Genetic Regulation and Breeding Application of Medium-Chain Fatty Acids Metabolism in Rice
Simple Summary
Abstract
1. Introduction
2. Fatty Acid Synthesis Mechanism
3. Triacylglycerol (TAG) Biosynthesis in Plants
4. Regulation of MCFA Metabolism
5. Roles of MCFAs on Rice Physiology
5.1. Role of Lipids in Pollen Fertility of Rice
5.2. Role of Lipids in Rice Grain Yield
5.3. Regulation of Rice Seed Longevity During Storage
5.4. Rice Grain Hardness Corelated to Lipid
5.5. Aroma and Flavor
5.6. Stress Response of Lipids in Rice
6. Genetic Regulation of Fatty Acid Biosynthesis in Rice
6.1. Applications of Genetic Engineering to Increase Fatty Acid
6.2. Rice Breeding and Marker-Assisted Selection (MAS)
7. Traditional Breeding Strategies to Endow Rice with High Levels of MCFA
7.1. MAS for MCFA Traits in Rice
7.2. Phenotyping Methods for the Selection of MCFA-Rich Rice Lines
7.3. Genetic Engineering and CRISPR/Cas9 for Improved MCFA Content
7.4. MCFA Improvement Using Transgenic and Hybrid Approaches
8. Challenges in Breeding MCFA-Enriched Rice and Applications
8.1. Health Implications and Nutritional Benefits
8.2. Industrial Applications
8.3. Environmental and Sustainability Considerations
8.4. Potential Challenges and Pathways Forward
8.5. MCFA-Enriched Rice in Sustainable Farming Systems
9. Future Directions
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roopashree, P.; Shetty, S.S.; Kumari, N.S. Effect of medium chain fatty acid in human health and disease. J. Funct. Foods 2021, 87, 104724. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, T.; Liu, R.; Chang, M.; Wei, W.; Jin, Q.; Wang, X. Reviews of medium-and long-chain triglyceride with respect to nutritional benefits and digestion and absorption behavior. Food Res. Int. 2022, 155, 111058. [Google Scholar] [CrossRef] [PubMed]
- Scrimgeour, C.; Harwood, J. Fatty acid and lipid structure. In The Lipid Handbook with CD-ROM; CRC Press: Boca Raton, FL, USA, 2007; pp. 15–50. [Google Scholar]
- Shaughnessy, K.H. Hydrophilic ligands and their application in aqueous-phase metal-catalyzed reactions. Chem. Rev. 2009, 109, 643–710. [Google Scholar] [CrossRef] [PubMed]
- Augustin, K.; Khabbush, A.; Williams, S.; Eaton, S.; Orford, M.; Cross, J.H.; Heales, S.J.; Walker, M.C.; Williams, R.S. Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet Neurol. 2018, 17, 84–93. [Google Scholar] [CrossRef]
- Meijaard, E.; Abrams, J.F.; Slavin, J.L.; Sheil, D. Dietary fats, human nutrition and the environment: Balance and sustainability. Front. Nutr. 2022, 9, 878644. [Google Scholar] [CrossRef]
- Mason, E.; Hindmarch, C.C.; Dunham-Snary, K.J. Medium-chain Acyl-COA dehydrogenase deficiency: Pathogenesis, diagnosis, and treatment. Endocrinol. Diabetes Metab. 2023, 6, e385. [Google Scholar] [CrossRef]
- Recio, C.; Lucy, D.; Iveson, P.; Iqbal, A.J.; Valaris, S.; Wynne, G.; Russell, A.J.; Choudhury, R.P.; O’Callaghan, C.; Monaco, C. The role of metabolite-sensing G protein-coupled receptors in inflammation and metabolic disease. Antioxid. Redox Signal. 2018, 29, 237–256. [Google Scholar] [CrossRef]
- Xiao, R.; Zou, Y.; Guo, X.; Li, H.; Lu, H. Fatty acid desaturases (FADs) modulate multiple lipid metabolism pathways to improve plant resistance. Mol. Biol. Rep. 2022, 49, 9997–10011. [Google Scholar] [CrossRef]
- Cagliari, A.; Margis, R.; Maraschin, F.d.S.; Zolet, A.C.T.; Morais, G.L.d.; Margis-Pinheiro, M. Biosynthesis of triacylglycerols (TAGs) in plants and algae. Int. J. Plant Biol. 2011, 2, 40–52. [Google Scholar] [CrossRef]
- Park, K.; Sanjaya, S.A.; Quach, T.; Cahoon, E.B. Toward sustainable production of value-added bioenergy and industrial oils in oilseed and biomass feedstocks. Gcb Bioenergy 2021, 13, 1610–1623. [Google Scholar] [CrossRef]
- Birla, D.S.; Malik, K.; Sainger, M.; Chaudhary, D.; Jaiwal, R.; Jaiwal, P.K. Progress and challenges in improving the nutritional quality of rice (Oryza sativa L.). Crit. Rev. Food Sci. Nutr. 2017, 57, 2455–2481. [Google Scholar] [CrossRef]
- Shen, Y.; Wu, D.; Fogliano, V.; Pellegrini, N. Rice varieties with a high endosperm lipid content have reduced starch digestibility and increased γ-oryzanol bioaccessibility. Food Funct. 2021, 12, 11547–11556. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Li, R. Metabolic engineering a model oilseed Camelina sativa for the sustainable production of high-value designed oils. Front. Plant Sci. 2020, 11, 11. [Google Scholar] [CrossRef]
- Ying, J.-Z.; Shan, J.-X.; Gao, J.-P.; Zhu, M.-Z.; Shi, M.; Lin, H.-X. Identification of quantitative trait loci for lipid metabolism in rice seeds. Mol. Plant 2012, 5, 865–875. [Google Scholar] [CrossRef]
- Goffman, F.D.; Pinson, S.; Bergman, C. Genetic diversity for lipid content and fatty acid profile in rice bran. J. Am. Oil Chem. Soc. 2003, 80, 485–490. [Google Scholar] [CrossRef]
- Taira, H.; Itani, T. Lipid content and fatty acid composition of brown rice of cultivars of the United States. J. Agric. Food Chem. 1988, 36, 460–462. [Google Scholar] [CrossRef]
- Baud, S.; Lepiniec, L. Regulation of de novo fatty acid synthesis in maturing oilseeds of Arabidopsis. Plant Physiol. Biochem. 2009, 47, 448–455. [Google Scholar] [CrossRef]
- Shahidi, F.; Danielski, R.; Rhein, S.O.; Meisel, L.A.; Fuentes, J.; Speisky, H.; Schwember, A.R.; de Camargo, A.C. Wheat and rice beyond phenolic acids: Genetics, identification database, antioxidant properties, and potential health effects. Plants 2022, 11, 3283. [Google Scholar] [CrossRef]
- Paiva, P.; Medina, F.E.; Viegas, M.; Ferreira, P.; Neves, R.P.; Sousa, J.P.; Ramos, M.J.; Fernandes, P.A. Animal fatty acid synthase: A chemical nanofactory. Chem. Rev. 2021, 121, 9502–9553. [Google Scholar] [CrossRef]
- Watkins, S.M.; German, J.B. Unsaturated fatty acids. In Food Lipids; CRC Press: Boca Raton, FL, USA, 2002; pp. 578–607. [Google Scholar]
- Liu, B.; Sun, Y.; Wang, X.; Xue, J.; Wang, J.; Jia, X.; Li, R. Identification and functional characterization of acyl-ACP thioesterases B (GhFatBs) responsible for palmitic acid accumulation in cotton seeds. Int. J. Mol. Sci. 2022, 23, 12805. [Google Scholar] [CrossRef]
- Graham, I.A. Seed storage oil mobilization. Annu. Rev. Plant Biol. 2008, 59, 115–142. [Google Scholar] [CrossRef]
- Li-Beisson, Y.; Shorrosh, B.; Beisson, F.; Andersson, M.X.; Arondel, V.; Bates, P.D.; Baud, S.; Bird, D.; DeBono, A.; Durrett, T.P. Acyl-lipid metabolism. Arab. Book/Am. Soc. Plant Biol. 2013, 11, e0161. [Google Scholar] [CrossRef]
- Kim, S. Engineering of Microbial Cell Factories for the Sustainable Production of Fuels and Chemicals Using a Novel Carbon Elongation Pathway. Ph.D. Thesis, Rice University, Houston, TX, USA, 2017. [Google Scholar]
- Thien Nguyen, Q.; Kisiala, A.; Andreas, P.; Neil Emery, R.; Narine, S. Soybean seed development: Fatty acid and phytohormone metabolism and their interactions. Curr. Genom. 2016, 17, 241–260. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, S.; Bai, B.; Chen, Y.; Xiang, Z.; Chen, C.; Kuang, X.; Yang, Y.; Fu, J.; Chen, L. OsKASI-2 is required for the regulation of unsaturation levels of membrane lipids and chilling tolerance in rice. Plant Biotechnol. J. 2024, 22, 2157–2172. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Liu, L.; Konik-Rose, C.; Tian, L.; Singh, S.; Howitt, C.A.; Li, Z.; Liu, Q. Down-regulation of FAD2-1 gene expression alters lysophospholipid composition in the endosperm of rice grain and influences starch properties. Foods 2021, 10, 1169. [Google Scholar] [CrossRef]
- Wei, H.; Movahedi, A.; Xu, S.; Zhang, Y.; Liu, G.; Aghaei-Dargiri, S.; Ghaderi Zefrehei, M.; Zhu, S.; Yu, C.; Chen, Y. Genome-wide characterization and expression analysis of fatty acid desaturase gene family in poplar. Int. J. Mol. Sci. 2022, 23, 11109. [Google Scholar] [CrossRef]
- Tian, H.; Wang, R.; Li, J.; Zhao, S.; Teotia, S.; Gao, B.; Cheng, Y.; Li, F.; Liu, Y.; Zhang, J. Regulation of Rice Grain Weight by Fatty Acid Composition: Unveiling the Mechanistic Roles of OsLIN6 by OsARF12. J. Agric. Food Chem. 2024, 72, 24655–24667. [Google Scholar] [CrossRef] [PubMed]
- Wallis, J.G.; Browse, J. Mutants of Arabidopsis reveal many roles for membrane lipids. Prog. Lipid Res. 2002, 41, 254–278. [Google Scholar] [CrossRef]
- Joyard, J.; Ferro, M.; Masselon, C.; Seigneurin-Berny, D.; Salvi, D.; Garin, J.; Rolland, N. Chloroplast proteomics highlights the subcellular compartmentation of lipid metabolism. Prog. Lipid Res. 2010, 49, 128–158. [Google Scholar] [CrossRef]
- Wang, M.L.; Khera, P.; Pandey, M.K.; Wang, H.; Qiao, L.; Feng, S.; Tonnis, B.; Barkley, N.A.; Pinnow, D.; Holbrook, C.C. Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.). PLoS ONE 2015, 10, e0119454. [Google Scholar] [CrossRef]
- Niu, Y.; Wu, G.-Z.; Ye, R.; Lin, W.-H.; Shi, Q.-M.; Xue, L.-J.; Xu, X.-D.; Li, Y.; Du, Y.-G.; Xue, H.-W. Global analysis of gene expression profiles in Brassica napus developing seeds reveals a conserved lipid metabolism regulation with Arabidopsis thaliana. Mol. Plant 2009, 2, 1107–1122. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Beisson, F.; Pollard, M.; Ohlrogge, J. Oil content of Arabidopsis seeds: The influence of seed anatomy, light and plant-to-plant variation. Phytochemistry 2006, 67, 904–915. [Google Scholar] [CrossRef]
- Ohlrogge, J.B.; Jaworski, J.G.; Post-Beittenmiller, D. De novo fatty acid biosynthesis. In Lipid Metabolism in Plants; CRC Press: Boca Raton, FL, USA, 2018; pp. 3–32. [Google Scholar]
- Wang, E.; Zhou, Y.; Liang, Y.; Ling, F.; Xue, X.; He, X.; Zhai, X.; Xue, Y.; Zhou, C.; Tang, G. Rice flowering improves the muscle nutrient, intestinal microbiota diversity, and liver metabolism profiles of tilapia (Oreochromis niloticus) in rice-fish symbiosis. Microbiome 2022, 10, 231. [Google Scholar] [CrossRef]
- Karasawa, K.; Tanigawa, K.; Harada, A.; Yamashita, A. Transcriptional regulation of acyl-CoA: Glycerol-sn-3-phosphate acyltransferases. Int. J. Mol. Sci. 2019, 20, 964. [Google Scholar] [CrossRef]
- Cholico, G.N.; Fling, R.R.; Zacharewski, N.A.; Fader, K.A.; Nault, R.; Zacharewski, T.R. Thioesterase induction by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin results in a futile cycle that inhibits hepatic β-oxidation. Sci. Rep. 2021, 11, 15689. [Google Scholar] [CrossRef] [PubMed]
- Singer, S.D.; Chen, G.; Mietkiewska, E.; Tomasi, P.; Jayawardhane, K.; Dyer, J.M.; Weselake, R.J. Arabidopsis GPAT9 contributes to synthesis of intracellular glycerolipids but not surface lipids. J. Exp. Bot. 2016, 67, 4627–4638. [Google Scholar] [CrossRef]
- Lee, Y.-Y.; Tang, T.-K.; Chan, E.-S.; Phuah, E.-T.; Lai, O.-M.; Tan, C.-P.; Wang, Y.; Ab Karim, N.A.; Mat Dian, N.H.; Tan, J.S. Medium chain triglyceride and medium-and long chain triglyceride: Metabolism, production, health impacts and its applications—A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 4169–4185. [Google Scholar] [CrossRef] [PubMed]
- Kazaz, S.; Miray, R.; Baud, S. Acyl–acyl carrier protein desaturases and plant biotic interactions. Cells 2021, 10, 674. [Google Scholar] [CrossRef]
- Facciotti, D.; Knauf, V. Triglycerides as products of photosynthesis. Genetic engineering, fatty acid composition and structure of triglycerides. In Lipids in Photosynthesis: Structure, Function and Genetics; Springer: Berlin/Heidelberg, Germany, 1998; pp. 225–248. [Google Scholar]
- Dehesh, K. How can we genetically engineer oilseed crops to produce high levels of medium-chain fatty acids? Eur. J. Lipid Sci. Technol. 2001, 103, 688–697. [Google Scholar] [CrossRef]
- Bengtsson, J.D. Oilseed Engineering as a Means to Understand Fatty Acid Modification, Lipid Synthesis, and Regulation in Model Oilseed Crops; Washington State University: Pullman, WA, USA, 2021. [Google Scholar]
- Reynolds, K. Metabolic Engineering for Medium Chain Fatty Acids in Plant Leaf Lipids. Ph.D. Thesis, Charles Sturt University, Bathurst, NSW, Australia, 2017. [Google Scholar]
- Coleman, R.A.; Mashek, D.G. Mammalian triacylglycerol metabolism: Synthesis, lipolysis, and signaling. Chem. Rev. 2011, 111, 6359–6386. [Google Scholar] [CrossRef]
- Carman, G.M.; Han, G.-S. Phosphatidic acid phosphatase, a key enzyme in the regulation of lipid synthesis. J. Biol. Chem. 2009, 284, 2593–2597. [Google Scholar] [CrossRef]
- Torabi, S.; Sukumaran, A.; Dhaubhadel, S.; Johnson, S.E.; LaFayette, P.; Parrott, W.A.; Rajcan, I.; Eskandari, M. Effects of type I Diacylglycerol O-acyltransferase (DGAT1) genes on soybean (Glycine max L.) seed composition. Sci. Rep. 2021, 11, 2556. [Google Scholar] [CrossRef]
- Pavlenko, O.; Akashkina, Y.; Suhorukova, A.; Sidorov, R.; Tsydendambaev, V. Diversity of types of plant diacylglycerol acyltransferases, peculiarities of their functioning, and how many DGATs are required for plants. Russ. J. Plant Physiol. 2022, 69, 2. [Google Scholar] [CrossRef]
- Xu, Y. Engineering Enhanced Performance in Plant Diacylglycerol Acyltransferase and Long-Chain Acyl-CoA Synthetase. Ph.D. Thesis, University of Alberta, Edmonton, AB, Canada, 2018. [Google Scholar]
- Zhukov, A.V.; Shumskaya, M. Very-long-chain fatty acids (VLCFAs) in plant response to stress. Funct. Plant Biol. 2020, 47, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, Z.; Sun, C.; Zhang, C.; Liu, H.; Cui, Q.; Song, X.; Wang, S. A phospholipid: Diacylglycerol acyltransferase is involved in the regulation of phospholipids homeostasis in oleaginous Aurantiochytrium sp. Biotechnol. Biofuels Bioprod. 2023, 16, 142. [Google Scholar] [CrossRef] [PubMed]
- Połońska, A.; Jasieniecka-Gazarkiewicz, K.; You, L.; Hao, X.; Klińska, S.; Gong, Y.; Banaś, A. Diatoms and plants acyl-CoA: Lysophosphatidylcholine acyltransferases (LPCATs) exhibit diverse substrate specificity and biochemical properties. Int. J. Mol. Sci. 2021, 22, 9056. [Google Scholar] [CrossRef]
- Sood, A.; Chauhan, R.S. Regulation of FA and TAG biosynthesis pathway genes in endosperms and embryos of high and low oil content genotypes of Jatropha curcas L. Plant Physiol. Biochem. 2015, 94, 253–267. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Liu, Z.; Ying, X.; Kalandarov, B.; Ergashev, M.; Tong, X.; Zhang, J.; Jin, J.; Ying, J. Molecular Basis of Lipid Metabolism in Oryza sativa L. Plants 2024, 13, 3263. [Google Scholar] [CrossRef]
- Edgerton, M.D. Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol. 2009, 149, 7–13. [Google Scholar] [CrossRef]
- Marchive, C.; Nikovics, K.; To, A.; Lepiniec, L.; Baud, S. Transcriptional regulation of fatty acid production in higher plants: Molecular bases and biotechnological outcomes. Eur. J. Lipid Sci. Technol. 2014, 116, 1332–1343. [Google Scholar] [CrossRef]
- Kong, Q.; Yuan, L.; Ma, W. WRINKLED1, a “Master Regulator” in transcriptional control of plant oil biosynthesis. Plants 2019, 8, 238. [Google Scholar] [CrossRef]
- Chen, L.; Bian, J.; Shi, S.; Yu, J.; Khanzada, H.; Wassan, G.M.; Zhu, C.; Luo, X.; Tong, S.; Yang, X. Genetic analysis for the grain number heterosis of a super-hybrid rice WFYT025 combination using RNA-Seq. Rice 2018, 11, 37. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wu, Q.; Yang, Y.; Li, Q.; Li, R.; Ye, J. Regulation of oil biosynthesis and genetic improvement in plants: Advances and prospects. Genes 2024, 15, 1125. [Google Scholar] [CrossRef]
- Fei, W.; Yang, S.; Hu, J.; Yang, F.; Qu, G.; Peng, D.; Zhou, B. Research advances of WRINKLED1 (WRI1) in plants. Funct. Plant Biol. 2020, 47, 185–194. [Google Scholar] [CrossRef]
- Li, Q.; Shao, J.; Tang, S.; Shen, Q.; Wang, T.; Chen, W.; Hong, Y. Wrinkled1 accelerates flowering and regulates lipid homeostasis between oil accumulation and membrane lipid anabolism in Brassica napus. Front. Plant Sci. 2015, 6, 1015. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, P.; Li, B.; Wang, W.; Zhu, B. Phosphoribosyltransferases and their roles in plant development and abiotic stress response. Int. J. Mol. Sci. 2023, 24, 11828. [Google Scholar] [CrossRef]
- Bai, S.; Engelen, S.; Denolf, P.; Wallis, J.G.; Lynch, K.; Bengtsson, J.D.; Van Thournout, M.; Haesendonckx, B.; Browse, J. Identification, characterization and field testing of Brassica napus mutants producing high-oleic oils. Plant J. 2019, 98, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Le Ruyet, C. Investigating Herbicide Targets in the Very Long-Chain Fatty Acid Biosynthesis Pathway. Ph.D. Thesis, Université de Bordeaux, Bordeaux, France, 2024. [Google Scholar]
- Kim, B.H. Enzymatic Synthesis of Structured Lipids and Phytosteryl Esters and Their Dietary Effects on Blood Lipid Profiles and Cardiovascular Parameters in Spontaneously Hypertensive Rats. Ph.D. Thesis, University of Georgia, Athens, GA, USA, 2006. [Google Scholar]
- Liu, K.; Tang, Y.; Tang, Y.; Li, M.; Wu, G.; Chen, Y.; Jiang, H. Ectopic expression of WRINKLED1 in rice improves lipid biosynthesis but retards plant growth and development. PLoS ONE 2022, 17, e0267684. [Google Scholar] [CrossRef]
- Aslan, S.; Hofvander, P.; Dutta, P.; Sitbon, F.; Sun, C. Transient silencing of the KASII genes is feasible in Nicotiana benthamiana for metabolic engineering of wax ester composition. Sci. Rep. 2015, 5, 11213. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, Z.; Wang, C.; Xu, Y.; Li, X.; Zhu, J.; Tan, X.; Yang, J. Efficient breeding of high oleic rice cultivar by editing OsFAD2-1 via CRISPR/Cas9. J. Integr. Agric. 2025, 24, 4810–4814. [Google Scholar] [CrossRef]
- Hernández, M.L.; Moretti, S.; Sicardo, M.D.; García, Ú.; Pérez, A.; Sebastiani, L.; Martínez-Rivas, J.M. Distinct physiological roles of three phospholipid: Diacylglycerol acyltransferase genes in olive fruit with respect to oil accumulation and the response to abiotic stress. Front. Plant Sci. 2021, 12, 751959. [Google Scholar] [CrossRef]
- Reynolds, K.B.; Taylor, M.C.; Cullerne, D.P.; Blanchard, C.L.; Wood, C.C.; Singh, S.P.; Petrie, J.R. A reconfigured Kennedy pathway which promotes efficient accumulation of medium-chain fatty acids in leaf oils. Plant Biotechnol. J. 2017, 15, 1397–1408. [Google Scholar] [CrossRef]
- Bhunia, R.K.; Sinha, K.; Kaur, R.; Kaur, S.; Chawla, K. A holistic view of the genetic factors involved in triggering hydrolytic and oxidative rancidity of rice bran lipids. Food Rev. Int. 2023, 39, 441–466. [Google Scholar] [CrossRef]
- Banerjee, A.; Roychoudhury, A. Genome Editing Using CRISPR/Cas9 System for Crop Improvement, Nutrient Enrichment, and Abiotic Stress Tolerance in Rice. In CRISPR/Cas-Mediated Genome Editing in Plants; Apple Academic Press: Point Pleasant, NJ, USA, 2023; pp. 133–147. [Google Scholar]
- Chen, C.; Yang, J.; Tong, H.; Li, T.; Wang, L.; Chen, H. Genome-wide analysis of fatty acid desaturase genes in rice (Oryza sativa L.). Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Wu, S.; Li, Z.; An, X.; Tian, Y. Lipid metabolism: Critical roles in male fertility and other aspects of reproductive development in plants. Mol. Plant 2020, 13, 955–983. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Shi, J.; Yang, X. Role of lipid metabolism in plant pollen exine development. In Lipids in Plant and Algae Development; Springer: Cham, Switzerland, 2016; pp. 315–337. [Google Scholar]
- Zhou, L.; Ni, E.; Yang, J.; Zhou, H.; Liang, H.; Li, J.; Jiang, D.; Wang, Z.; Liu, Z.; Zhuang, C. Rice OsGL1-6 is involved in leaf cuticular wax accumulation and drought resistance. PLoS ONE 2013, 8, e65139. [Google Scholar] [CrossRef]
- Li, Y.; Li, D.; Guo, Z.; Shi, Q.; Xiong, S.; Zhang, C.; Zhu, J.; Yang, Z. OsACOS12, an orthologue of Arabidopsis acyl-CoA synthetase5, plays an important role in pollen exine formation and anther development in rice. BMC Plant Biol. 2016, 16, 256. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, S.; Liu, Y.; Ling, S.; Chen, C.; Yao, J. HOTHEAD-like HTH1 is involved in anther cutin biosynthesis and is required for pollen fertility in rice. Plant Cell Physiol. 2017, 58, 1238–1248. [Google Scholar] [CrossRef]
- Keating, S.T.; El-Osta, A. Epigenetics and metabolism. Circ. Res. 2015, 116, 715–736. [Google Scholar] [CrossRef]
- Qiao, Y.; Hou, B.; Qi, X. Biosynthesis and transport of pollen coat precursors in angiosperms. Nat. Plants 2023, 9, 864–876. [Google Scholar] [CrossRef]
- Jin-Long, N.; De-zheng, W.; Da-Hu, N.; Feng-shun, S.; Jian-bo, Y.; Da-nian, Y. Characterization and fine mapping of RTMS10, a semi-dominant reverse thermo-sensitive genic male sterile locus in rice. J. Integr. Agric. 2022, 21, 316–325. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Z.; Ni, E.; Lin, J.; Peng, G.; Huang, J.; Zhu, L.; Deng, L.; Yang, F.; Luo, Q. HMS1 interacts with HMS1I to regulate very-long-chain fatty acid biosynthesis and the humidity-sensitive genic male sterility in rice (Oryza sativa). New Phytol. 2020, 225, 2077–2093. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.F.; Peng, G.; Liu, Z.; Noman, A.; Alamri, S.; Hashem, M.; Qari, S.H.; Mahmoud al Zoubi, O. Molecular control and application of male fertility for two-line hybrid rice breeding. Int. J. Mol. Sci. 2020, 21, 7868. [Google Scholar] [CrossRef]
- Zhou, K.; Luo, Z.; Huang, W.; Liu, Z.; Miao, X.; Tao, S.; Wang, J.; Zhang, J.; Wang, S.; Zeng, X. Biological roles of lipids in rice. Int. J. Mol. Sci. 2024, 25, 9046. [Google Scholar] [CrossRef] [PubMed]
- Talley, J.T.; Mohiuddin, S.S. Biochemistry, fatty acid oxidation. In StatPearls [Internet]; Statpearls Publishing: Orlando, FL, USA, 2023. [Google Scholar]
- Chatterjee, D.; Patra, S.; Mandal, A. Small but Mighty: Role of miRNA in Abiotic Stress Responses and Crop Improvement. J. Plant Growth Regul. 2025, 44, 1–18. [Google Scholar] [CrossRef]
- Iqbal, Z.; Iqbal, M. Toward Integrated Multi-Omics Intervention: Rice Trait Improvement. In Improvement of Rice Through “-omics” Approaches; Frontiers Media SA: Lausanne, Switzerland, 2022; p. 741419107. [Google Scholar]
- Wang, W.; He, A.; Peng, S.; Huang, J.; Cui, K.; Nie, L. The effect of storage condition and duration on the deterioration of primed rice seeds. Front. Plant Sci. 2018, 9, 172. [Google Scholar] [CrossRef]
- Mohidem, N.A.; Hashim, N.; Shamsudin, R.; Che Man, H. Rice for food security: Revisiting its production, diversity, rice milling process and nutrient content. Agriculture 2022, 12, 741. [Google Scholar] [CrossRef]
- Kameswara Rao, N.; Dulloo, M.E.; Engels, J.M. A review of factors that influence the production of quality seed for long-term conservation in genebanks. Genet. Resour. Crop Evol. 2017, 64, 1061–1074. [Google Scholar] [CrossRef]
- Shi, H.; Guan, W.; Shi, Y.; Wang, S.; Fan, H.; Yang, J.; Chen, W.; Zhang, W.; Sun, D.; Jing, R. QTL mapping and candidate gene analysis of seed vigor-related traits during artificial aging in wheat (Triticum aestivum). Sci. Rep. 2020, 10, 22060. [Google Scholar] [CrossRef]
- Wu, F.; Wei, Y.; Zhu, Y.; Luo, X.; He, W.; Wang, Y.; Cai, Q.; Xie, H.; Xie, G.; Zhang, J. Comparative Metabolic Analysis of Different Indica Rice Varieties Associated with Seed Storability. Metabolites 2025, 15, 19. [Google Scholar] [CrossRef]
- Tian, J.-H.; Liu, Y.; Yun, M.-Q.; Yu, J.; Chen, T.; Wang, Y.; Jiang, X.-C. OsWAK16 Regulates Seed Anti-aging Ability by Modulating Antioxidant Enzyme Activity in Rice. Chin. Bull. Bot. 2025, 60, 17–32. [Google Scholar]
- Rodríguez, M.E.; Pérez, E.; Acreche, M.M.; Schneider-Teixeira, A.; Deladino, L.; Ixtaina, V. Physiological, biochemical, and biophysical changes in chia seeds during accelerated aging: Implications for lipid composition and seed quality. Physiol. Mol. Biol. Plants 2025, 31, 623–640. [Google Scholar] [CrossRef] [PubMed]
- Tufail, T.; Niazi, M.K.; Hassan, F.; Ain, H.B.U.; Xu, B. Fatty acids content and profiling in sprouted grains. In Sprouted Grains; Elsevier: Amsterdam, The Netherlands, 2025; pp. 179–207. [Google Scholar]
- Yu, S.-Y.; Cai, W.-L.C.; Hu, Y.-H. Synergistic mechanisms of DGAT and PDAT in shaping triacylglycerol diversity: Evolutionary insights and metabolic engineering strategies. Front. Plant Sci. 2025, 16, 1598815. [Google Scholar] [CrossRef]
- Gautam, M.; Kariyat, R. Drought and Herbivory Have Selective Transgenerational Effects on Soybean Eco-Physiology, Defence and Fitness. Plant Cell Environ. 2025. [Google Scholar] [CrossRef] [PubMed]
- Mohd Johari, S.A.; Ayoub, M.; Inayat, A.; Ullah, S.; Uroos, M.; Naqvi, S.R.; Farukkh, S. Utilization of dairy scum waste as a feedstock for biodiesel production via different heating sources for catalytic transesterification. ChemBioEng Rev. 2022, 9, 605–632. [Google Scholar] [CrossRef]
- Morris, C.F.; Anderson, J.A.; King, G.; Bettge, A.D.; Garland-Campbell, K.; Allan, R.; Fuerst, E.P.; Beecher, B.S. Characterization of a unique “super soft” kernel trait in wheat. Cereal Chem. 2011, 88, 576–583. [Google Scholar] [CrossRef]
- Liu, P.; Liu, Z.; Ma, X.; Wan, H.; Zheng, J.; Luo, J.; Deng, Q.; Mao, Q.; Li, X.; Pu, Z. Characterization and Differentiation of Grain Proteomes from Wild-Type Puroindoline and Variants in Wheat. Plants 2023, 12, 1979. [Google Scholar] [CrossRef] [PubMed]
- An, L.; Tao, Y.; Chen, H.; He, M.; Xiao, F.; Li, G.; Ding, Y.; Liu, Z. Embryo-endosperm interaction and its agronomic relevance to rice quality. Front. Plant Sci. 2020, 11, 587641. [Google Scholar] [CrossRef]
- Verma, D.K.; Srivastav, P.P. Introduction to rice aroma, flavor, and fragrance. In Science and Technology of Aroma, Flavour and Fragrance in Rice; Verma, D.K., Srivastav, P.P., Eds.; Apple Academic Press: Point Pleasant, NJ, USA, 2018; pp. 3–34. [Google Scholar]
- Zheng, Z.; Zhang, C.; Liu, K.; Liu, Q. Volatile organic compounds, evaluation methods and processing properties for cooked rice flavor. Rice 2022, 15, 53. [Google Scholar] [CrossRef]
- Shao, X.; Wang, H.; Song, X.; Xu, N.; Sun, J.; Xu, X. Effects of different mixed starter cultures on microbial communities, taste and aroma compounds of traditional Chinese fermented sausages. Food Chem. X 2024, 21, 101225. [Google Scholar] [CrossRef]
- Lam, H.; Proctor, A. Milled rice oxidation volatiles and odor development. J. Food Sci. 2003, 68, 2676–2681. [Google Scholar] [CrossRef]
- Makarenko, S.; Dudareva, L.; Katyshev, A.; Konenkina, T.; Nazarova, A.; Rudikovskaya, E.; Sokolova, N.; Chernikova, V.; Konstantinov, Y.M. The effect of low temperatures on fatty acid composition of crops with different cold resistance. Biochem. (Mosc.) Suppl. Ser. A: Membr. Cell Biol. 2011, 5, 64–69. [Google Scholar] [CrossRef]
- Gayathri, R.; Stephen, R. Differential expression of transport and signalling genes in leaves and panicle regulates the development of pollen-free anthers in TGMS red rice. Cereal Res. Commun. 2021, 49, 465–473. [Google Scholar] [CrossRef]
- He, M.; Qin, C.-X.; Wang, X.; Ding, N.-Z. Plant unsaturated fatty acids: Biosynthesis and regulation. Front. Plant Sci. 2020, 11, 390. [Google Scholar] [CrossRef]
- Liu, H.; Zeng, B.; Zhao, J.; Yan, S.; Wan, J.; Cao, Z. Genetic research progress: Heat tolerance in rice. Int. J. Mol. Sci. 2023, 24, 7140. [Google Scholar] [CrossRef]
- Xiang, Y.-H.; Yu, J.-J.; Liao, B.; Shan, J.-X.; Ye, W.-W.; Dong, N.-Q.; Guo, T.; Kan, Y.; Zhang, H.; Yang, Y.-B. An α/β hydrolase family member negatively regulates salt tolerance but promotes flowering through three distinct functions in rice. Mol. Plant 2022, 15, 1908–1930. [Google Scholar] [CrossRef]
- Eibl, H. Phospholipids as functional constituents of biomembranes. Angew. Chem. Int. Ed. Engl. 1984, 23, 257–271. [Google Scholar] [CrossRef]
- Youssef, N.B.; Shaher Al-Moaikal, R.M.; Saleh Al-Hawas, G.H.; Alrammah, F.M. Up-modulation of membrane lipid composition and functionality by seed priming under salinity in the Hasawi rice variety. J. Appl. Bot. Food Qual. 2020, 93, 159. [Google Scholar]
- Li, S.; Khoso, M.A.; Xu, H.; Zhang, C.; Liu, Z.; Wagan, S.; Dinislam, K.; Liu, L. WRKY Transcription Factors (TFs) as Key Regulators of Plant Resilience to Environmental Stresses: Current Perspective. Agronomy 2024, 14, 2421. [Google Scholar] [CrossRef]
- Sharma, P.; Jha, A.B.; Dubey, R.S. Oxidative stress and antioxidative defense system in plants growing under abiotic stresses. In Handbook of Plant and Crop Stress, 4th ed.; CRC Press: Boca Raton, FL, USA, 2019; pp. 93–136. [Google Scholar]
- Kobayashi, K. Role of membrane glycerolipids in photosynthesis, thylakoid biogenesis and chloroplast development. J. Plant Res. 2016, 129, 565–580. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, X.; Yin, L.; Deng, X.; Wang, S. Exogenous application of gibberellic acid participates in up-regulation of lipid biosynthesis under salt stress in rice. Theor. Exp. Plant Physiol. 2018, 30, 335–345. [Google Scholar] [CrossRef]
- Bulut, M.; Karakas, E.; Fernie, A.R. Metabolic responses to multi-stress: An update. Plant Stress 2025, 15, 100729. [Google Scholar] [CrossRef]
- Liu, H.; Xin, W.; Wang, Y.; Zhang, D.; Wang, J.; Zheng, H.; Yang, L.; Nie, S.; Zou, D. An integrated analysis of the rice transcriptome and lipidome reveals lipid metabolism plays a central role in rice cold tolerance. BMC Plant Biol. 2022, 22, 91. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, J.; Yang, M.; Zou, J.; Zheng, Y.; Li, D. EgMADS3 directly regulates EgLPAAT to mediate medium-chain fatty acids (MCFA) anabolism in the mesocarp of oil palm. Plant Cell Rep. 2024, 43, 107. [Google Scholar] [CrossRef]
- Wang, S.; Yang, B.; Liang, Y.; Zou, X.; Xu, M.; Zhao, C.; Wang, Y.; Ni, B.; Zhu, P.; Jiang, Y. Overexpression of Umellularia californica FatB thioesterase affects plant growth and lipid metabolome leading to improved drought tolerance in Arabidopsis and tomato. Front. Plant Sci. 2025, 15, 1446210. [Google Scholar] [CrossRef]
- Tiwari, G.J.; Liu, Q.; Shreshtha, P.; Li, Z.; Rahman, S. RNAi-mediated down-regulation of the expression of OsFAD2-1: Effect on lipid accumulation and expression of lipid biosynthetic genes in the rice grain. BMC Plant Biol. 2016, 16, 189. [Google Scholar] [CrossRef]
- Dar, A.A.; Choudhury, A.R.; Kancharla, P.K.; Arumugam, N. The FAD2 gene in plants: Occurrence, regulation, and role. Front. Plant Sci. 2017, 8, 1789. [Google Scholar] [CrossRef] [PubMed]
- Kliebenstein, D. Quantitative genomics: Analyzing intraspecific variation using global gene expression polymorphisms or eQTLs. Annu. Rev. Plant Biol. 2009, 60, 93–114. [Google Scholar] [CrossRef]
- Guo, J.; Zhou, X.; Chen, D.; Chen, K.; Ye, C.; Liu, J.; Liu, S.; Chen, Y.; Chen, G.; Liu, C. Effect of fat content on rice taste quality through transcriptome analysis. Genes 2024, 15, 81. [Google Scholar] [CrossRef] [PubMed]
- Pandurangan, S.; Workman, C.; Nilsen, K.; Kumar, S. Introduction to marker-assisted selection in wheat breeding. In Accelerated Breeding of Cereal Crops; Springer: Berlin/Heidelberg, Germany, 2021; pp. 77–117. [Google Scholar]
- Concepcion, J.C. Understanding the Genetics and Chemistry of Important Quality Traits in Rice (Oryza sativa L.). Ph.D. Thesis, The University of Queensland, Brisbane, Australia, 2018. [Google Scholar]
- Hu, Z.-L.; Li, P.; Zhou, M.-Q.; Zhang, Z.-H.; Wang, L.-X.; Zhu, L.-H.; Zhu, Y.-G. Mapping of quantitative trait loci (QTLs) for rice protein and fat content using doubled haploid lines. Euphytica 2004, 135, 47–54. [Google Scholar] [CrossRef]
- Chagoya, J. Physiological Screening and Marker-Assisted Selection for Drought Tolerance in Peanut. Ph.D. Thesis, Graduate Faculty of Texas Tech University, Lubbock, TX, USA, 2016. [Google Scholar]
- Bruinsma, M.; Kowalchuk, G.; Van Veen, J. Effects of genetically modified plants on microbial communities and processes in soil. Biol. Fertil. Soils 2003, 37, 329–337. [Google Scholar] [CrossRef]
- Bhati, K.K.; Riyazuddin, R.; Pathak, A.K.; Singh, A. The survey of genetic engineering approaches for oil/fatty acid content improvement in oilseed crops. Genome Eng. Crop Improv. 2021, 181–198. [Google Scholar] [CrossRef]
- Rauf, S.; Fatima, S.; Ortiz, R. Modification of fatty acid profile and oil contents using gene editing in oilseed crops for a changing climate. GM Crops Food 2023, 14, 1–12. [Google Scholar] [CrossRef]
- Sprink, T.; Metje, J.; Hartung, F. Plant genome editing by novel tools: TALEN and other sequence specific nucleases. Curr. Opin. Biotechnol. 2015, 32, 47–53. [Google Scholar] [CrossRef]
- Bahariah, B.; Masani, M.Y.A.; Fizree, M.P.M.A.A.; Abd Rasid, O.; Parveez, G.K.A. Multiplex CRISPR/Cas9 gene-editing platform in oil palm targeting mutations in EgFAD2 and EgPAT genes. J. Genet. Eng. Biotechnol. 2023, 21, 3. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, S.N.A.; Hatta, M.A.M. The Application of CRISPR Technology for Functional Genomics in Oil Palm and Coconut. In CRISPR and Plant Functional Genomics; CRC Press: Boca Raton, FL, USA, 2024; pp. 313–331. [Google Scholar]
- Rao, N.K. Plant genetic resources: Advancing conservation and use through biotechnology. Afr. J. Biotechnol. 2004, 3, 136–145. [Google Scholar]
- Nadeem, M.A.; Nawaz, M.A.; Shahid, M.Q.; Doğan, Y.; Comertpay, G.; Yıldız, M.; Hatipoğlu, R.; Ahmad, F.; Alsaleh, A.; Labhane, N. DNA molecular markers in plant breeding: Current status and recent advancements in genomic selection and genome editing. Biotechnol. Biotechnol. Equip. 2018, 32, 261–285. [Google Scholar] [CrossRef]
- Nawaz, M.; Sun, J.; Shabbir, S.; Khattak, W.A.; Ren, G.; Nie, X.; Bo, Y.; Javed, Q.; Du, D.; Sonne, C. A review of plants strategies to resist biotic and abiotic environmental stressors. Sci. Total Environ. 2023, 900, 165832. [Google Scholar] [CrossRef] [PubMed]
- Muhuri, S.D. Development of Functional Marker for Gn1, the Major Qtl Associated with Grain Number in Rice (Oryza sativa L.). Master’s Thesis, Acharya N. G. Ranga Agricultural University, Guntur, India, 2012. [Google Scholar]
- Mehta, S.; Singh, B.; Dhakate, P.; Rahman, M.; Islam, M.A. Rice, marker-assisted breeding, and disease resistance. In Disease Resistance in Crop Plants: Molecular, Genetic and Genomic Perspectives; Springer: Cham, Switzerland, 2019; pp. 83–111. [Google Scholar]
- Fukao, T.; Harris, T.; Bailey-Serres, J. Evolutionary analysis of the Sub1 gene cluster that confers submergence tolerance to domesticated rice. Ann. Bot. 2009, 103, 143–150. [Google Scholar] [CrossRef]
- Ibitoye, D.; Akin-Idowu, P. Marker-assisted-selection (MAS): A fast track to increase genetic gain in horticultural crop breeding. Afr. J. Biotechnol. 2011, 10, 11333–11339. [Google Scholar]
- Haque, M.A.; Rafii, M.Y.; Yusoff, M.M.; Ali, N.S.; Yusuff, O.; Arolu, F.; Anisuzzaman, M. Flooding tolerance in Rice: Adaptive mechanism and marker-assisted selection breeding approaches. Mol. Biol. Rep. 2023, 50, 2795–2812. [Google Scholar] [CrossRef]
- Khan, M.H.; Dar, Z.A.; Dar, S.A. Breeding strategies for improving rice yield—A review. Agric. Sci. 2015, 6, 467–478. [Google Scholar] [CrossRef]
- Benavente, E.; Giménez, E. Modern approaches for the genetic improvement of rice, wheat and maize for abiotic constraints-related traits: A comparative overview. Agronomy 2021, 11, 376. [Google Scholar] [CrossRef]
- Khan, F.S.; Goher, F.; Zhang, D.; Shi, P.; Li, Z.; Htwe, Y.M.; Wang, Y. Is CRISPR/Cas9 a way forward to fast-track genetic improvement in commercial palms? Prospects and limits. Front. Plant Sci. 2022, 13, 1042828. [Google Scholar] [CrossRef]
- Zhou, Y.; Feng, C.; Wang, Y.; Yun, C.; Zou, X.; Cheng, N.; Zhang, W.; Jing, Y.; Li, H. Understanding of plant salt tolerance mechanisms and application to molecular breeding. Int. J. Mol. Sci. 2024, 25, 10940. [Google Scholar] [CrossRef]
- Arunachalam, V.; Ramesh, S.; Paulraj, S.; Babu, B.K.; Muralikrishna, K.; Rajesh, M. Endosperm Oil Biosynthesis: A Case Study for Trait Related Gene Evolution in Coconut. In The Coconut Genome; Springer: Cham, Switzerland, 2021; pp. 145–157. [Google Scholar] [CrossRef]
- Sun, M.; Hua, W.; Liu, J.; Huang, S.; Wang, X.; Liu, G.; Wang, H. Design of new genome-and gene-sourced primers and identification of QTL for seed oil content in a specially high-oil Brassica napus cultivar. PLoS ONE 2012, 7, e47037. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; John Martin, J.J.; Li, X.; Liu, X.; Zhang, R.; Hou, M.; Cao, H.; Cheng, S. Unveiling the Secrets of Oil Palm Genetics: A Look into Omics Research. Int. J. Mol. Sci. 2024, 25, 8625. [Google Scholar] [CrossRef] [PubMed]
- Romsdahl, T.B.; Cocuron, J.-C.; Pearson, M.J.; Alonso, A.P.; Chapman, K.D. A lipidomics platform to analyze the fatty acid compositions of non-polar and polar lipid molecular species from plant tissues: Examples from developing seeds and seedlings of pennycress (Thlaspi arvense). Front. Plant Sci. 2022, 13, 1038161. [Google Scholar] [CrossRef]
- Gao, H.; Li, H. Marker-Assisted Selection (MAS) in Soybean Breeding. Mol. Plant Breed. 2025, 16. [Google Scholar] [CrossRef]
- Kantner, D.S.; Megill, E.; Bostwick, A.; Yang, V.; Bekeova, C.; Van Scoyk, A.; Seifert, E.L.; Deininger, M.W.; Snyder, N.W. Comparison of colorimetric, fluorometric, and liquid chromatography-mass spectrometry assays for acetyl-coenzyme A. Anal. Biochem. 2024, 685, 115405. [Google Scholar] [CrossRef]
- Yunus, M.H.; Firdaus, A.; Khan, Z.; Ansari, M.Y.K. Genomics-Assisted Breeding (GAB) for Trait Improvement: Unveiling Genomic Strategies for Accelerated Crop Enhancement. In Plant Breeding Technology: Future Trends and Challenges; CABI GB: Wallingford, UK, 2025; pp. 138–165. [Google Scholar]
- Guo, Y.; Zhao, G.; Gao, X.; Zhang, L.; Zhang, Y.; Cai, X.; Yuan, X.; Guo, X. CRISPR/Cas9 gene editing technology: A precise and efficient tool for crop quality improvement. Planta 2023, 258, 36. [Google Scholar] [CrossRef]
- Assefa, M.; Zhao, Y.; Zhou, C.; Song, Y.; Zhao, X. Advancements in Crop PUFAs Biosynthesis and Genetic Engineering: A Systematic and Mixed Review System. Int. J. Mol. Sci. 2025, 26, 3462. [Google Scholar] [CrossRef]
- Sampath, V.; Rangarajan, N.; Sharanappa, C.; Deori, M.; Veeraragavan, M.; Ghodake, B.; Kaushal, K. Advancing crop improvement through CRISPR technology in precision agriculture trends-a review. Int. J. Environ. Clim. Change 2023, 13, 4683–4694. [Google Scholar] [CrossRef]
- Hussain, S.A.; Hameed, A.; Khan, M.A.K.; Zhang, Y.; Zhang, H.; Garre, V.; Song, Y. Engineering of fatty acid synthases (FASs) to boost the production of medium-chain fatty acids (MCFAs) in Mucor circinelloides. Int. J. Mol. Sci. 2019, 20, 786. [Google Scholar] [CrossRef]
- Manaig, Y. Omics Approaches for Omega-6/Omega-3 Polyunsaturated Fatty Acid Ratio in Pigs. Ph.D. Thesis, Università degli Studi di Milano, Milano, Italy, 2022. [Google Scholar]
- Bansal, S. Defining the Substrate Specificity of an Unusual Acyltransferase: A Step Towards the Production of an Advanced Biofuel; Kansas State University: Manhattan, KS, USA, 2016. [Google Scholar]
- Ranjbar, S.; Malcata, F.X. Challenges and prospects for sustainable microalga-based oil: A comprehensive review, with a focus on metabolic and genetic engineering. Fuel 2022, 324, 124567. [Google Scholar] [CrossRef]
- Nguyen, K. Evaluation of the Feeding Value of Proso Millet in Growing-Finishing Diets for Pigs and Effects of Feed Ingredients and Medium-Chain Fatty Acids on Porcine Reproductive and Respiratory Syndrome Virus (PRRSV). Survivability 2022. Available online: https://digitalcommons.unl.edu/animalscidiss/236/ (accessed on 23 November 2025).
- De Carvalho, C.C.; Caramujo, M.J. The various roles of fatty acids. Molecules 2018, 23, 2583. [Google Scholar] [CrossRef] [PubMed]
- Andersen, S.J.; De Groof, V.; Khor, W.C.; Roume, H.; Props, R.; Coma, M.; Rabaey, K. A Clostridium group IV species dominates and suppresses a mixed culture fermentation by tolerance to medium chain fatty acids products. Front. Bioeng. Biotechnol. 2017, 5, 8. [Google Scholar] [CrossRef]
- Tan, Z.; Black, W.; Yoon, J.M.; Shanks, J.V.; Jarboe, L.R. Improving Escherichia coli membrane integrity and fatty acid production by expression tuning of FadL and OmpF. Microb. Cell Factories 2017, 16, 38. [Google Scholar] [CrossRef]
- Peng, H.; Zhou, L.; Duan, X.; Wang, Z.; Wang, Z.; Xia, M.; Dong, M.; Wu, J. A multi-layer genome mining and phylogenomic analysis to construct efficient and autonomous efflux system for medium chain fatty acids. Food Mater. Res. 2022, 2, 1–14. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Z.; Zhang, X.; Zhou, P.; Xia, X.; Dong, M. Improving medium chain fatty acid production in Escherichia coli by multiple transporter engineering. Food Chem. 2019, 272, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Moya, R. Engineering Saccharomyces Cerevisiae for the High-Level Production of Free Fatty Acids. Ph.D. Thesis, UC Irvine, Irvine, CA, USA, 2017. [Google Scholar]
- Wang, D.; Chen, J.; Sun, H.; Chen, W.; Yang, X. MCFA alleviate H2O2-induced oxidative stress in AML12 cells via the ERK1/2/Nrf2 pathway. Lipids 2022, 57, 153–162. [Google Scholar] [CrossRef]
- Rasheed, R.; Ashraf, M.A.; Iqbal, M.; Hussain, I.; Akbar, A.; Farooq, U.; Shad, M.I. Major constraints for global rice production: Changing climate, abiotic and biotic stresses. In Rice Research for Quality Improvement: Genomics and Genetic Engineering: Volume 1: Breeding Techniques and Abiotic Stress Tolerance; Springer: Singapore, 2020; pp. 15–45. [Google Scholar]
- Fukuda, H.; Lee, J. Medium-chain fatty acids recovery from synthetic organic waste streams using supported liquid membranes. ACS Sustain. Chem. Eng. 2022, 10, 8370–8379. [Google Scholar] [CrossRef]
- Bhattacharya, A. Lipid metabolism in plants under low-temperature stress: A review. In Physiological Processes in Plants Under Low Temperature Stress; Springer: Berlin/Heidelberg, Germany, 2022; pp. 409–516. [Google Scholar]
- Scholz, P. Lipids in Plant Development and Stress Responses. Ph.D. Thesis, Göttingen University, Göttingen, Germany, 2023. [Google Scholar]
- Garcia-Caparros, P.; De Filippis, L.; Gul, A.; Hasanuzzaman, M.; Ozturk, M.; Altay, V.; Lao, M.T. Oxidative stress and antioxidant metabolism under adverse environmental conditions: A review. Bot. Rev. 2021, 87, 421–466. [Google Scholar] [CrossRef]
- Bansal, S.; Kim, H.J.; Na, G.; Hamilton, M.E.; Cahoon, E.B.; Lu, C.; Durrett, T.P. Towards the synthetic design of camelina oil enriched in tailored acetyl-triacylglycerols with medium-chain fatty acids. J. Exp. Bot. 2018, 69, 4395–4402. [Google Scholar] [CrossRef]
- Tomar, A.; Kumar, C.; Parmar, K.; Khan, N.; Singh, R.; Dwivedi, S.K.; Prasad, D. Innovative metabolic reprogramming in rice: Unlocking drought resilience through microbial consortia interaction and sustainable agriculture. 3 Biotech 2025, 15, 343. [Google Scholar] [CrossRef]
- Nidhishree, A.; Menezes, R.A.; Venkatachalam, H.; Bhat, K.S. Rice bran as a sustainable source for value added materials: An overview. Discov. Mater. 2024, 4, 93. [Google Scholar] [CrossRef]
- Jackman, J.A.; Boyd, R.D.; Elrod, C.C. Medium-chain fatty acids and monoglycerides as feed additives for pig production: Towards gut health improvement and feed pathogen mitigation. J. Anim. Sci. Biotechnol. 2020, 11, 44. [Google Scholar] [CrossRef]
- Dipti, S.S.; Bergman, C.; Indrasari, S.D.; Herath, T.; Hall, R.; Lee, H.; Habibi, F.; Bassinello, P.Z.; Graterol, E.; Ferraz, J.P. The potential of rice to offer solutions for malnutrition and chronic diseases. Rice 2012, 5, 16. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, S.; Haider, A.R.; Shahriar, S.T.; Salehin, S.; Hasan, A.M.; Johansson, M.T. Bioethanol and biodiesel blended fuels—Feasibility analysis of biofuel feedstocks in Bangladesh. Energy Rep. 2022, 8, 1741–1756. [Google Scholar] [CrossRef]
- Desbois, A.P. Potential applications of antimicrobial fatty acids in medicine, agriculture and other industries. Recent Pat. Anti-Infect. Drug Discov. 2012, 7, 111–122. [Google Scholar] [CrossRef]
- Diwan, B.; Gupta, P. Synthesis of MCFA and PUFA rich oils by enzymatic structuring of flax oil with single cell oils. LWT 2020, 133, 109928. [Google Scholar] [CrossRef]
- Arora, S.; Dash, S.K.; Dhawan, D.; Sahoo, P.K.; Jindal, A.; Gugulothu, D. Freeze-drying revolution: Unleashing the potential of lyophilization in advancing drug delivery systems. Drug Deliv. Transl. Res. 2024, 14, 1111–1153. [Google Scholar] [CrossRef]
- Mat, K.; Abdul Kari, Z.; Rusli, N.D.; Che Harun, H.; Wei, L.S.; Rahman, M.M.; Khalid, H.N.M.; Hanafiah, M.H.M.A.; Panadi, M.; Goh, K.W.; et al. Coconut palm: Food, feed, and nutraceutical properties. Animals 2022, 12, 2107. [Google Scholar] [CrossRef]
- Nimbkar, S.; Leena, M.M.; Moses, J.; Anandharamakrishnan, C. Medium chain triglycerides (MCT): State-of-the-art on chemistry, synthesis, health benefits and applications in food industry. Compr. Rev. Food Sci. Food Saf. 2022, 21, 843–867. [Google Scholar] [CrossRef]
- Baker, B.P.; Green, T.A.; Loker, A.J. Biological control and integrated pest management in organic and conventional systems. Biol. Control 2020, 140, 104095. [Google Scholar] [CrossRef]
- Kumar, R.; Das, S.P.; Choudhury, B.U.; Kumar, A.; Prakash, N.R.; Verma, R.; Chakraborti, M.; Devi, A.G.; Bhattacharjee, B.; Das, R. Advances in genomic tools for plant breeding: Harnessing DNA molecular markers, genomic selection, and genome editing. Biol. Res. 2024, 57, 80. [Google Scholar] [CrossRef]
- Pal, S.; Sharma, G.; Subramanian, S. Complete genome sequence and identification of polyunsaturated fatty acid biosynthesis genes of the myxobacterium Minicystis rosea DSM 24000T. BMC Genom. 2021, 22, 655. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Sun, J.; Liu, R.; Huang, J.; Sheng, J. Bridging the Quality-Price Gap: Unlocking Consumer Premiums for High-Quality Rice in China. Foods 2025, 14, 1184. [Google Scholar] [CrossRef] [PubMed]
- Fiaz, S.; Wang, X.; Khan, S.A.; Ahmar, S.; Noor, M.A.; Riaz, A.; Ali, K.; Abbas, F.; Mora-Poblete, F.; Figueroa, C.R. Novel plant breeding techniques to advance nitrogen use efficiency in rice: A review. GM Crops Food 2021, 12, 627–646. [Google Scholar] [CrossRef]
- Maki, K.C.; Davidson, M.H.; Tsushima, R.; Matsuo, N.; Tokimitsu, I.; Umporowicz, D.M.; Dicklin, M.R.; Foster, G.S.; Ingram, K.A.; Bell, M. Consumption of diacylglycerol oil as part of a reduced-energy diet enhances loss of body weight and fat in comparison with consumption of a triacylglycerol control oil. Am. J. Clin. Nutr. 2002, 76, 1230–1236. [Google Scholar] [CrossRef]
- Al Anas, M.; Aprianto, M.A.; Akit, H.; Kurniawati, A.; Hanim, C. Black soldier fly larvae oil (Hermetia illucens L.) calcium salt enhances intestinal morphology and barrier function in laying hens. Poult. Sci. 2024, 103, 103777. [Google Scholar] [CrossRef] [PubMed]
- Rial, R.C. Biofuels versus climate change: Exploring potentials and challenges in the energy transition. Renew. Sustain. Energy Rev. 2024, 196, 114369. [Google Scholar] [CrossRef]
- Bhatnagar, A.S.; Prasanth Kumar, P.; Hemavathy, J.; Gopala Krishna, A. Fatty acid composition, oxidative stability, and radical scavenging activity of vegetable oil blends with coconut oil. J. Am. Oil Chem. Soc. 2009, 86, 991–999. [Google Scholar] [CrossRef]
- Tian, W.; Yan, X.; Zeng, Z.; Xia, J.; Zhao, J.; Zeng, G.; Yu, P.; Wen, X.; Gong, D. Enzymatic interesterification improves the lipid composition, physicochemical properties and rheological behavior of Cinnamomum camphora seed kernel oil, Pangasius bocourti stearin and perilla seed oil blends. Food Chem. 2024, 430, 137026. [Google Scholar] [CrossRef]
- Priambodo, T.W. Effects of Medium-Chain Fatty Acids and Ration Type on In Vitro Ruminal Methane Production. Ph.D. Thesis, Universitäts-und Landesbibliothek Bonn, Bonn, Germany, 2015. [Google Scholar]





| Gene | Enzyme/Protein | Function on Lipid Metabolism | Expression Sites | Effect on Lipid Profile | References |
|---|---|---|---|---|---|
| OsWRI1 | Transcription Factor | Activates genes for glycolysis and FAS | Seed, Endosperm, Embryo | Increase oil content, Indirect effect on MCFA | [68] |
| OsFATB | Acyl-ACP thioesterase B | Terminates FAS; Release free fatty acid from ACP | Developing seeds, leaves | Increase MCFA and C16:0 | [22] |
| OsKASII | β-Ketoacyl-ACP Synthase II | Elongates C16:0-ACP to C18:0-ACP | Developing seeds, Plastids | Potential substrate for MCFA, Increase C16:0 pool | [69] |
| OsFAD2 | Fatty acid desaturase 2 | Desaturates C18:1 to C18:2 | Developing seed, endosperm, roots | Potentially freeing carbon for MCFA synthesis, alter UFA/SFA ratio | [70] |
| OsPDAT | Phospholipid: Diacylglycerol Acyltransferase | TAG synthesis via acyl-CoA-independent pathway | Developing seeds, embryo | Increase the total TAG; unusual FA into storage | [71] |
| OsDGAT1 | Diacylglycerol Acytransferase 1 | Synthesis of TAG in Kennedy pathway | Developing seeds | Increase TAG, Important for final oil synthesis | [72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zubair, M.; Tong, X.; Ashraf, A.; Li, H.; Li, G.; Xin, A.; Chen, J.; Wang, Y.; Li, Z.; Huang, J.; et al. Genetic Regulation and Breeding Application of Medium-Chain Fatty Acids Metabolism in Rice. Biology 2025, 14, 1674. https://doi.org/10.3390/biology14121674
Zubair M, Tong X, Ashraf A, Li H, Li G, Xin A, Chen J, Wang Y, Li Z, Huang J, et al. Genetic Regulation and Breeding Application of Medium-Chain Fatty Acids Metabolism in Rice. Biology. 2025; 14(12):1674. https://doi.org/10.3390/biology14121674
Chicago/Turabian StyleZubair, Muhammad, Xiaohong Tong, Aneela Ashraf, Hongzhou Li, Guanghao Li, Ai Xin, Jiale Chen, Yifeng Wang, Zhiyong Li, Jie Huang, and et al. 2025. "Genetic Regulation and Breeding Application of Medium-Chain Fatty Acids Metabolism in Rice" Biology 14, no. 12: 1674. https://doi.org/10.3390/biology14121674
APA StyleZubair, M., Tong, X., Ashraf, A., Li, H., Li, G., Xin, A., Chen, J., Wang, Y., Li, Z., Huang, J., Cheng, Y., Zhang, J., & Ying, J. (2025). Genetic Regulation and Breeding Application of Medium-Chain Fatty Acids Metabolism in Rice. Biology, 14(12), 1674. https://doi.org/10.3390/biology14121674

