The Unseen Impacts of Human Footprints: How Land Use Reshapes Actinobacterial Communities in the Brazilian Cerrado
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling
2.3. Physicochemical Analysis of Soil, and Amplification and Sequencing of 16S rRNA Gene
2.4. Bioinformatics and Data Analysis
3. Results
3.1. Soil Physicochemical Properties
3.2. Distribution of Actinobacterial OTUs
3.3. Relative Abundance of Taxa
3.4. Diversity Indices
3.5. Multivariate Analysis
3.5.1. Nonmetric Multidimensional Scaling
3.5.2. Redundancy Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davison, C.W.; Rahbek, C.; Morueta-Holme, N. Land-use Change and Biodiversity: Challenges for Assembling Evidence on the Greatest Threat to Nature. Glob. Chang. Biol. 2021, 27, 5414–5429. [Google Scholar] [CrossRef] [PubMed]
- Bellard, C.; Marino, C.; Courchamp, F. Ranking Threats to Biodiversity and Why It Doesn’t Matter. Nat. Commun. 2022, 13, 2616. [Google Scholar] [CrossRef] [PubMed]
- Shivanna, K.R. Climate Change and Its Impact on Biodiversity and Human Welfare. Proc. Indian Natl. Sci. Acad. 2022, 88, 160–171. [Google Scholar] [CrossRef]
- Ibáñez, A.; Garrido-Chamorro, S.; Barreiro, C. Microorganisms and Climate Change: A Not so Invisible Effect. Microbiol. Res. 2023, 14, 918–947. [Google Scholar] [CrossRef]
- Mo, L.; Zanella, A.; Squartini, A.; Ranzani, G.; Bolzonella, C.; Concheri, G.; Pindo, M.; Visentin, F.; Xu, G. Anthropogenic vs. Natural Habitats: Higher Microbial Biodiversity Pays the Trade-off of Lower Connectivity. Microbiol. Res. 2024, 282, 127651. [Google Scholar] [CrossRef]
- Silva, J.L.S.; Cruz-Neto, O.; Tabarelli, M.; Albuquerque, U.P.; Lopes, A.V. Climate Change Will Likely Threaten Areas of Suitable Habitats for the Most Relevant Medicinal Plants Native to the Caatinga Dry Forest. Ethnobiol. Conserv. 2022, 11, 1–24. [Google Scholar] [CrossRef]
- Procópio, L.; Barreto, C. The Soil Microbiomes of the Brazilian Cerrado. J. Soils Sediments 2021, 21, 2327–2342. [Google Scholar] [CrossRef]
- Lin, M.; Simons, A.L.; Harrigan, R.J.; Curd, E.E.; Schneider, F.D.; Ruiz-Ramos, D.V.; Gold, Z.; Osborne, M.G.; Shirazi, S.; Schweizer, T.M.; et al. Landscape Analyses Using EDNA Metabarcoding and Earth Observation Predict Community Biodiversity in California. Ecol. Appl. 2021, 31, e2379. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, S.; Gao, Q.; Liu, S.; Zhou, H.; Ganjurjav, H.; Wang, X. Climate Change and Human Activities Altered the Diversity and Composition of Soil Microbial Community in Alpine Grasslands of the Qinghai-Tibetan Plateau. Sci. Total Environ. 2016, 562, 353–363. [Google Scholar] [CrossRef]
- Barnett, S.E.; Youngblut, N.D.; Buckley, D.H. Soil Characteristics and Land-Use Drive Bacterial Community Assembly Patterns. FEMS Microbiol. Ecol. 2020, 96, fiz194. [Google Scholar] [CrossRef]
- Borsodi, A.K.; Megyes, M.; Zsigmond, T.; Horel, Á. Soil Bacterial Communities Affected by Land-Use Types in a Small Catchment Area of the Balaton Uplands (Hungary). Biol. Futur. 2024, 75, 313–325. [Google Scholar] [CrossRef]
- Liu, S.; Sun, Y.; Shi, F.; Liu, Y.; Wang, F.; Dong, S.; Li, M. Composition and Diversity of Soil Microbial Community Associated with Land Use Types in the Agro–Pastoral Area in the Upper Yellow River Basin. Front. Plant Sci. 2022, 13, 819661. [Google Scholar] [CrossRef] [PubMed]
- Bobul’ská, L.; Espíndola, S.P.; Coelho, M.A.; Ferreira, A.S. Impact of Land Use on Soil Function and Bacterial Community in the Brazilian Savanna. An. Acad. Bras. Cienc. 2021, 93, e20201906. [Google Scholar] [CrossRef] [PubMed]
- Salam, N.; Jiao, J.-Y.; Zhang, X.-T.; Li, W.-J. Update on the Classification of Higher Ranks in the Phylum Actinobacteria. Int. J. Syst. Evol. Microbiol. 2020, 70, 1331–1355. [Google Scholar] [CrossRef] [PubMed]
- van Bergeijk, D.A.; Terlouw, B.R.; Medema, M.H.; van Wezel, G.P. Ecology and Genomics of Actinobacteria: New Concepts for Natural Product Discovery. Nat. Rev. Microbiol. 2020, 18, 546–558. [Google Scholar] [CrossRef] [PubMed]
- Austria, E.S.; Soto, J.E.A.; Ludovice, L. Changes in the Abundance of Actinobacteria and Proteobacteria in Soils Impacted by Mining Activities. Sci. Eng. 2021, 14, 241–248. [Google Scholar]
- Wiryawan, A.; Eginarta, W.; Hermanto, F.; Ustiatik, R.; Dinira, L.; Mustafa, I. Changes in Essential Soil Nutrients and Soil Disturbance Directly Affected Soil Microbial Community Structure—A Metagenomic Approach. J. Ecol. Eng. 2022, 23, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Law, J.W.-F.; Letchumanan, V.; Tan, L.T.-H.; Ser, H.-L.; Goh, B.-H.; Lee, L.-H. The Rising of “Modern Actinobacteria” Era. Prog. Microb. Mol. Biol. 2020, 3, a0000064. [Google Scholar] [CrossRef]
- Hazarika, S.N.; Thakur, D. Actinobacteria. In Beneficial Microbes in Agro-Ecology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 443–476. [Google Scholar]
- Jones, S.E.; Elliot, M.A. ‘Exploring’ the Regulation of Streptomyces Growth and Development. Curr. Opin. Microbiol. 2018, 42, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Shepherdson, E.M.F.; Elliot, M.A. Cryptic Specialized Metabolites Drive Streptomyces Exploration and Provide a Competitive Advantage during Growth with Other Microbes. Proc. Natl. Acad. Sci. USA 2022, 119, e2211052119. [Google Scholar] [CrossRef]
- Gomes Barroso, F.R.; Gonçalves Cavalcante, C.V.; Soares Araújo, F.; Mantovani, W. A Percepção Ambiental Das Comunidades Rurais No Entorno Do Parque Nacional de Sete Cidades, Piauí. Biodiversidade Bras.-BioBrasil 2022, 12, 1–15. [Google Scholar] [CrossRef]
- Mendes, M.R.d.A.; Munhoz, C.B.R.; Silva Júnior, M.C.d.; Castro, A.A.J.F. Relação Entre a Vegetação e as Propriedades Do Solo Em Áreas de Campo Limpo Úmido No Parque Nacional de Sete Cidades, Piauí, Brasil. Rodriguésia 2012, 63, 971–984. [Google Scholar] [CrossRef]
- Matos, M.d.Q.; Felfili, J.M. Florística, Fitossociologia e Diversidade Da Vegetação Arbórea Nas Matas de Galeria Do Parque Nacional de Sete Cidades (PNSC), Piauí, Brasil. Acta Bot. Bras. 2010, 24, 483–496. [Google Scholar] [CrossRef]
- Pádua, M.T.J. Parque Nacional de Sete Cidades: Plano de manejo; (Doc. Téc. n.1); IBDF, Fundação Brasileira para a Conservaçao da Natureza: Rio de Janeiro, Brazil, 1979. [Google Scholar]
- INMET—Instituto Nacional de Meteorologia. Banco de Dados Meteorológicos Para Ensino e Pesquisa—BDMEP. Available online: https://mapas.inmet.gov.br/ (accessed on 1 July 2018).
- Oliveira, M.E.A.; Martins, F.R.; Castro, A.A.J.F.; Santos, J.R. Classes de Cobertura Vegetal Do Parque Nacional de Sete Cidades (Transição Campo-Floresta) Utilizando Imagens TM/Landsat, NE Do Brasil. In Proceedings of the Anais dos XIII Simpósio Brasileiro de Sensoriamento Remoto, Florianópolis, Brasil, 21–26 April 2007; INPE—Instituto Nacional de Pesquisas Espaciai: São José dos Campos, Brazil, 2007; pp. 1775–1783. [Google Scholar]
- MMA—Ministério Do Meio Ambiente. Catálogo de Imagens de Satélite RapidEve Do Ministério Do Meio Ambiente; MMA—Ministério Do Meio Ambiente: Brasília, Brazil, 2017. [Google Scholar]
- Lucena, V.B.; Raimam, M.P.; Cardoso, N.A.; Albino, U.B. Influência de Fungos Micorrízicos-Arbusculares Em Paricá (Schizolobium Amazonicum) Cultivado No Estado Do Pará. Pesqui. Florest. Bras. 2013, 33, 235–241. [Google Scholar] [CrossRef]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solos; Teixeira, W.G., Ed.; Embrapa Solos: Recife, Brazil, 2018. [Google Scholar]
- Bandeira, L.; Faria, C.; Cavalcante, F.; Mesquita, A.; Martins, C.; Martins, S. Metabarcoding Expands Knowledge on Diversity and Ecology of Rare Actinobacteria in the Brazilian Cerrado. Folia Microbiol. 2025, 70, 159–175. [Google Scholar] [CrossRef] [PubMed]
- Drummond, A.J.; Newcomb, R.D.; Buckley, T.R.; Xie, D.; Dopheide, A.; Potter, B.C.; Heled, J.; Ross, H.A.; Tooman, L.; Grosser, S.; et al. Evaluating a Multigene Environmental DNA Approach for Biodiversity Assessment. Gigascience 2015, 4, 46. [Google Scholar] [CrossRef] [PubMed]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing Taxonomic Classification of Marker-Gene Amplicon Sequences with QIIME 2’s Q2-Feature-Classifier Plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K. MAFFT: A Novel Method for Rapid Multiple Sequence Alignment Based on Fast Fourier Transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef]
- McDonald, D.; Price, M.N.; Goodrich, J.; Nawrocki, E.P.; DeSantis, T.Z.; Probst, A.; Andersen, G.L.; Knight, R.; Hugenholtz, P. An Improved Greengenes Taxonomy with Explicit Ranks for Ecological and Evolutionary Analyses of Bacteria and Archaea. ISME J. 2012, 6, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-R.; Shin, J.; Guevarra, R.B.; Lee, J.H.; Kim, D.W.; Seol, K.-H.; Lee, J.-H.; Kim, H.B.; Isaacson, R.E. Deciphering Diversity Indices for a Better Understanding of Microbial Communities. J. Microbiol. Biotechnol. 2017, 27, 2089–2093. [Google Scholar] [CrossRef] [PubMed]
- Ramette, A. Multivariate Analyses in Microbial Ecology. FEMS Microbiol. Ecol. 2007, 62, 142–160. [Google Scholar] [CrossRef] [PubMed]
- Morris, E.K.; Caruso, T.; Buscot, F.; Fischer, M.; Hancock, C.; Maier, T.S.; Meiners, T.; Müller, C.; Obermaier, E.; Prati, D.; et al. Choosing and Using Diversity Indices: Insights for Ecological Applications from the German Biodiversity Exploratories. Ecol. Evol. 2014, 4, 3514–3524. [Google Scholar] [CrossRef]
- Hu, D.; Zang, Y.; Mao, Y.; Gao, B. Identification of Molecular Markers That Are Specific to the Class Thermoleophilia. Front. Microbiol. 2019, 10, 1185. [Google Scholar] [CrossRef]
- He, Y.; Long, L.; Tian, X. Recent Advances in the Class Acidimicrobiia. Microbiol. China 2000, 6, 47. [Google Scholar]
- Norman, J.S.; King, G.M.; Friesen, M.L. Rubrobacter Spartanus Sp. Nov., a Moderately Thermophilic Oligotrophic Bacterium Isolated from Volcanic Soil. Int. J. Syst. Evol. Microbiol. 2017, 67, 3597–3602. [Google Scholar] [CrossRef] [PubMed]
- Holmes, A.J.; Bowyer, J.; Holley, M.P.; O’Donoghue, M.; Montgomery, M.; Gillings, M.R. Diverse, yet-to-Be-Cultured Members of the Rubrobacter Subdivision of the Actinobacteria Are Widespread in Australian Arid Soils. FEMS Microbiol. Ecol. 2000, 33, 111–120. [Google Scholar] [CrossRef]
- Burrascano, S.; Chianucci, F.; Trentanovi, G.; Kepfer-Rojas, S.; Sitzia, T.; Tinya, F.; Doerfler, I.; Paillet, Y.; Nagel, T.A.; Mitic, B.; et al. Where Are We Now with European Forest Multi-Taxon Biodiversity and Where Can We Head to? Biol. Conserv. 2023, 284, 110176. [Google Scholar] [CrossRef]
- Haegeman, B.; Hamelin, J.; Moriarty, J.; Neal, P.; Dushoff, J.; Weitz, J.S. Robust Estimation of Microbial Diversity in Theory and in Practice. ISME J. 2013, 7, 1092–1101. [Google Scholar] [CrossRef]
- Kwong, S.; Srivathsan, A.; Meier, R. An Update on DNA Barcoding: Low Species Coverage and Numerous Unidentified Sequences. Cladistics 2012, 28, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Sparks, I.L.; Derbyshire, K.M.; Jacobs, W.R.; Morita, Y.S. Mycobacterium Smegmatis: The Vanguard of Mycobacterial Research. J. Bacteriol. 2023, 205, e0033722. [Google Scholar] [CrossRef]
- Pozzi, R.; Simone, M.; Mazzetti, C.; Maffioli, S.; Monciardini, P.; Cavaletti, L.; Bamonte, R.; Sosio, M.; Donadio, S. The Genus Actinoallomurus and Some of Its Metabolites. J. Antibiot. 2011, 64, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Riahi, H.S.; Heidarieh, P.; Fatahi-Bafghi, M. Genus Pseudonocardia: What We Know about Its Biological Properties, Abilities and Current Application in Biotechnology. J. Appl. Microbiol. 2022, 132, 890–906. [Google Scholar] [CrossRef]
- Donald, L.; Pipite, A.; Subramani, R.; Owen, J.; Keyzers, R.A.; Taufa, T. Streptomyces: Still the Biggest Producer of New Natural Secondary Metabolites, a Current Perspective. Microbiol. Res. 2022, 13, 418–465. [Google Scholar] [CrossRef]
- Shepherdson, E.M.; Baglio, C.R.; Elliot, M.A. Streptomyces Behavior and Competition in the Natural Environment. Curr. Opin. Microbiol. 2023, 71, 102257. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wang, J.; Liu, Y.; Wang, X.; Zhang, B.; Zhang, W.; Chen, T.; Liu, G.; Xue, L.; Cui, X. Nocardioides: “Specialists” for Hard-to-Degrade Pollutants in the Environment. Molecules 2023, 28, 7433. [Google Scholar] [CrossRef] [PubMed]
- Wen, T.; Xie, P.; Penton, C.R.; Hale, L.; Thomashow, L.S.; Yang, S.; Ding, Z.; Su, Y.; Yuan, J.; Shen, Q. Specific Metabolites Drive the Deterministic Assembly of Diseased Rhizosphere Microbiome through Weakening Microbial Degradation of Autotoxin. Microbiome 2022, 10, 177. [Google Scholar] [CrossRef]
- Wiker, F.; Konnerth, M.; Helmle, I.; Kulik, A.; Kaysser, L.; Gross, H.; Gust, B. Identification of Novel α-Pyrones from Conexibacter Woesei Serving as Sulfate Shuttles. ACS Chem. Biol. 2019, 14, 1972–1980. [Google Scholar] [CrossRef]
- Saimee, Y.; Butdee, W.; Boonmak, C.; Duangmal, K. Actinomycetospora Lemnae Sp. Nov., A Novel Actinobacterium Isolated from Lemna Aequinoctialis Able to Enhance Duckweed Growth. Curr. Microbiol. 2024, 81, 92. [Google Scholar] [CrossRef]
- Bent, S.J.; Forney, L.J. The Tragedy of the Uncommon: Understanding Limitations in the Analysis of Microbial Diversity. ISME J. 2008, 2, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Dini-Andreote, F.; Falcão Salles, J. Community Assembly Processes of the Microbial Rare Biosphere. Trends Microbiol. 2018, 26, 738–747. [Google Scholar] [CrossRef] [PubMed]
- Pascoal, F.; Costa, R.; Magalhães, C. The Microbial Rare Biosphere: Current Concepts, Methods and Ecological Principles. FEMS Microbiol. Ecol. 2021, 97, fiaa227. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Zhang, Y.; Yang, C.; Wang, S. Land-Use Type Strongly Shapes Community Composition, but Not Always Diversity of Soil Microbes in Tropical China. Catena 2018, 165, 369–380. [Google Scholar] [CrossRef]
- Murphy, J.D.; Johnson, D.W.; Miller, W.W.; Walker, R.F.; Carroll, E.F.; Blank, R.R. Wildfire Effects on Soil Nutrients and Leaching in a Tahoe Basin Watershed. J. Environ. Qual. 2006, 35, 479–489. [Google Scholar] [CrossRef]
- Falkengren-Grerup, U.; Brink, D.-J.t.; Brunet, J. Land Use Effects on Soil N, P, C and PH Persist over 40–80 Years of Forest Growth on Agricultural Soils. For. Ecol. Manage 2006, 225, 74–81. [Google Scholar] [CrossRef]
- Uroz, S.; Oger, P.; Lepleux, C.; Collignon, C.; Frey-Klett, P.; Turpault, M.-P. Bacterial Weathering and Its Contribution to Nutrient Cycling in Temperate Forest Ecosystems. Res. Microbiol. 2011, 162, 820–831. [Google Scholar] [CrossRef] [PubMed]
- McCaig, A.E.; Glover, L.A.; Prosser, J.I. Molecular Analysis of Bacterial Community Structure and Diversity in Unimproved and Improved Upland Grass Pastures. Appl. Environ. Microbiol. 1999, 65, 1721–1730. [Google Scholar] [CrossRef]
- Engelbrecht, A.; Saad, H.; Gross, H.; Kaysser, L. Natural Products from Nocardia and Their Role in Pathogenicity. Microb. Physiol. 2021, 31, 217–232. [Google Scholar] [CrossRef]
- Morán-Gómez, Y.M.; Trémols-González, A.J.; Domínguez-Larrinaga, R.; Carrillo-Benites, M.G.; Cabrera-Alfonso, J.R. Assessment of Antimicrobial Potential of Iron on Phytopathogenic Isolates of Nocardia Sp. and Their Effect on Tobacco False Broomrape Symptom Expression. Trop. Plant Pathol. 2018, 43, 333–340. [Google Scholar] [CrossRef]
- Khilyas, I.V.; Markelova, M.I.; Valeeva, L.R.; Ivoilova, T.M.; Shagimardanova, E.; Laikov, A.V.; Elistratova, A.A.; Berkutova, E.S.; Lochnit, G.; Sharipova, M.R. Genomic Insights and Anti-Phytopathogenic Potential of Siderophore Metabolome of Endolithic Nocardia Mangyaensis NH1. Sci. Rep. 2024, 14, 5676. [Google Scholar] [CrossRef] [PubMed]
- Antil, S.; Abraham, J.S.; Sripoorna, S.; Maurya, S.; Dagar, J.; Makhija, S.; Bhagat, P.; Gupta, R.; Sood, U.; Lal, R.; et al. DNA Barcoding, an Effective Tool for Species Identification: A Review. Mol. Biol. Rep. 2023, 50, 761–775. [Google Scholar] [CrossRef] [PubMed]
- Wittebolle, L.; Marzorati, M.; Clement, L.; Balloi, A.; Daffonchio, D.; Heylen, K.; De Vos, P.; Verstraete, W.; Boon, N. Initial Community Evenness Favours Functionality under Selective Stress. Nature 2009, 458, 623–626. [Google Scholar] [CrossRef]
- Guo, X.; Chen, H.Y.H.; Meng, M.; Biswas, S.R.; Ye, L.; Zhang, J. Effects of Land Use Change on the Composition of Soil Microbial Communities in a Managed Subtropical Forest. For. Ecol. Manage 2016, 373, 93–99. [Google Scholar] [CrossRef]
- Kim, H.-S.; Lee, S.-H.; Jo, H.Y.; Finneran, K.T.; Kwon, M.J. Diversity and Composition of Soil Acidobacteria and Proteobacteria Communities as a Bacterial Indicator of Past Land-Use Change from Forest to Farmland. Sci. Total Environ. 2021, 797, 148944. [Google Scholar] [CrossRef]
- Wilson, M.C.; Chen, X.-Y.; Corlett, R.T.; Didham, R.K.; Ding, P.; Holt, R.D.; Holyoak, M.; Hu, G.; Hughes, A.C.; Jiang, L.; et al. Habitat Fragmentation and Biodiversity Conservation: Key Findings and Future Challenges. Landsc. Ecol. 2016, 31, 219–227. [Google Scholar] [CrossRef]
- Wilkinson, D.A.; Marshall, J.C.; French, N.P.; Hayman, D.T.S. Habitat Fragmentation, Biodiversity Loss and the Risk of Novel Infectious Disease Emergence. J. R. Soc. Interface 2018, 15, 20180403. [Google Scholar] [CrossRef] [PubMed]
- Yuan, R.; Zhang, N.; Zhang, Q. The Impact of Habitat Loss and Fragmentation on Biodiversity in Global Protected Areas. Sci. Total Environ. 2024, 931, 173004. [Google Scholar] [CrossRef] [PubMed]
- Nepomuceno, I.V.; Souza, E.B.d.; Zappi, D.C.; Moreira, M.C.; Nepomuceno, F.Á.A.; Moro, M.F. Savannas of the Brazilian Semiarid Region: What Do We Learn from Floristics? Acta Bot. Bras. 2021, 35, 361–380. [Google Scholar] [CrossRef]
- Vives-Peris, V.; de Ollas, C.; Gómez-Cadenas, A.; Pérez-Clemente, R.M. Root Exudates: From Plant to Rhizosphere and Beyond. Plant Cell Rep. 2020, 39, 3–17. [Google Scholar] [CrossRef]
- Franco, A.C.; Rossatto, D.R.; de Carvalho Ramos Silva, L.; da Silva Ferreira, C. Cerrado Vegetation and Global Change: The Role of Functional Types, Resource Availability and Disturbance in Regulating Plant Community Responses to Rising CO2 Levels and Climate Warming. Theor. Exp. Plant Physiol. 2014, 26, 19–38. [Google Scholar] [CrossRef]
Parameters | Land Uses | |||
---|---|---|---|---|
PRE | SEC | AGR | CONS | |
pH | 4.76 ± 0.33 a | 4.76 ± 0.39 a | 5.37 ± 0.30 b | 4.72 ± 0.21 a |
EC (uS/cm) | 580.78 ± 623.08 a | 818.53 ± 386.62 ab | 921.73 ± 681.36 b | 767.17 ± 414.3 b |
OC (g/kg) | 14.75 ± 10.14 a | 6.87 ± 3.66 b | 9.73 ± 3.69 c | 10.34 ± 3.39 c |
OM (g/kg) | 25.42 ± 17.49 a | 11.84 ± 6.30 b | 16.95 ± 6.36 c | 17.82 ± 5.84 c |
N (g/kg) | 3.51 ± 1.38 a | 1.53 ± 1.09 b | 3.11 ± 1.26 a | 2.56 ± 0.65 c |
Na (cmolc/kg) | 0.063 ± 0.04 a | 0.057 ± 0.011 bc | 0.059 ± 0.007 b | 0.055 ± 0.004 c |
K (cmolc/Kg) | 0.07 ± 0.02 a | 0.07 ± 0.05 b | 0.11 ± 0.04 a | 0.07 ± 0.02 b |
P (g/Kg) | 7.38 ± 1.21 a | 5.48 ± 1.44 b | 17.64 ± 7.25 c | 5.81 ± 0.39 b |
Ca (cmolc/kg) | 0.90 ± 0.51 a | 0.42 ± 1.38 b | 1.66 ± 0.8 c | 0.42 ± 0.15 b |
Mg (cmolc/kg) | 0.69 ± 0.39 a | 0.35 ± 0.22 b | 1.02 ± 0.47 c | 0.41 ± 0.12 b |
Fe (cmolc/kg) | 15.89 ± 7.84 a | 43.29 ± 17.58 b | 32.65 ± 21.38 ab | 52.68 ± 26.54 b |
Mn (cmolc/Kg) | 7.67 ± 3.80 a | 2.16 ± 1.41 b | 20.54 ± 17.77 c | 3.69 ± 2.34 b |
Cu (cmolc/kg) | 0.23 ± 0.08 a | 0.32 ± 0.21 b | 0.48 ± 0.33 c | 0.25 ± 0.11 b |
Zn (cmolc/Kg) | 0.65 ± 0.36 a | 0.24 ± 0.15 b | 1.67 ± 1.74 c | 0.37 ± 0.18 b |
Al (g/Kg) | 5.75 ± 0.39 a | 6.88 ± 2.8 a | 4.13 ± 3.04 b | 8.25 ± 2.12 c |
% sand | 84.78 ± 3.60 a | 78.52 ± 8.95 b | 78.82 ± 5.24 b | 77.92 ± 7.64 b |
% clay | 7.20 ± 0.38 a | 11.45 ± 1.38 b | 10.50 ± 3.23 b | 8.68 ± 1.30 a |
% silt | 8.02 ± 1.38 a | 12.39 ± 6.41 a | 10.67 ± 3.04 ab | 13.4 ± 7.16 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavalcante, F.G.; Bandeira, L.L.; Faria, C.M.d.A.; Mesquita, A.d.F.N.; Matos Neto, J.M.d.; Martins, C.M.; Martins, S.C.S. The Unseen Impacts of Human Footprints: How Land Use Reshapes Actinobacterial Communities in the Brazilian Cerrado. Biology 2025, 14, 390. https://doi.org/10.3390/biology14040390
Cavalcante FG, Bandeira LL, Faria CMdA, Mesquita AdFN, Matos Neto JMd, Martins CM, Martins SCS. The Unseen Impacts of Human Footprints: How Land Use Reshapes Actinobacterial Communities in the Brazilian Cerrado. Biology. 2025; 14(4):390. https://doi.org/10.3390/biology14040390
Chicago/Turabian StyleCavalcante, Fernando Gouveia, Leonardo Lima Bandeira, Christiana Mara de Assis Faria, Ariel de Figueiredo Nogueira Mesquita, João Moreira de Matos Neto, Claudia Miranda Martins, and Suzana Claudia Silveira Martins. 2025. "The Unseen Impacts of Human Footprints: How Land Use Reshapes Actinobacterial Communities in the Brazilian Cerrado" Biology 14, no. 4: 390. https://doi.org/10.3390/biology14040390
APA StyleCavalcante, F. G., Bandeira, L. L., Faria, C. M. d. A., Mesquita, A. d. F. N., Matos Neto, J. M. d., Martins, C. M., & Martins, S. C. S. (2025). The Unseen Impacts of Human Footprints: How Land Use Reshapes Actinobacterial Communities in the Brazilian Cerrado. Biology, 14(4), 390. https://doi.org/10.3390/biology14040390