; Sasaguri, Y.; Kitada, S.; Kusaka, Y.; Kuwano, K.; Masutomi, K.; Mizuki, E.; Akao, T.; Ohba, M. A Bacillus thuringiensis crystal protein with selective cytocidal action to human cells. J. Biol. Chem. 2004, 279, 21282–21286. [Google Scholar] [CrossRef]
- Akiba, T.; Abe, Y.; Kitada, S.; Kusaka, Y.; Ito, A.; Ichimatsu, T.; Katayama, H.; Akao, T.; Higuchi, K.; Mizuki, E.; et al. Crystal structure of the parasporin-2 Bacillus thuringiensis toxin that recognizes cancer cells. J. Mol. Biol. 2009, 386, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, M.; Asakura, M.; Ide, T.; Hayakawa, T. Random mutational analysis targeting residue K155 within the transmembrane β-hairpin of the mosquitocidal Mpp46Ab toxin. Biology 2023, 12, 1481. [Google Scholar] [CrossRef]
- Degiacomi, M.T.; Lacovache, I.; Pernot, L.; Chami, M.; Kudryashev, M.; Stahlberg, H.; van der Goot, F.G.; dal Peraro, M. Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism. Nat. Chem. Biol. 2013, 9, 623–629. [Google Scholar] [CrossRef]
- Rossjohn, J.; Feil, S.C.; McKinstry, W.J.; Tsernoglou, D.; van der Goot, G.; Buckley, J.T.; Parker, M.W. Aerolysin-a paradigm for membrane insertion of beta-sheet protein toxins? J. Struct. Biol. 1998, 121, 92–100. [Google Scholar] [CrossRef]
- Benz, R.; Popoff, M.R. Clostridium perfringens enterotoxin: The toxin forms highly cation-selective channels in lipid bilayers. Toxins 2018, 10, 341. [Google Scholar] [CrossRef]
- Iacovache, I.; Paumard, P.; Scheib, H.; Lesieur, C.; Sakai, N.; Matile, S.; Parker, M.W.; van der Goot, F.G. A rivet model for channel formation by aerolysin-like pore-forming toxins. EMBO J. 2006, 25, 457–466. [Google Scholar] [CrossRef]
- Song, L.; Hobaugh, M.R.; Shustak, C.; Cheley, S.; Bayley, H.; Gouaux, J.E. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 1996, 274, 1859–1866. [Google Scholar] [CrossRef] [PubMed]
- Cole, A.R.; Gibert, M.; Popoff, M.; Moss, D.S.; Titball, R.W.; Basak, A.K. Clostridium perfringens epsilon-toxin shows structural similarity to the pore-forming toxin aerolysin. Nat. Struct. Mol. Biol. 2004, 11, 797–798. [Google Scholar] [CrossRef]
- Srisucharitpanit, K.; Yao, M.; Promdonkoy, B.; Chimnaronk, S.; Tanaka, I.; Boonserm, P. Crystal structure of BinB: A receptor binding component of the binary toxin from Lysinibacillus sphaericus. Proteins 2014, 82, 2703–2712. [Google Scholar] [CrossRef]
- Guex, N.; Peitsch, M.C.; Schwede, T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis 2009, 30, S162–S173. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, Y.; Shiozaki, T.; Asakura, M.; Ide, T.; Hayakawa, T. Characteristics of channel-pores formed by Bacillus thuringiensis mosquito-larvicidal Cry4Aa toxin. Appl. Entomol. Zool. 2022, 57, 63–70. [Google Scholar] [CrossRef]
- Finney, D.J. Probit Analysis, 3rd ed.; Cambridge University Press: London, UK, 1971. [Google Scholar]
- Hayakawa, T.; Yoneda, N.; Okada, K.; Higaki, A.; Howlader, M.T.H.; Ide, T. Bacillus thuringiensis Cry11Ba works synergistically with Cry4Aa but not with Cry11Aa for toxicity against mosquito Culex pipiens (Diptera: Culicidae) larvae. Appl. Entomol. Zool. 2017, 52, 61–68. [Google Scholar] [CrossRef]
- Tabashnik, B.E. Evaluation of synergism among Bacillus thuringiensis toxins. Appl. Environ. Microbiol. 1992, 58, 3343–3346. [Google Scholar] [CrossRef]
- Okuda, T.; Takeuchi, T.; Asakura, M.; Hirano, M.; Ide, T.; Hayakawa, T. Potency of agarose gel–supported lipid bilayers for electrophysiologic analysis of channel pores formed by Bacillus thuringiensis insecticidal proteins. FEBS J. 2025. ahead of print. [Google Scholar] [CrossRef]
- Benz, R.; Janko, K.; Läuger, P. Ionic selectivity of pores formed by the matrix protein (porin) of Escherichia coli. Biochim. Biophys. Acta. 1979, 551, 238–247. [Google Scholar] [CrossRef]
- Kyte, J.; Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982, 157, 105–132. [Google Scholar] [CrossRef] [PubMed]
- Abe, Y.; Shimada, H.; Kitada, S. Raft-targeting and oligomerization of Parasporin-2, a Bacillus thuringiensis crystal protein with anti-tumour activity. J. Biochem. 2008, 143, 269–275. [Google Scholar] [CrossRef]
- Takahashi, H.; Asakura, M.; Ide, T.; Hayakawa, T. Mutational analysis of the transmembrane α4-helix of Bacillus thuringiensis mosquito-larvicidal Cry4Aa toxin. Curr. Microbiol. 2024, 81, 80. [Google Scholar] [CrossRef] [PubMed]
- Crickmore, N.; Bone, E.J.; Williams, J.A.; Ellar, D.J. Contribution of the individual components of the δ-endotoxin crystal to the mosquitocidal activity of Bacillus thuringiensis subsp. israelensis. FEMS Microbiol. Lett. 1995, 131, 249–254. [Google Scholar] [CrossRef]
- Pérez, C.; Fernandez, L.E.; Sun, J.; Folch, J.L.; Gill, S.S.; Soberón, M.; Bravo, A. Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor. Proc. Natl. Acad. Sci. USA 2005, 102, 18303–18308. [Google Scholar] [CrossRef]
- Wirth, M.C.; Georghiou, G.P.; Federici, B.A. CytA enables CryIV endotoxins of Bacillus thuringiensis to overcome high levels of CryIV resistance in the mosquito, Culex quinquefasciatus. Proc. Natl. Acad. Sci. USA 1997, 94, 10536–10540. [Google Scholar] [CrossRef] [PubMed]
- Wirth, M.C.; Yang, Y.; Walton, W.E.; Federici, B.A.; Berry, C. Mtx toxins synergize Bacillus sphaericus and Cry11Aa against susceptible and insecticide-resistant Culex quinquefasciatus larvae. Appl. Environ. Microbiol. 2007, 73, 6066–6071. [Google Scholar] [CrossRef]
- Wu, D.; Johnson, J.J.; Federici, B.A. Synergism of mosquitocidal toxicity between CytA and CryIVD proteins using inclusions produced from cloned genes of Bacillus thuringiensis. Mol. Microbiol. 1994, 13, 965–972. [Google Scholar] [CrossRef]
- Poncet, S.; Delécluse, A.; Klier, A.; Rapoport, G. Evaluation of synergistic interactions among the CryIVA, CryIVB, and CryIVD toxic components of B. thuringiensis subsp. israelensis crystals. J. Invertebr. Pathol. 1995, 66, 131–135. [Google Scholar] [CrossRef]
- Soares Figueiredo, C.; Nunes Lemes, A.R.; Sebastião, I.; Desidério, J.A. Synergism of the Bacillus thuringiensis Cry1, Cry2, and Vip3 proteins in Spodoptera frugiperda control. Appl. Biochem. Biotechnol. 2019, 188, 798–809. [Google Scholar] [CrossRef]
- Knowles, B.H.; Ellar, D.J. Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis δ-endotoxins with different insect specificity. Biochim. Biophys. Acta. 1987, 924, 509–518. [Google Scholar] [CrossRef]
Amino Acid | Hydropathy Index 1 | Side Chain (Electrical Charge) | Number of Clones | Name |
---|---|---|---|---|
R | −4.5 | Positive | 0 | - |
K | −3.9 | 0 | - | |
H | −3.2 | 0 | - | |
D | −3.5 | Negative | 0 | - |
E | −3.5 | 1 | S153E | |
N | −3.5 | Neutral | 0 | - |
Q | −3.5 | 0 | - | |
P | −1.6 | 0 | - | |
Y | −1.3 | 0 | - | |
W | −0.9 | 0 | - | |
S | −0.8 | 7 | Wild type | |
T | −0.7 | 4 | S153T | |
G | −0.4 | 11 | S153G | |
A | 1.8 | 4 | S153A | |
M | 1.9 | 1 | S153M | |
C | 2.5 | 1 | S153C | |
F | 2.8 | 4 | S153F | |
L | 3.8 | 6 | S153L | |
V | 4.2 | 8 | S153V | |
I | 4.5 | 1 | S153I |
Toxin | Replication (n) | Mosquito-Larvicidal Activity (μg/mL) | Representative Clone | |
---|---|---|---|---|
LC50 | 95% Confidence Interval | |||
S153E | 5 | 0.48 | 0.42–0.54 | 1–33 |
Wild type (S) | 6 | 0.62 | 0.56–0.69 | 1–2 |
S153T | 6 | 0.79 | 0.71–0.89 | 1–3 |
S153G | 4 | 0.78 | 0.72–0.85 | 1–9 |
S153A | 5 | 0.66 | 0.59–0.72 | 1–11 |
S153M | 5 | 0.70 | 0.64–0.78 | 1–39 |
S153C | 6 | 1.07 | 0.98–1.19 | 2–42 |
S153F | 6 | 0.76 | 0.69–0.84 | 1–50 |
S153L | 6 | 0.66 | 0.60–0.72 | 1–1 |
S153V | 4 | 0.79 | 0.72–0.87 | 1–4 |
S153I | 9 | 0.16 | 0.13–0.19 | 2–31 |
Cry4Aa | 3 | 0.53 | 0.50–0.57 |
Mpp46Ab | LC50 (μg/mL) | Synergism Factor (LC50 Expected/LC50 Observed) | |
---|---|---|---|
Expected 1 | Observed (95% Confidential Interval) | ||
S153E | 0.50 | 0.105 (0.098–0.111) | 4.8 |
Wild type (S) | 0.57 | 0.091 (0.088–0.095) | 6.3 |
S153T | 0.63 | 0.080 (0.076–0.084) | 7.9 |
S153G | 0.63 | 0.136 (0.129–0.143) | 4.6 |
S153A | 0.59 | 0.081 (0.076–0.086) | 7.3 |
S153M | 0.60 | 0.086 (0.081–0.091) | 7.0 |
S153C | 0.71 | 0.090 (0.086–0.095) | 7.9 |
S153F | 0.62 | 0.302 (0.284–0.321) | 2.1 |
S153L | 0.59 | 0.315 (0.300–0.331) | 1.9 |
S153V | 0.63 | 0.088 (0.082–0.093) | 7.2 |
S153I | 0.25 | 0.096 (0.090–0.102) | 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayakawa, T.; Yamaoka, S.; Asakura, M.; Hirano, M.; Ide, T. Mutagenesis Targeting the S153 Residue Within the Transmembrane β-Hairpin of Mosquito-Larvicidal Mpp46Ab Affects Its Toxicity and the Synergistic Toxicity with Cry4Aa. Biology 2025, 14, 489. https://doi.org/10.3390/biology14050489
Hayakawa T, Yamaoka S, Asakura M, Hirano M, Ide T. Mutagenesis Targeting the S153 Residue Within the Transmembrane β-Hairpin of Mosquito-Larvicidal Mpp46Ab Affects Its Toxicity and the Synergistic Toxicity with Cry4Aa. Biology. 2025; 14(5):489. https://doi.org/10.3390/biology14050489
Chicago/Turabian StyleHayakawa, Tohru, Syun Yamaoka, Mami Asakura, Minako Hirano, and Toru Ide. 2025. "Mutagenesis Targeting the S153 Residue Within the Transmembrane β-Hairpin of Mosquito-Larvicidal Mpp46Ab Affects Its Toxicity and the Synergistic Toxicity with Cry4Aa" Biology 14, no. 5: 489. https://doi.org/10.3390/biology14050489
APA StyleHayakawa, T., Yamaoka, S., Asakura, M., Hirano, M., & Ide, T. (2025). Mutagenesis Targeting the S153 Residue Within the Transmembrane β-Hairpin of Mosquito-Larvicidal Mpp46Ab Affects Its Toxicity and the Synergistic Toxicity with Cry4Aa. Biology, 14(5), 489. https://doi.org/10.3390/biology14050489